Outline	Motivation	Geometric weights	Dependent processes	Estimation
				0000000000000

Nonparametric stick breaking priors with simple weights

Ramsés H. Mena

IIMAS-UNAM

(work with Fuentes-García, R., Ruggiero, M. and Walker, S.G.)

Gatsby Computational Neuroscience Unit

February, 2012

Outline	Motivation	Geometric weights	Dependent processes	Estimation

• Suppose we observe the following data

Outline	Motivation	Geometric weights	Dependent processes	Estimation

• we could fit of DP mixture $f(\cdot) = \int_{\mathbb{X}} f(\cdot \mid x) \mu(\mathrm{d}x), \ \mu \sim \mathcal{D}_{\theta \nu_0}$

Outline	Motivation	Geometric weights	Dependent processes	Estimation

• ... or alternatively a NIG mixture model

Outline	Motivation	Geometric weights	Dependent processes	Estimation

• ... or even a more elaborated GG mixture model

Outline	Motivation	Geometric weights	Dependent processes	Estimation

• These estimators are result of a convergent MCMC

Outline	Motivation	Geometric weights	Dependent processes	Estimation

 $\rightarrow\!\mathrm{A}$ convergent state of these MCMC estimators typically needs:

- Hyper-parameters specifications in the kernel $f(\cdot \mid x)$ and ν_0
- Randomization of the parameters of RPMs μ
- Techniques to accelerate and attain convergence

 \rightarrow "General" RPMs partially ease some of these aspects, however there is a tractability issue:

The more general the rpm the less manageable it becomes

Here we present a simplistic approach that addresses some of these issues and explore its applications in depending settings

Outline	Motivation	Geometric weights	Dependent processes	Estimation

2 Geometric weights

Outline	Motivation	Geometric weights	Dependent processes	Estimation

2 Geometric weights

Outline	Motivation	Geometric weights	Dependent processes	Estimation

2 Geometric weights

Outline	Motivation	Geometric weights	Dependent processes	Estimation

2 Geometric weights

• Any discrete dist. can be represented as

$$P(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \,\delta_{z_i}(B), \quad B \in \mathcal{X}, \qquad \sum_i \mathsf{w}_i = 1$$

• Make the "weights", $(w_i)_{i \ge 1}$, and "locations", $(z_i)_{i \ge 1}$ random $\Rightarrow \mu$ is a Random Prob. Measure (RPM)

• Stick-breaking weights

$$\mathbf{w}_1 = \mathbf{V}_1, \qquad \mathbf{w}_i = \mathbf{V}_i \prod_{j < i} (1 - \mathbf{V}_j), \quad i \ge 2$$

• Let $(V_i)_{i\geq 1}$ indep. [0,1]-valued r.v.'s with $\mathsf{E}[\sum_{i\geq 1}\log(1-V_i)] = -\infty$

• Any discrete dist. on a Polish space $(\mathbb{X}, \mathcal{X})$ can be represented as

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}, \qquad \sum_i \mathsf{w}_i = 1 \text{ a.s.}$$

- Make the "weights", $(w_i)_{i\geq 1}$, and "locations", $(z_i)_{i\geq 1}$ random $\Rightarrow \mu$ is a Random Prob. Measure (RPM)
- Stick-breaking weights

$$\mathbf{w}_1 = \mathbf{V}_1, \qquad \mathbf{w}_i = \mathbf{V}_i \prod_{j < i} (1 - \mathbf{V}_j), \quad i \ge 2$$

• Let $(V_i)_{i\geq 1}$ indep. [0, 1]-valued r.v.'s with $\mathsf{E}[\sum_{i\geq 1} \log(1 - V_i)] = -\infty$

 \bullet Any discrete dist. on a Polish space (\mathbb{X},\mathcal{X}) can be represented as

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{\mathbf{z}_i}(B), \quad B \in \mathcal{X}, \qquad \sum_i \mathsf{w}_i = 1 \text{ a.s.}$$

• Make the "weights", $(w_i)_{i \ge 1}$, and "locations", $(z_i)_{i \ge 1}$ random $\Rightarrow \mu$ is a Random Prob. Measure (RPM)

