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Notation

» Data consists of p measurements (variables/attributes) on n examples
(observations/cases)

» X is a n x p-matrix with X;; := the j-th measurement for the i-th example

X1 X2 Xy Xip

Xo1 X Xo; Xop

X = Xll Xl2 Xij le
i an Xn2 an an |




Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species, previously grouped by
colour, orange and blue. Preserved specimens lose their colour, so it was
hoped that morphological differences would enable museum material to be
classified.

Data are available on 50 specimens of each sex of each species, collected on
sight at Fremantle, Western Australia. Each specimen has measurements on
the width of the frontal lip F1, the rear width Rw, and length along the midline
CL and the maximum width cw of the carapace, and the body depth BD in mm.



Crabs Data

Looking at the crabs dataset, n = 200 measurements on p = 5 morphological
features of crabs

» 'FL frontal lip size (mm)
» 'RW’ rear width (mm)
» 'CL carapace length (mm)
» 'CW’ carapace width (mm)
» '‘BD’ body depth (mm)
Also available, the colour ('B’ or 'O’) and sex (M’ or 'F’).

## load package MASS containing the data
library (MASS)

## look at data
crabs

Sp sex 1ndex FL RW CL CW BD

1 B M 1 8.1 6.7 1lo.1 19.0 7.0
2 B M 2 g.8 7.7 18.1 20.8 7.4



R code

## assign predictor and class variables
Crabs <- crabs|[,4:8]
Crabs.class <- factor (paste(crabs[,1],crabs[,2],sep=""))

## plot data using pair plots
plot (Crabs, col=unclass (Crabs.class))

##boxplots
boxplot (Crabs)

## parallel coordinates
parcoord (Crabs)



Simple Pairwise Scatterplots
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Univariate Boxplots
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Univariate Histograms

Histogram of Frontal Lobe Si

oS _

«

0
> - >
o v [5)
c c
) )
5 5

o _]
o = o
L L

L{)—

o_.

| I
10 15 20

Frontal Lobe Size (mm)

Histogram of Carapace Widf

o

[aY]

o0 _]

—
> >
(&) (&)
C C
[ o
S o _| =]
o — o
o o
S S
L [T

o -

o -

1 1 1
20 30 40 50

Carapace Width (mm)

Histogram of Rear Width Histogram of Carapace Leng

Q
Al
o _
>‘Y_
5
c
[}
T 9 -
97_
1
0 —
o -
1T 17 17T 17T T 171 1T 17T 17T 17T 1771
6 8 12 16 20 15 25 35 45

Rear Width (mm) Carapace Length (mm)

Histogram of Body Depth

o)

®

0

I\

o

«

)

=

Te)

o
1T 1
10 15 20

Body Depth (mm)



Parallel Coordinate Plots
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These summary plots are helpful, but do not really help very much if the
dimensionality of the data is high (a few dozen or thousands).
Possible approaches for higher-dimensional problems.

» We are constrained to view data in 2 or 3 dimensions
» Look for ‘interesting’ projections of X into lower dimensions

» Hope that for large p, considering only k < p dimensions is just as
informative
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Principal Components Analysis (PCA)

» Seek to rotate data to a new basis that represents the data in a more
‘Interesting’ way.
» PCA considers interesting to be directions with greatest variance.

» Builds up an orthogonal basis where new basis vectors are chosen to
explain the greatest variance in data, the first few PCs should represent
most of the variance-covariance structure in the data, i.e. the subspace
spanned by first k PCs represents the ‘best’ k-dimensional view of the
data.



Principal Components Analysis (PCA)

» Consider a set of real-valued variables X = (X;...X,)".

» For the 1°" PC, we seek a derived variable of the form
Zl = Cl11X1 + 6121X2 + -+ Clp1Xp = XT31

where a;; € R are chosen to maximise var(Z,).
» To get a well defined problem, we fix ala; = 1.

» The 19 PC attempts to capture the common variation in all variables
using a single derived variable.

» The 2"¢ PC Z, is chosen to be orthogonal with the 1* and is computed in
a similar way. It will have the largest variance in the remaining p — 1
dimensions, efc.



Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)
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How to Obtain the Coefficients?
To find the 1% PC given by Z; = X'a,

>

Maximise var(Z,) = var(Xa;) = al cov(X)a; ~ alSa; subjectto ala; =1
where S = n~!X"X is a p x p sample covariance matrix of the centred
n x p data matrix X.

Rewriting this as a constrained maximisation problem,

Maximise F (a;) = alTSal — )\ (a{al — 1) w.r.t. a;.

The corresponding vector of partial derivatives yields
OF
- = 2531 — 2)\131.
831

Setting this to zero reveals the eigenvector equation, i.e. a; must be an
eigenvector of S and )\, the corresponding eigenvector.

