Probabilistic and Bayesian Machine Learning

Day 3: The EM Algorithm

Yee Whye Teh
ywteh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit
University College London
http://www.gatsby.ucl.ac.uk/~ywteh/teaching/probmodels

The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood $P(\mathbf{X}, \mathbf{Y} \mid \theta)$. It starts from arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

- Useful in models where learning would be easy if unobserved variables were, in fact, observed (e.g. MoGs).
- Decomposes difficult problems into series of tractable steps.
- No gradients and learning rate.
- Framework lends itself to principled approximations.

Jensen's Inequality

For $\alpha_{i} \geq 0, \sum \alpha_{i}=1$ and any $\left\{x_{i}>0\right\}$

$$
\log \left(\sum_{i} \alpha_{i} x_{i}\right) \geq \sum_{i} \alpha_{i} \log \left(x_{i}\right)
$$

Equality if and only if $\alpha_{i}=1$ for some i (and therefore all others are 0).

The Free Energy for a Latent Variable Model

Observed data $\mathbf{X}=\left\{X_{i}\right\}$; Latent variables $\mathbf{Y}=\left\{Y_{i}\right\}$; Parameters θ.
Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\log \int P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}
$$

The Free Energy for a Latent Variable Model

Observed data $\mathbf{X}=\left\{X_{i}\right\}$; Latent variables $\mathbf{Y}=\left\{Y_{i}\right\}$; Parameters θ.
Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\log \int P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}
$$

Any distribution, $q(\mathbf{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$
\ell(\theta)=\log \int q(\mathbf{Y}) \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \geq \int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y}
$$

The Free Energy for a Latent Variable Model

Observed data $\mathbf{X}=\left\{X_{i}\right\}$; Latent variables $\mathbf{Y}=\left\{Y_{i}\right\}$; Parameters θ.
Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\log \int P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}
$$

Any distribution, $q(\mathbf{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$
\ell(\theta)=\log \int q(\mathbf{Y}) \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \geq \int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \stackrel{\text { def }}{=} \mathcal{F}(q, \theta) .
$$

The Free Energy for a Latent Variable Model

Observed data $\mathbf{X}=\left\{X_{i}\right\}$; Latent variables $\mathbf{Y}=\left\{Y_{i}\right\}$; Parameters θ.
Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\log \int P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}
$$

Any distribution, $q(\mathbf{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$
\ell(\theta)=\log \int q(\mathbf{Y}) \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \geq \int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \stackrel{\text { def }}{=} \mathcal{F}(q, \theta)
$$

Now,

$$
\begin{aligned}
\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} & =\int q(\mathbf{Y}) \log P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}-\int q(\mathbf{Y}) \log q(\mathbf{Y}) d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}+\mathbf{H}[q]
\end{aligned}
$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathbf{Y})$.

The Free Energy for a Latent Variable Model

Observed data $\mathbf{X}=\left\{X_{i}\right\}$; Latent variables $\mathbf{Y}=\left\{Y_{i}\right\}$; Parameters θ.
Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\log \int P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}
$$

Any distribution, $q(\mathbf{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$
\ell(\theta)=\log \int q(\mathbf{Y}) \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \geq \int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \stackrel{\text { def }}{=} \mathcal{F}(q, \theta)
$$

Now,

$$
\begin{aligned}
\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} & =\int q(\mathbf{Y}) \log P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}-\int q(\mathbf{Y}) \log q(\mathbf{Y}) d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{Y}, \mathbf{X} \mid \theta) d \mathbf{Y}+\mathbf{H}[q]
\end{aligned}
$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathbf{Y})$.
So:

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{q(\mathbf{Y})}+\mathbf{H}[q]
$$

The E and M steps of EM

The lower bound on the log likelihood is given by:

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{q(\mathbf{Y})}+\mathbf{H}[q],
$$

The E and M steps of EM

The lower bound on the log likelihood is given by:

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{q(\mathbf{Y})}+\mathbf{H}[q],
$$