• Stick-breaking weights

$$\mathbf{w}_1 = \mathbf{V}_1, \qquad \mathbf{w}_i = \mathbf{V}_i \prod_{j < i} (1 - \mathbf{V}_j), \quad i \ge 2$$

• Let $(V_i)_{i\geq 1}$ indep. [0,1]-valued r.v.'s with $\mathsf{E}[\sum_{i\geq 1}\log(1-V_i)] = -\infty$

 \bullet Any discrete dist. on a Polish space (\mathbb{X},\mathcal{X}) can be represented as

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{\mathbf{z}_i}(B), \quad B \in \mathcal{X}, \qquad \sum_i \mathsf{w}_i = 1 \text{ a.s.}$$

- Make the "weights", $(w_i)_{i\geq 1}$, and "locations", $(z_i)_{i\geq 1}$ random $\Rightarrow \mu$ is a Random Prob. Measure (RPM)
- Stick-breaking weights

$$\mathbf{w}_1 = \mathbf{V}_1, \qquad \mathbf{w}_i = \mathbf{V}_i \prod_{j < i} (1 - \mathbf{V}_j), \quad i \ge 2$$

• Let $(V_i)_{i\geq 1}$ indep. [0,1]-valued r.v.'s with $\mathsf{E}[\sum_{i\geq 1}\log(1-V_i)] = -\infty$

• Sethuraman (1994)

if
$$\mathsf{V}_i \stackrel{\text{iid}}{\sim} \mathsf{Be}(1, \theta)$$
 and $z_i \stackrel{\text{iid}}{\sim} \nu_0$ (indep. of V_i 's)

- μ follows Ferguson (1973) Dirichlet process ($\mu \sim \mathcal{D}_{\theta,\nu_0}$)
 - i.e. a stochastic processes, $\{\mu(B)\}_{B \in \mathcal{X}}$, with finite dim. dist.

$$(\mu(B_1),\ldots,\mu(B_k)) \sim \mathsf{Dirichlet}(\theta\nu_0(B_1),\ldots,\theta\nu_0(B_k))$$

for all $k \ge 1$ and all partitions (B_1, \ldots, B_k) of X.

• $\mathsf{E}[\mu(B)] = \nu_0(B),$ $\mathsf{Var}[\mu(B)] = \frac{\nu_0(B)(1-\nu_0(B))}{\theta+1}$ $\mathsf{Cov}(\mu(B_2), \mu(B_2)) = \frac{\nu_0(B_1 \cap B_2) - \nu_0(B_1)\nu_0(B_2)}{\theta+1}$

If $X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu$ and $\mu \sim \mathcal{D}_{\theta,\nu_0}$, hence $X_i \sim \nu_0$, forall $i = 1, 2, \ldots$

 $\mu \mid X_1, \dots, X_n \sim \mathcal{D}_{\theta \nu_0 + n \mu_n}$ (Conjugate posterior)

with $\mu_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$

$$\mathsf{E}[\mu \mid X_1, \dots, X_n] = \frac{\theta}{\theta + n} \nu_0 + \frac{n}{\theta + n} \sum_{i=1}^n \frac{\delta_{X_i}}{n}, \quad (\text{Bayes estimator})$$

• $\mathcal{D}_{\theta\nu_0}(\mu:\mu \text{ is discrete })=1$

•
$$\mathsf{E}[\mu(B)] = \nu_0(B),$$
 $\operatorname{Var}[\mu(B)] = \frac{\nu_0(B)(1-\nu_0(B))}{\theta+1}$
 $\operatorname{Cov}(\mu(B_2), \mu(B_2)) = \frac{\nu_0(B_1 \cap B_2) - \nu_0(B_1)\nu_0(B_2)}{\theta+1}$
If $X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu$ and $\mu \sim \mathcal{D}_{\theta,\nu_0}$, hence $X_i \sim \nu_0$, forall $i = 1, 2, \dots$
 $\mu \mid X_1, \dots, X_n \sim \mathcal{D}_{\theta\nu_0 + n\mu_n}$ (Conjugate posterior)
with $\mu_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$

$$\mathsf{E}[\mu \mid X_1, \dots, X_n] = \frac{\theta}{\theta + n} \nu_0 + \frac{n}{\theta + n} \sum_{i=1}^n \frac{\delta_{X_i}}{n}, \quad (\text{Bayes estimator})$$

