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Introduction

The Dirichlet Process (DP) [Ferguson, 1973]: the cornerstone of nonparametric
models of probability measures.

By itself, the DP assumes observations are exchangeable

Not always true: eg. time-series, spatial data, conditional density modelling.

One might wish to model data conditioned on some covariate (time, location,
features, experimental condition etc.)

We look at extensions of the DP (and other random probability measures) to
model more structured data
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dependent random probability measures (dRPMs)

We have already seen examples of dRPMs: the HDP and its derivatives
(HPY, PY-language model, the sequence memoizer).
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dependent random probability measures (dRPMs)

We are interested in constructing RPMs G on some space (X ,Σ).

Consider some (usually metric) space T , with elements t (eg. R, Rd).

We want to index the RPMs by elements t ∈ T .

Desiderata:

Similarity between Gt1 and Gt2 should decay smoothly with ‖t1 − t2‖
Ideally, we would like to decouple the marginal and correlation structures.

We want to define a family of (usually uncountably infinite) dRPMs, Gt .

Gt : a measure-valued stochastic process.
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Motivating examples: genotoxicity experiments
[Dunson, 2006]

x : freq. of DNA strand breaks, t: strength of H2O2 dose.
Question: How does response distrbution vary with experimental conditions?
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Motivating examples: Gestational age vs DDE exposure
[Dunson and Park, 2008]
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Motivating examples: volatility clustering

Financial time series (http://staff.science.uva.nl/ marvisse/volatility.html )

the daily percentage changes in the value of the S&P 500 index
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Motivating examples: spatial data
[MacEachern et al., 2001]

Average temperature mid-July over a number of years at a number of locations
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Motivating examples: topic modelling
[Rao and Teh, 2009]
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Simple approach: Link RPMs via the base measure

Recall:

G ∼ DP(α,H)

[Cifarelli and Regazzini, 1978]: introduce a regression on the base-measure H

Gt ∼ DP(α,Ht)

Ht = N (µt ,Σ), µt ∼ GP(0,K (·, ·)) =⇒ Gt ∼ DP (α,N (0,Σ + K (t, t)))

Ht = N (βt,Σ), β ∼ N (0, σ2) =⇒ Gt ∼ DP
(
α,N (0,Σ + t2σ2)

)
Can also introduce dependence in α, though now we get a mixture of DPs

For many applications, this dependence is too weak.
We want the realizations Gt and Gt+δ to be similar, not just their distributions
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dependent DPs (dDP)
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dependent DPs (dDP) [MacEachern, 1999]

Recall:

G =
∞∑
i=1

piδxi

[MacEachern, 1999]: ‘single p’-dDPs:

Gt =
∞∑
i=1

piδxi,t

A shared set of weights p drawn from eg. a stick-breaking process.

Locations of atoms vary smoothly across measures.

Eg. xi,· ∼ GP (0,K (·, ·))
At any t, xi,t ∼ N (0,K (t, t)) ≡ Ht

Coupled with the stick breaking construction of p, we have that Gt ∼ DP(0,Ht)
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dependent DPs (dDP)

Advantages: Simple and fairly flexible

Disadvantages:

not flexible enough?

Global sharing of p =⇒ lack of ‘locality’

posterior does not tend to prior as we move away from observations.

Suppose xi,· ∼ GP(0,K ). single-p dDP is just a DP mixture of GPs!
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general dependent DPs

How do we allow p vary across T ?

[MacEachern, 1999] does not provide a construction.

Remaining methods look at different approaches to this problem.

For simplicity, we shall assume the atoms locations are fixed: ‘single-x’ dRPMs.
Of course, easy to generalize.
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Order-based dependent DPs [Griffin and Steel, 2006]

Recall that the ith atom has mass pi = Vi

∏i−1
j=1(1− Vj)

Use a common collection of stick-breaking proportions V = {Vi}∞i=1 for all
Gt , t ∈ T

Since Vi ’s are i.i.d., valid for any permutation π:

pi = Vπ(i)

i−1∏
j=1

(1− Vπ(j))

Allow the permutation πt to vary with t.

At any time, we have the usual stick breaking construction: marginally DP.

The influence of a Vi decays as it moves down the ranking: allows us to
impose ‘localness’.

Challenge: construct a smoothly varying stochastic process πt taking values
in the space of all permutations.
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Order-based dependent DPs [Griffin and Steel, 2006]

Assign each (v , x) pair a time t.

Permutation at t∗ orders sticks by increasing distance from t∗.
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Order-based dependent DPs [Griffin and Steel, 2006]

Let π be the permutation at t, and π∗ at t∗.

Let s∗ be the smallest element associated with data at t.
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Order-based dependent DPs [Griffin and Steel, 2006]

Let π be the permutation at t, and π∗ at t∗.

Let s∗ be the smallest element associated with data at t.

We want P(πt∗(s∗) < C )→ 0 for any C as d(t, t∗)→∞.