EM alternates between:
E step: optimize $\mathcal{F}(q, \theta)$ wrt distribution over hidden variables holding parameters fixed:

$$
q^{(k)}(\mathbf{Y}):=\underset{q(\mathbf{Y})}{\operatorname{argmax}} \mathcal{F}\left(q(\mathbf{Y}), \theta^{(k-1)}\right) .
$$

The E and M steps of EM

The lower bound on the log likelihood is given by:

$$
\mathcal{F}(q, \theta)=\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{q(\mathbf{Y})}+\mathbf{H}[q],
$$

EM alternates between:
E step: optimize $\mathcal{F}(q, \theta)$ wrt distribution over hidden variables holding parameters fixed:

$$
q^{(k)}(\mathbf{Y}):=\underset{q(\mathbf{Y})}{\operatorname{argmax}} \mathcal{F}\left(q(\mathbf{Y}), \theta^{(k-1)}\right) .
$$

M step: maximize $\mathcal{F}(q, \theta)$ wrt parameters holding hidden distribution fixed:

$$
\theta^{(k)}:=\underset{\theta}{\operatorname{argmax}} \mathcal{F}\left(q^{(k)}(\mathbf{Y}), \theta\right)=\underset{\theta}{\operatorname{argmax}}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{q^{(k)}(\mathbf{Y})}
$$

The second equality comes from the fact that the entropy of $q(\mathbf{Y})$ does not depend directly on θ.

EM as Coordinate Ascent in \mathcal{F}

The E Step

The free energy can be re-written

$$
\mathcal{F}(q, \theta)=\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y}
$$

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta) P(\mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y}
\end{aligned}
$$

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta) P(\mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{X} \mid \theta) d \mathbf{Y}+\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta)}{q(\mathbf{Y})} d \mathbf{Y}
\end{aligned}
$$

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta) P(\mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{X} \mid \theta) d \mathbf{Y}+\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\ell(\theta)-\mathbf{K L}[q(\mathbf{Y}) \| P(\mathbf{Y} \mid \mathbf{X}, \theta)]
\end{aligned}
$$

The second term is the Kullback-Leibler divergence.

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta) P(\mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{X} \mid \theta) d \mathbf{Y}+\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\ell(\theta)-\mathbf{K L}[q(\mathbf{Y}) \| P(\mathbf{Y} \mid \mathbf{X}, \theta)]
\end{aligned}
$$

The second term is the Kullback-Leibler divergence.
This means that, for fixed θ, \mathcal{F} is bounded above by ℓ, and achieves that bound when $\mathbf{K L}[q(\mathbf{Y}) \| P(\mathbf{Y} \mid \mathbf{X}, \theta)]=0$.

The E Step

The free energy can be re-written

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta) P(\mathbf{X} \mid \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\int q(\mathbf{Y}) \log P(\mathbf{X} \mid \theta) d \mathbf{Y}+\int q(\mathbf{Y}) \log \frac{P(\mathbf{Y} \mid \mathbf{X}, \theta)}{q(\mathbf{Y})} d \mathbf{Y} \\
& =\ell(\theta)-\mathbf{K L}[q(\mathbf{Y}) \| P(\mathbf{Y} \mid \mathbf{X}, \theta)]
\end{aligned}
$$

The second term is the Kullback-Leibler divergence.
This means that, for fixed θ, \mathcal{F} is bounded above by ℓ, and achieves that bound when $\mathbf{K L}[q(\mathbf{Y}) \| P(\mathbf{Y} \mid \mathbf{X}, \theta)]=0$.

But $\operatorname{KL}[q \| p]$ is zero if and only if $q=p$. So, the E step simply sets

$$
q^{(k)}(\mathbf{Y})=P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{(k-1)}\right)
$$

and, after an E step, the free energy equals the likelihood.

Coordinate Ascent in \mathcal{F} (Demo)

One parameter mixture:

$$
\begin{gathered}
s \sim \text { Bernoulli }[\pi] \\
x|s=0 \sim \mathcal{N}[-1,1] \quad x| s=1 \sim \mathcal{N}[1,1]
\end{gathered}
$$

and one data point $x_{1}=.3$.
$q(s)$ is a distribution on a single binary latent, and so is represented by $r_{1} \in[0,1]$.