• $\mathcal{D}_{\theta\nu_0}(\mu:\mu \text{ is discrete }) = 1$

•
$$\mathbf{E}[\mu(B)] = \nu_0(B), \qquad \text{Var}[\mu(B)] = \frac{\nu_0(B)(1-\nu_0(B))}{\theta+1}$$

$$\mathbf{Cov}(\mu(B_2), \mu(B_2)) = \frac{\nu_0(B_1 \cap B_2) - \nu_0(B_1)\nu_0(B_2)}{\theta+1}$$

$$\text{If } X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu \text{ and } \mu \sim \mathcal{D}_{\theta,\nu_0}, \text{ hence } X_i \sim \nu_0, \text{ for all } i = 1, 2, \dots$$

$$\mu \mid X_1, \dots, X_n \sim \mathcal{D}_{\theta\nu_0 + n\mu_n} \quad (\text{ Conjugate posterior})$$

$$\text{with } \mu_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$$

$$\mathbf{E}[\mu \mid X_1, \dots, X_n] = \frac{\theta}{\theta+n} \nu_0 + \frac{n}{\theta+n} \sum_{i=1}^n \frac{\delta_{X_i}}{n}, \quad (\text{Bayes estimator})$$

• $\mathcal{D}_{\theta\nu_0}(\mu : \mu \text{ is discrete }) = 1$

•
$$\mathsf{E}[\mu(B)] = \nu_0(B),$$
 $\operatorname{Var}[\mu(B)] = \frac{\nu_0(B)(1-\nu_0(B))}{\theta+1}$
 $\operatorname{Cov}(\mu(B_2), \mu(B_2)) = \frac{\nu_0(B_1 \cap B_2) - \nu_0(B_1)\nu_0(B_2)}{\theta+1}$
If $X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu$ and $\mu \sim \mathcal{D}_{\theta,\nu_0}$, hence $X_i \sim \nu_0$, forall $i = 1, 2, ...$
 $\mu \mid X_1, ..., X_n \sim \mathcal{D}_{\theta\nu_0 + n\mu_n}$ (Conjugate posterior)
with $\mu_n = n^{-1} \sum_{i=1}^n \delta_{X_i}$

$$\mathsf{E}[\mu \mid X_1, \dots, X_n] = \frac{\theta}{\theta + n} \nu_0 + \frac{n}{\theta + n} \sum_{i=1}^n \frac{\delta_{X_i}}{n}, \quad \text{(Bayes estimator)}$$

• $\mathcal{D}_{\theta\nu_0}(\mu:\mu \text{ is discrete }) = 1$

Precision parameter θ

 θ can be seen as a precision param.

- Clustering induced by \mathcal{D}_{α}
 - Since \mathcal{D}_{α} a.s. discrete, $P(X_i = X_j) > 0$ for $i \neq j$
 - (X_1, \ldots, X_n) can be encoded to $(X_1^*, \ldots, X_{K_n}^*)$ unique values
 - with random frequencies (N_1, \ldots, N_{K_n}) , i.e. $\sum_{i=1}^{K_n} N_i = n$
 - The support of (N_1, \ldots, N_{K_n}) is in bijection with

$$\mathscr{P}_{[n]} :=$$
Set of all partitions of $\{1, \ldots, n\}$

• Selecting \mathcal{D}_{α} induces an Exchangeable Partition Probability Function (EPPF) –Ewens (1972) and Antoniak (1974)–

- Clustering induced by \mathcal{D}_{α}
 - Since \mathcal{D}_{α} a.s. discrete, $P(X_i = X_j) > 0$ for $i \neq j$
 - (X_1, \ldots, X_n) can be encoded to $(X_1^*, \ldots, X_{K_n}^*)$ unique values
 - with random frequencies (N_1, \ldots, N_{K_n}) , i.e. $\sum_{i=1}^{K_n} N_i = n$
 - The support of (N_1, \ldots, N_{K_n}) is in bijection with

$$\mathscr{P}_{[n]} :=$$
Set of all partitions of $\{1, \ldots, n\}$

• Selecting \mathcal{D}_{α} induces an Exchangeable Partition Probability Function (EPPF) –Ewens (1972) and Antoniak (1974)–