Posterior at t∗ tends to prior as distance of t∗ from all observations tends to 0
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Order-based dependent DPs [Griffin and Steel, 2006]

corr(Gt1(B),Gt2(B)) = corr(Gt1,Gt2) =
(

1 + 2λd
α+2

)
exp(− 2λd

α+1 )

Place priors on α and λ
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Order-based dependent DPs [Griffin and Steel, 2006]

Inference:

Truncated stick-breaking representation

Instantiate V ,Z , x , s, λ, α (Z: Poisson events, s: stick assignments)

Instantiate Z on a bounded set containing covariates

Update Z via birth-death and random walk processes

Elegant model, messy inference
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Kernel stick-breaking process
[Dunson and Park, 2008]

Introduce a countable sequence of mutually independent random components,

{Γh,Vh,G
∗
h , h = 1, · · · ,∞}

Γh ∼ H is a location on T (can be more general).

Vh ∼ Beta(ah, bh) is a stick-breaking proportion.

G∗h ∼ Q is a probability measure on (X ,Σ).

Consider a bounded kernel K : T × T → [0, 1].

Gt ≡
∑∞

h=1 ph(t)G∗h ∀t ∈ T
ph(t) =

{
VhK (t, Γh)

∏
l<h (1− VlK (t, Γl))

}
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Kernel stick-breaking process
[Dunson and Park, 2008]

K = 1, G∗h = δxh, xh ∼ H: A single DP

K = 1, G∗h ∼ DP(α,G0): A DP mixture of DPs

Typically, choose kernels like K (x , Γ) = exp(−σ‖x − Γ‖)
If x is far from the first component, then it’s breaking proportion is small.
More of the stick remains for the rest of the components

Not DP marginally (but can calculate marginal mean, variance, etc)
Can calculate correlation: shows localness
Inference: Block-Gibbs sampler: instantiate finite number of atoms.
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Local Dirichlet process [Chung and Dunson, 2011]

Three sequences of global, mutually independent components:

Γh,Vh, xh,where (1)

Γh ∼ H,Vh ∼ Beta, xh ∼ G0 (2)

H is a prob measure on a space that may or may not correpond to T .

For some distance measure d(x , Γ) define an r -neighbourhood around x :

Lr
x = {h : d(x , Γh) < r}

Now, letting πi index the ith component in Lr :

Gt =
∞∑
i=1

pi (t)δθi , pi (t) = Vπi (x)

i−1∏
j=1

(1− Vπj (x))
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Local Dirichlet process [Chung and Dunson, 2011]
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Dependency via generalized Polya urn schemes
[Caron et al., 2007]

‘single-p’ models:
A clustering of observations at t1 =⇒ a seating of customers at a restaurant
A new observation at t2 =⇒ a new customer enters the same

restaurant, even if d(t1, t2) is large.
His dish/parameter could be unrelated.

Generalized Polya Urn for Time-varying Dirichlet Process Mixtures,
[Caron et al., 2007]:

Introduce dependence across times by allowing the seating arrangement to evolve
with time.
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Dependency via generalized Polya urn schemes

[Caron et al., 2007] describe 3 update steps:

Change parameters at all tables by some eg. Markov process

Uniform deletion: Let Ct be the clustering at time t. Delete each customer
with probability ρ < 1

Size-biased deletion: Pick a table proportinal to the number of customers
seated at it. Delete all those customers.

Cite [Kingman, 1975] to show that the Ewens sampling formula is still satisfied
after deletion.
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Dependency via generalized Polya urn schemes
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Dependency via generalized Polya urn schemes

Gi ∼ DP|{Ti−1}
{Xi} ∼ Gi

{Ui} = Ti−1 ∪ Xi

{Ti} = K({Ui})
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Dependency via generalized Polya urn schemes

Inference [Caron et al., 2007]:
Sequential MC and MCMC, working with the CRP representation
(marginalizing out the G ’s).
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Normalized random measures

Sample a random measure µ on some space (X ,Σ).

µ =
∑

i wiδxi
(xi ,wi ) : events of a Poisson process on the space
X ×W, where W = [0,∞).

Normalize to construct a random probability measure G : G (·) = µ(·)
µ(Ω)

The Levy intensity λ needs to ensure that the normalization constant
Z = µ(Ω) is strictly positive and finite a.s. Let f (Z ) be its distribution.
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Normalized random measures

When λ(dx , dw) =

αw−1e−wdw H(dx) : Gamma process

αw−3/2e−τwdw H(dx) : Inverse Gaussian process

w−1−βe−τwdw H(dx) : Stable process
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Completely Random Measures

From its Poisson construction, µ is a completely random measure
[Kingman, 1993] :
µ(A) ⊥⊥ µ(B) if A and B are disjoint

Similarly, the projection of a Poisson process is a Poisson process, resulting in
µ being closed under projection in location space.
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Spatial Normalized Random Measures [Rao and Teh, 2009]

Instantiate a Poisson process on some augmented space

Consider restrictions whose projections onto the original space define
normalized random measures