Coordinate Ascent in \mathcal{F} (Demo)

EM for Learning HMMs

Parameters: $\theta=\{\pi, T, A\}$
Free energy:

$$
\mathcal{F}(q, \theta)=\sum_{Y_{1: \tau}} q\left(Y_{1: \tau}\right)\left(\log P\left(X_{1: \tau}, Y_{1: \tau} \mid \theta\right)-\log q\left(Y_{1: \tau}\right)\right)
$$

E-step: Maximise \mathcal{F} w.r.t. q with θ fixed: $\quad q^{*}\left(Y_{1: \tau}\right)=P\left(Y_{1: \tau} \mid X_{1: \tau}, \theta\right)$
We will only need the marginal probabilities $q^{*}\left(Y_{t}, Y_{t+1}\right)$, which can also be obtained from the forward-backward algorithm.
M-step: Maximize \mathcal{F} w.r.t. θ with q fixed.
We can re-estimate the parameters by computing the expected number of times the HMM was in state i, emitted symbol k and transitioned to state j.

This is the Baum-Welch algorithm and it predates the (more general) EM algorithm.

M step: Parameter updates are given by just ratios of expected counts

We can derive the following updates by taking derivatives of \mathcal{F} w.r.t. θ.

- Let the posterior marginals be:

$$
\begin{aligned}
& \gamma_{t}(i)=P\left(Y_{t}=i \mid X_{1: \tau}\right) \propto \alpha_{t}(i) \beta_{t}(i) \\
& \xi_{t}(i j)=P\left(Y_{t}=i, Y_{t+1}=j \mid X_{1: \tau}\right) \propto \alpha_{i}(i) P\left(Y_{t+1}=j \mid Y_{t}=i\right) P\left(X_{t+1} \mid Y_{t+1}=j\right) \beta_{t+1}(j)
\end{aligned}
$$

- The initial state distribution is the expected number of times in state i at $t=1$:

$$
\hat{\pi}_{i}=\gamma_{1}(i)
$$

- The estimated transition probabilities are:

$$
\hat{T}_{i j}=\frac{\sum_{t=1}^{\tau-1} \xi_{t}(i j)}{\sum_{t=1}^{\tau-1} \gamma_{t}(i)}
$$

- The output distributions are the expected number of times we observe a particular symbol in a particular state:

$$
\hat{A}_{i k}=\frac{\sum_{t: X_{t}=k} \gamma_{t}(i)}{\sum_{t=1}^{\tau} \gamma_{t}(i)}
$$

(or the state-probability-weighted sufficient statistics for exponential family observation models).

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right)
$$

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right) \text { E step } \underset{=}{=} \mathcal{F}\left(q^{(k)}, \theta^{(k-1)}\right)
$$

- The E step brings the free energy to the likelihood.

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right) \underset{\mathrm{E} \text { step }}{=} \mathcal{F}\left(q^{(k)}, \theta^{(k-1)}\right) \underset{\mathrm{M} \text { step }}{\leq} \mathcal{F}\left(q^{(k)}, \theta^{(k)}\right)
$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ.

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right) \underset{\text { E step }}{=} \mathcal{F}\left(q^{(k)}, \theta^{(k-1)}\right) \underset{\text { M step }}{\leq} \mathcal{F}\left(q^{(k)}, \theta^{(k)}\right) \underset{\text { Jensen }}{\leq} \ell\left(\theta^{(k)}\right),
$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ.
- $\mathcal{F} \leq \ell$ by Jensen - or, equivalently, from the non-negativity of KL

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$
\ell\left(\theta^{(k-1)}\right) \underset{\text { E step }}{=} \mathcal{F}\left(q^{(k)}, \theta^{(k-1)}\right) \underset{\text { M step }}{\leq} \mathcal{F}\left(q^{(k)}, \theta^{(k)}\right) \underset{\text { Jensen }}{\leq} \ell\left(\theta^{(k)}\right),
$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ.
- $\mathcal{F} \leq \ell$ by Jensen - or, equivalently, from the non-negativity of KL

If the M -step is executed so that $\theta^{(k)} \neq \theta^{(k-1)}$ iff \mathcal{F} increases, then the overall EM iteration will step to a new value of θ iff the likelihood increases.