Clustering induced by \mathcal{D}_{α}

- Since \mathcal{D}_{α} a.s. discrete, $P(X_i = X_j) > 0$ for $i \neq j$
- (X_1, \ldots, X_n) can be encoded to $(X_1^*, \ldots, X_{K_n}^*)$ unique values
- with random frequencies (N_1, \ldots, N_{K_n}) , i.e. $\sum_{i=1}^{K_n} N_i = n$
- The support of (N_1, \ldots, N_{K_n}) is in bijection with

$$\mathscr{P}_{[n]} :=$$
Set of all partitions of $\{1, \ldots, n\}$

• Selecting \mathcal{D}_{α} induces an Exchangeable Partition Probability Function (EPPF) –Ewens (1972) and Antoniak (1974)–

 $\mathbb{P}(\text{Obs. in } k \text{ groups with freq. } n_1, \dots, n_k) = \frac{\theta^k}{(\theta)_n} \prod_{j=1}^k (n_j - 1)!$

Clustering induced by \mathcal{D}_{α}

- Since \mathcal{D}_{α} a.s. discrete, $P(X_i = X_j) > 0$ for $i \neq j$
- (X_1, \ldots, X_n) can be encoded to $(X_1^*, \ldots, X_{K_n}^*)$ unique values
- with random frequencies (N_1, \ldots, N_{K_n}) , i.e. $\sum_{i=1}^{K_n} N_i = n$
- The support of (N_1, \ldots, N_{K_n}) is in bijection with

$$\mathscr{P}_{[n]} :=$$
Set of all partitions of $\{1, \ldots, n\}$

• Selecting \mathcal{D}_{α} induces an Exchangeable Partition Probability Function (EPPF) –Ewens (1972) and Antoniak (1974)–

$$\Pi_k^{(n)}(n_1, \dots, n_k) = \frac{\theta^k}{(\theta)_n} \prod_{j=1}^k (n_j - 1)!$$

Clustering induced by \mathcal{D}_{α}

• Summing over all possible partitions for fixed k

$$\mathbb{P}(K_n = k) = \frac{\theta^k}{(\theta)_n} \left| s(n,k) \right|$$

where s(n,k) for $n \ge k \ge 1$ Stirling numbers of the first type.

The precision param. θ also controls the grouping. Too informative!

Outline	Motivation ○○○○○○○○○○	Geometric weights	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{000000000} \end{array}$	Estimation 000000000000
BNP 1	nixtures			

For continuous data use μ -mixtures

BNP mixture models

 $Y_i \mid \mathsf{f} \stackrel{\text{iid}}{\sim} \mathsf{f} \quad \text{where} \quad \mathsf{f}(\cdot) = \int_{\mathbb{X}} f(\cdot \mid x) \mu(\mathrm{d}x)$ $\mathsf{f}(\cdot) \text{ random density} \qquad (\text{Lo 84': } \mathsf{Q} = \mathcal{D}_{\alpha})$ Density estimation & Clustering problems

 Outline
 Motivation
 Geometric weights
 Dependent processes
 Estimation

 000000
 0000000
 0000000
 00000000
 00000000
 000000000

 BNP mixtures
 0000000
 00000000
 00000000
 000000000
 00000000000000

For continuous data use μ -mixtures

BNP mixture models

$$\begin{split} Y_i \mid X_i \stackrel{\text{ind}}{\sim} f(Y_i \mid X_i) & i \geq 1 \ (e.g. \ \mathsf{f}(\cdot) \ \text{Leb. density}) \\ X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu \\ \mu \sim \mathsf{Q} & (e.g. \ \text{a discrete RPM}) \end{split}$$

Equivalently

$$Y_i \mid \mathbf{f} \stackrel{\text{iid}}{\sim} \mathbf{f}$$
 where $\mathbf{f}(\cdot) = \int_{\mathbb{X}} f(\cdot \mid x) \mu(\mathrm{d}x)$