Since a{ Sa; = \jala; = )\, the 1¥ PC must be the eigenvector
associated with the largest eigenvalue of S.



How to Obtain the Coefficients?

How about the 2"¢ PC?

» Proceed as before but include the additional constraint that the 24 PC
must be orthogonal to the 1 PC

Maximise F (a;) = ajSa — X\, (aja, — 1) — p (ajay) W.rt. a;

» Solving this shows that a, must be the eigenvector of S associated with
the 2™ largest eigenvalue, and so on

» The eigenvalue decomposition of S is given by S = AAAT where A is a
diagonal matrix with eigenvalues \; > A\, > --- >\, >0andAisap xp
orthogonal matrix whose columns are the p eigenvectors of S.



Properties of the Principal Components

» PCs are uncorrelated

cov(X"a;, X" a;) ~ a Sa; = 0 for i # j.

» The total sample variance is given by

14
Total sample variance = Zsii = A+ ..,
i=1

so the proportion of total variance explained by the k" PC is

Ak
)\1—|—)\2—|—...—|—)\p

k=1,2,...,p



R code

This is what we have had before:

library (MASS)

Crabs <- crabs|[,4:8]

Crabs.class <- factor (paste(crabs[,1],crabs[,2],sep=""))
plot (Crabs, col=unclass (Crabs.class))

Now perform PCA analysis with function princomp.
Alternatively, use eigen or svd instead (later).

Crabs.pca <- princomp (Crabs, cor=FALSE)
plot (Crabs.pca)
pairs (predict (Crabs.pca),col=unclass (Crabs.class))



PCA Exam
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PCA Example 1: Rotated crabs data
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PCA Example 1: Crabs Data (n =200, p =5
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PCA Example 2: Yeast Cell Cycle Data (n = 384,
p =17)

Cho et al (1998) present gene expression data on the cell cycle of yeast. They
identify a subset of genes that can be categorised into five different phases of
the cell-cycle. Changes in expression for the genes are measured over two
cell cycles (17 time points).

The data were normalised so that the expression values for each gene has
mean zero and unit variance across the cell cycles.

We visualise the 384 genes in the space of the first two prinicipal components.



PCA Example 2: Yeast Cell Cycle Data (n = 384,
p =17
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Comments on the use of PCA

» PCA commonly used to project data X onto the first £ PCs giving the
‘best’ k-dimensional view of the data.

» PCA commonly used for lossy compression of high dimensional data.
» Emphasis on variance is where the weaknesses of PCA stem from:

» The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. It is therefore
recommended to calculate PCs from cor(X) instead of cov(X).

» Robustness to outliers is also an issue. Variance is affected by outliers
therefore so are PCs.

» Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.



Biplots

» When viewing projections of data matrix X into its PC space, it is
instructive to view the contribution from the original variables to the PCs
that are plot.

» Biplots overlay projection of unit vectors of the original variables into the
PC space

» As PCs are linear combinations of the original variables, it is
straightforward to invert this relationship to yield the contributions of the
original variables to the PCs



Biplots

Biplots show us an image of the data and unit vectors of the original axes into
the projected space.

» The distance of projected points away from the projected original axes tell
us its original location.

» Unit vectors of the original variables give us a common denominator to
compare how much weighting each PC gives to the original variables.

» |t can be shown that cos 6 (where @ is the angle that subtends two
projected original axes) approximates the correlation between these
variables.

However, the quality of this image depends on the proportion of variance
explained by the PCs used.



Biplot Example 1: Fisher’s Iris Data

50 sample from 3 species of iris: iris setosa,
versicolor, and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)

Using again function princomp and biplot.

irisl <- 1iris
irisl <- 1irisl([,—-5]
biplot (princomp (irisl, cor=T))
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Biplot Example 2: US Arrests

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)
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Biplot Example 2: US Arrests
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Biplot Example 3: US State data

This data set contains statistics like illiteracy and life expectancy on 50 US
states.

data (state) ## load state data
state <- state.x77[, 2:7] ## extract useful info
row.names (state)<-state.abb

state[1l:5, ] ## lets have a look

Income Illiteracy Life Exp Murder HS Grad Frost

AL 3624 2.1 69.05 15.1 41.3 20
AK 6315 1.5 69.31 11.3 66.77 152
AZ 4530 1.8 70.55 7.8 58.1 15
AR 3373 1.9 70.66 10.1 39.9 65
CA 5114 1.1 71.71 10.3 62.6 20

## calculate the pc’s of the data and show biplot
state.pca <- princomp (state, cor=TRUE)
biplot (state.pca,pc.biplot=TRUE, cex=0.8, font=2, expand=0.9)



Biplot: US States
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