Fixed Points of EM are Stationary Points in ℓ

Fixed Points of EM are Stationary Points in ℓ
Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\ell(\theta)=\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

Fixed Points of EM are Stationary Points in ℓ
Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\begin{aligned}
\ell(\theta) & =\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\left\langle\log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{P(\mathbf{Y} \mid \mathbf{X}, \theta)}\right\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
\end{aligned}
$$

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\begin{aligned}
\ell(\theta) & =\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\left\langle\log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{P(\mathbf{Y} \mid \mathbf{X}, \theta)}\right\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
\end{aligned}
$$

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\begin{aligned}
\ell(\theta) & =\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\left\langle\log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{P(\mathbf{Y} \mid \mathbf{X}, \theta)}\right\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
\end{aligned}
$$

so,

$$
\frac{d}{d \theta} \ell(\theta)=\frac{d}{d \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d}{d \theta}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\begin{aligned}
\ell(\theta) & =\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\left\langle\log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{P(\mathbf{Y} \mid \mathbf{X}, \theta)}\right\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
\end{aligned}
$$

so,

$$
\frac{d}{d \theta} \ell(\theta)=\frac{d}{d \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d}{d \theta}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

The second term is 0 at θ^{*} if the derivative exists (minimum of $\mathbf{K L}[\cdot \| \cdot]$), and thus:

$$
\left.\frac{d}{d \theta} \ell(\theta)\right|_{\theta^{*}}=\left.\frac{d}{d \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^{*}. Then:

$$
\left.\frac{\partial}{\partial \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

Now,

$$
\begin{aligned}
\ell(\theta) & =\log P(\mathbf{X} \mid \theta)=\langle\log P(\mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\left\langle\log \frac{P(\mathbf{Y}, \mathbf{X} \mid \theta)}{P(\mathbf{Y} \mid \mathbf{X}, \theta)}\right\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)} \\
& =\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
\end{aligned}
$$

so,

$$
\frac{d}{d \theta} \ell(\theta)=\frac{d}{d \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d}{d \theta}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

The second term is 0 at θ^{*} if the derivative exists (minimum of $\mathbf{K L}[\cdot \| \cdot]$), and thus:

$$
\left.\frac{d}{d \theta} \ell(\theta)\right|_{\theta^{*}}=\left.\frac{d}{d \theta}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}\right|_{\theta^{*}}=0
$$

So, EM converges to a stationary point of $\ell(\theta)$.

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)
Differentiating the previous expression wrt θ again we find

$$
\frac{d^{2}}{d \theta^{2}} \ell(\theta)=\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)
Differentiating the previous expression wrt θ again we find

$$
\frac{d^{2}}{d \theta^{2}} \ell(\theta)=\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum).

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)
Differentiating the previous expression wrt θ again we find

$$
\frac{d^{2}}{d \theta^{2}} \ell(\theta)=\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and
θ^{*} is a maximum of ℓ.

Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^{*} now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)
Differentiating the previous expression wrt θ again we find

$$
\frac{d^{2}}{d \theta^{2}} \ell(\theta)=\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y}, \mathbf{X} \mid \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}-\frac{d^{2}}{d \theta^{2}}\langle\log P(\mathbf{Y} \mid \mathbf{X}, \theta)\rangle_{P\left(\mathbf{Y} \mid \mathbf{X}, \theta^{*}\right)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and

$$
\theta^{*} \text { is a maximum of } \ell \text {. }
$$

[... as long as the derivatives exist. They sometimes don't (zero-noise ICA)].

Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase \mathcal{F} wrt θ rather than maximize. (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase \mathcal{F} wrt to some of the q s.
For example, sparse or online versions of the EM algorithm would compute the posterior for a subset of the data points or as the data arrives, respectively. You can also update the posterior over a subset of the hidden variables, while holding others fixed...

