
Homework 1

Probabilistic and Bayesian Machine Learning

Yee Whye Teh, Gatsby Computational Neuroscience Unit, University College London

1. [30 points] Successful Applications. Find a successful, interesting, and/or cool application of
probabilistic modelling techniques that has been reported in the literature. You may find these in
good venues for machine learning or statistics. Journal venues include: Journal of Machine Learning
Research, Machine Learning Journal, Journal of the American Statistical Association, Journal of the
Royal Statistical Society B, Statistical Science, Bayesian Analysis. Conference venues include: NIPS,
ICML, UAI, ECML, AISTATS, ISBA.

(a) What problem did authors address with probabilistic models? Why did you find this application
successful/interesting/cool?

(b) What are the observed variables, latent variables, and the joint distribution?

(c) Can you draw the joint distribution as a graphical model? What is it?

(d) Did the authors attempt to estimate or learn the parameters? How is learning or estimation
achieved?

(e) Were there approximations involved in inference or learning, and if so, what?

2. [20 points] Gaussian Distributions. You will need to be familiar with the following terms
from statistics.

expected value, unbiased estimator, sufficient statistics, exponential family.

Find definitions in a textbook or on the web. Answer the following questions:

(a) Let X be a Gaussian random variable with mean µ and variance σ2. What is the expected value
of 2X2?

(b) Let x1 . . . xn be samples from a Gaussian random variable with mean µ and variance σ2. Is x1
an unbiased estimator for µ? What about x1/3 + 2/3x2?

(c) Let x1 . . . xn be samples from a Gaussian random variable with mean µ and variance σ2. What
are the sufficient statistics for µ? What are the sufficient statistics for σ?

(d) Show that a Gaussian distribution is a conjugate prior for µ (if σ2 is kept fixed).

(e) Show that a gamma distribution is a conjugate prior for σ−2 (if µ is kept fixed). The induced
distribution on σ2 is called an inverse gamma distribution.

(f) Show that a prior which assumes that µ and σ2 are independent, with µ being Gaussian and σ2

being inverse gamma, is not a conjugate prior.

3. [20 points] Maximum entropy and exponential families.

Suppose we have a data set x1, . . . , xN of iid samples from some distribution. Assume that we have
a number of functions f1(x), . . . , fK(x) which summarize what we believe are important about the
distribution, and we collect the statistics

ŝk =
1

N

N∑
i=1

fk(xi) for each k = 1, . . . ,K.



For example, if f1(x) = x then the statistics is the empirical mean, and if f2(x) = x2 then the
corresponding statistics is the empirical spread of the data set around 0. The maximum entropy
(MaxEnt) approach says that if these statistics are what is important about the data set, then we
should not make any further assumption about the distribution, so should model the distribution as
the maximum entropy distribution subject to constraints on the statistics:

pMaxEnt = argmax
p(x)

H[p(x)] subject to Ep[fk(x)] = ŝk for each k

Show that the maximum entropy distribution is a member of the exponential family of distributions
with sufficient statistics functions T(x) = [f1(x), . . . , fK(x)]>.

4. [30 points] Models for binary vectors. Consider a data set of binary (black and white)
images. Each image is arranged into a vector of pixels by concatenating the columns of pixels in the
image. The data set has N images {x(1), . . . , x(N)} and each image has D pixels, where D is (number

of rows × number of columns) in the image. For example, image x(n) is a vector (x
(n)
1 , . . . , x

(n)
D ) where

x
(n)
d ∈ {0, 1} for all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

Assume that the images were modelled as independently and identically distributed samples from
a D-dimensional multivariate Bernoulli distribution with parameter vector p = (p1, . . . , pD),
which has the form

P (x|p) =
D∏
d=1

pxdd (1− pd)(1−xd)

where both x and p are D-dimensional vectors.

(a) What is the equation for the maximum likelihood (ML) estimate of p? Note that you can solve
for p directly.

(b) Assuming independent Beta priors on the parameters pd

P (pd) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1d (1− pd)β−1

and P (p) =
∏
d P (pd) What is the maximum a posteriori (MAP) estimate of p? Hint: maximise

the log posterior with respect to p.

Download the data set binarydigits.txt from the course website, which contains N = 100 images
with D = 64 pixels each, in an N × D matrix. These pixels can be displayed as 8 × 8 images by
rearranging them. View them in MATLAB by running bindigit.m (almost no MATLAB knowledge
required to do this).

(c) Write code to learn the ML parameters of a multivariate Bernoulli from this data set and display
these parameters as an 8× 8 image.

(d) Modify your code to learn MAP parameters with α = β = 3. What is the new learned parameter
vector for this data set? Explain why this might be better or worse than the ML estimate.

5. [40 points] Bonus: EM for mixture of multivariate Bernoullis.

(a) Write down the likelihood for a model consisting of a mixture of K multivariate Bernoulli
distributions. Use the parameters π1, . . . , πK to denote the mixing proportions (0 ≤ πk ≤
1;
∑

k πk = 1) and arrange the K Bernoulli parameter vectors into a matrix P with elements pkd
denoting the probability that pixel d takes value 1 under mixture component k.

http://www.gatsby.ucl.ac.uk/$~$ywteh/teaching/probmodels/binarydigits.txt
http://www.gatsby.ucl.ac.uk/$~$ywteh/teaching/probmodels/bindigit.m


(b) Just like in a mixture of Gaussians we can think of this model as a latent variable model, with
a discrete hidden variable s(n) ∈ {1, . . . ,K} where P (s(n) = k|pi) = πk. Derive the E and M
steps of the EM algorithm for a mixture of K multivariate Bernoullis.

(c) Implement the EM algorithm for a mixture of K multivariate Bernoullis. The algorithm should
take as input K, a matrix X containing the data set, and a number of iterations. The algorithm
should run for that number of iterations or until the log likelihood converges (does not increase
by more than a very small amount). Beware of numerical problems as likelihoods can get
very small, it is better to deal with log likelihoods. Also be careful with numerical problems
when computing responsibilities — it might be necessary to multiply the top and bottom of the
equation for responsibilities by some constant to avoid problems. Hand in code and a high level
explanation of what you algorithm does.

(d) Run yor algorithm on the data set for varying K = 2, 3, 4. Verify that the log likelihood
increases at each step of EM. Report the log likelihoods obtained (measured in bits) and display
the parameters found as 8× 8 images.

(e) Comment on how well the algorithm works, whether it finds good clusters (look at the respon-
sibilities and try to interpret them), and how you might improve the model.