Dependency is controlled by controlling the amount of overlap of the
restrictions
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An example
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An example

NRMs whose windows overlap share atoms

NRMs that are ‘closer’ share more atoms

NRMs separated by more than t0 are independent
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Spatial Normalized Random Measures [Rao and Teh, 2009]

We want:
I a set of random probability measures Gt , t ∈ T
I for all t,Gt belongs to a class of NRMs

Define a Poisson process N on an augmented space A×X ×W
Let its intensity be l(da)× λ(dx , dw)

Associate with each index t a subset St = At ×X ×W
Define Nt as the projection of N restricted to St

Nt(dx , dw) =

∫
At

N(da, dx , dw)

Nt(dx , dw) is a Poisson process with intensity l(At)λ(dx , dw)

If l(At) is finite, Nt specifies an NRM defined by l(At)λ(dx , dw)

For two indices t1 and t2, if At1 and At2 overlap, the resulting NRMs share
atoms and are correlated
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Multiple time-scales

Allow different atoms have different scales

Add an auxillary ‘scale’-axis to the augmented space
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Spatial normalized Gamma processes [Rao and Teh, 2009]

The above procedure defines a DP for each element of T
In practice, we are given observations at a finite set of times
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Spatial normalized Gamma processes [Rao and Teh, 2009]

The above procedure defines a DP for each element of T
In practice, we are given observations at a finite set of times

We need only consider Poisson atoms relevant to these times

Location of these atoms in A not important beyond which elements of T it is
relevant to
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Spatial normalized Gamma processes [Rao and Teh, 2009]

Define regions

We don’t care about A-coordinates of atoms in each region

Associate a Gamma process with each region µr = ZrGr

ΓP at index t is the sum of the relevant ΓPs µt =
∑

r∈Rt
µr

DP at index t,Gt =
∑

r∈Rt

Zr

Z Gr
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Spatial normalized Gamma processes [Rao and Teh, 2009]

Results in the following generative process:

Assign each region Zr ∼ Gamma(α(Ar ))

Assign an observation to a region r with probability ∝ Zr

Assign the observation to a cluster in that region according to the CRP
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Inference

The previous section suggests a Gibbs sampler where one conditionally
updates the Zr ’s, region and cluster assignments of observations and cluster
parameters. The Gamma process is integrated out
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Inference

We also considered Metropolis-Hastings proposals

Also: slice sampling [Griffin and Walker, 2011]: associate with each observation a
‘slice’ variable ui ∈ [0, 1]. We need instantiate only those weights greater than
mini ui
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We saw two levels at which we can introduce dependence:

At the level of the base-measure: RPMs at nearby points are similar on
average

One level below: the RPM realization itself is ‘smooth’
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We saw two levels at which we can introduce dependence:

At the level of the base-measure: RPMs at nearby points are similar on
average

One level below: the RPM realization itself is ‘smooth’

We can impose an even stronger dependence, at the level of the observations.
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Shared Segmentation of Natural Scenes Using Dependent
Pitman-Yor Processes.
[Sudderth and Jordan, 2008] (Generalizes [Duan et al., 2007] to the PY-process)

Vinayak Rao (Gatsby Unit) Dependent Random Probability Measures April 27, 2012 37 / 46



[Sudderth and Jordan, 2008]
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[Sudderth and Jordan, 2008]

Suppose g ∼ N (0, 1)

Let Φ(x) denote the standard normal cdf: u = Φ(g) ∼ Unif(0, 1)

P(u < V ) = V , P(u > V ) = (1− V ) ∀V ∈ [0, 1]

Now, let p be a stick-breaking RPM with pi = Vi

∏
j<i (1− Vj)

z ∼ p =⇒ P(z = i) = pi = Vi

∏
j<i

(1− Vj)

= P(ui < Vi )
∏
j<i

P(uj > Vj)

gi ∼ N (0, 1), ui = Φ(gi ), Vi ∼ Beta(ai , bi ), (for appropriate (ai , bi ))

=⇒ z is a sample from the DP/PYP.
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[Sudderth and Jordan, 2008]

gi ∼ N (0, 1), ui = Φ(gi ), Vi ∼ Beta(ai , bi )
Thus, we need an infinite number of normals, one for each stick-break Vi

Associate with each image a PY processes i.e. a set {Vi , θ
∗
i }.

θ∗: Value of feature vector (colour and texture histograms) for a superpixel
Place a Dirichlet distribution prior on θ∗

Define an infinite collection of GPs for each image. Let the marginal at each
superpixel by N (0, 1)

Each superpixel s had an associated PY-distributed parameter θ(s).
Nearby GP values are similar =⇒ Nearby θ are similar.
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[Sudderth and Jordan, 2008]

P(z = i) = pi = Vi

∏
j<i (1− Vj) = P(ui < Vi )

∏
j<i P(uj > Vj)
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Inference

Variational Bayes on a truncated stick-breaking representation
Expectation propagation
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