Failure Modes of EM

EM can fail under a number of degenerate situations:

- EM may converge to a bad local maximum.
- Likelihood function may not be bounded above. E.g. a cluster responsible for a single data item can given arbitrarily large likelihood if variance $\sigma_{m} \rightarrow 0$.
- Free energy may not be well defined (or is $-\infty$).

EM for Exponential Families

Defn: P is in the exponential family for Y, X if it can be written:

$$
P(Y, X \mid \theta)=h(Y, X) \exp \left\{\theta^{\top} \mathbf{T}(Y, X)\right\} / Z(\theta)
$$

where $Z(\theta)=\int h(Y, X) \exp \left\{\theta^{\top} \mathbf{T}(Y, X)\right\} d(Y, X)$
E step: $q(Y)=P(Y \mid X, \theta)$
M step: $\theta^{(k)}:=\underset{\theta}{\operatorname{argmax}} \mathcal{F}(q, \theta)$

$$
\begin{aligned}
\mathcal{F}(q, \theta) & =\int q(Y) \log P(Y, X \mid \theta) d Y-\mathbf{H}[q] \\
& =\int q(Y)\left[\theta^{\top} \mathbf{T}(Y, X)-\log Z(\theta)\right] d Y+\mathrm{const}
\end{aligned}
$$

It is easy to verify that: $\quad \frac{\partial \log Z(\theta)}{\partial \theta}=E_{P(Y, X \mid \theta)}[\mathbf{T}(Y, X)]$
Therefore, M step solves: $\quad \frac{\partial \mathcal{F}}{\partial \theta}=E_{q(Y)}[\mathbf{T}(Y, X)]-E_{P(Y, X \mid \theta)}[\mathbf{T}(Y, X)]=0$

The Central Role of the Partition Function

The partition function $Z(\theta)$ of exponential families plays an important role in inference and learning of such models.

- Undirected graphical models are exponential families if each factor in the model has an exponential family form:

$$
\begin{aligned}
f_{i}\left(Y_{C_{i}}, X_{C_{i}}\right) & =h_{i}\left(Y_{C_{i}}, X_{C_{i}}\right) \exp \left\{\theta_{i}^{\top} \mathbf{T}_{i}\left(Y_{C_{i}}, X_{C_{i}}\right)\right\} \\
P(Y, X \mid \theta) & =\frac{1}{Z(\theta)} \prod_{i} h_{i}\left(Y_{C_{i}}, X_{C_{i}}\right) \exp \left\{\sum_{i} \theta_{i}^{\top} \mathbf{T}_{i}\left(Y_{C_{i}}, X_{C_{i}}\right)\right\}
\end{aligned}
$$

- Likelihoods $P(X \mid \theta)$ are basically partition functions of undirected graphical models.
- Derivatives give the sufficient statistics of the models:

$$
\nabla \log Z(\theta)=\mu=E_{P(Y, X \mid \theta)}[\mathbf{T}(Y, X)]
$$

- Second derivatives give the covariance of sufficient statistics:

$$
\nabla^{2} \log Z(\theta)=E_{P(Y, X \mid \theta)}\left[(\mathbf{T}(Y, X)-\mu)(\mathbf{T}(Y, X)-\mu)^{\top}\right]
$$

- Higher order derivatives give all cumulants, so $\log Z(\theta)$ is the cumulant generative function of the exponential family distribution.
- Many approximate inference techniques are based on approximating $\log Z(\theta)$.

End Notes

A. P. Dempster, N. M. Laird and D. B. Rubin (1977).

Maximum Likelihood from Incomplete Data via the EM Algorithm.
Journal of the Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 (1977), pp. 1-38.
http://www.jstor.org/stable/2984875
R. M. Neal and G. E. Hinton (1998).

A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (editor) Learning in Graphical Models, pp. 355-368, Dordrecht: Kluwer Academic Publishers.
http://www.cs.utoronto.ca/ radford/ftp/emk.pdf
Z. Ghahramani and G. E. Hinton (1996).

The EM Algorithm for Mixtures of Factor Analyzers.
University of Toronto Technical Report CRG-TR-96-1.
http://learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

End Notes