(1001.4 Da)

Density estimation & Clustering problems

For continuous data use μ -mixtures

BNP mixture models

$$\begin{split} Y_i \mid X_i \stackrel{\text{ind}}{\sim} f(Y_i \mid X_i) & i \geq 1 \ (e.g. \ \mathsf{f}(\cdot) \ \text{Leb. density}) \\ X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu \\ \mu \sim \mathsf{Q} & (e.g. \ \text{a discrete RPM}) \end{split}$$

Equivalently

$$Y_i \mid \mathsf{f} \stackrel{\text{iid}}{\sim} \mathsf{f} \quad \text{where} \quad \mathsf{f}(\cdot) = \int_{\mathbb{X}} f(\cdot \mid x) \mu(\mathrm{d}x)$$
$$\mathsf{f}(\cdot) \text{ random density} \qquad (\text{Lo } 84': \mathsf{Q} = \mathcal{D}_{\alpha})$$

Density estimation & Clustering problems

 Outline
 Motivation
 Geometric weights
 Dependent processes
 Estimation

 000000
 0000000
 0000000
 00000000
 00000000
 000000000

 BNP mixtures
 0000000
 00000000
 00000000
 000000000
 00000000000000

For continuous data use μ -mixtures

BNP mixture models

$$\begin{split} Y_i \mid X_i \stackrel{\text{ind}}{\sim} f(Y_i \mid X_i) & i \geq 1 \ (e.g. \ \mathsf{f}(\cdot) \ \text{Leb. density}) \\ X_i \mid \mu \stackrel{\text{iid}}{\sim} \mu \\ \mu \sim \mathsf{Q} & (e.g. \ \text{a discrete RPM}) \end{split}$$

Equivalently

$$Y_i \mid \mathsf{f} \stackrel{\text{iid}}{\sim} \mathsf{f} \quad \text{where} \quad \mathsf{f}(\cdot) = \int_{\mathbb{X}} f(\cdot \mid x) \mu(\mathrm{d}x)$$
$$\mathsf{f}(\cdot) \text{ random density} \qquad (\text{Lo } 84': \mathsf{Q} = \mathcal{D}_{\alpha})$$

Density estimation & Clustering problems

$$\mathsf{E}\left[\mathsf{f}(y) \mid Y^{(n)}\right] = \sum_{k=1}^{n} \int_{\mathbb{X}} f(y \mid x) \sum_{\mathbf{p}_{k} \in \mathscr{P}_{[n]}^{k}} \mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^{*}\right] \mathbb{P}[x_{1:k}^{*} \in \mathbf{p}_{k} \mid Y^{(n)}]$$

where $x_{1:k}^* = (x_1^*, \dots, x_k^*)$ and $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$

- $\mathsf{E}[\mu(\mathrm{d}x) \mid x_{1:k}^*]$ denotes the predictive
 - \triangleright For large *n* virtually impossible to evaluate exactly
 - ▷ The need of MCMC methods is evident

$$\mathsf{E}\left[\mathsf{f}(y) \mid Y^{(n)}\right] = \sum_{k=1}^{n} \int_{\mathbb{X}} f(y \mid x) \sum_{\mathbf{p}_{k} \in \mathscr{P}^{k}_{[n]}} \mathsf{E}\left[\mu(\mathrm{d}x) \mid x^{*}_{1:k}\right] \mathbb{P}[x^{*}_{1:k} \in \mathbf{p}_{k} \mid Y^{(n)}]$$

where
$$x_{1:k}^* = (x_1^*, \dots, x_k^*)$$
 and $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$

• $\mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^*\right]$ denotes the predictive

 \triangleright For large *n* virtually impossible to evaluate exactly

▷ The need of MCMC methods is evident

$$\mathsf{E}\left[\mathsf{f}(y) \mid Y^{(n)}\right] = \sum_{k=1}^{n} \int_{\mathbb{X}} f(y \mid x) \sum_{\mathbf{p}_{k} \in \mathscr{P}_{[n]}^{k}} \mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^{*}\right] \mathbb{P}[x_{1:k}^{*} \in \mathbf{p}_{k} \mid Y^{(n)}]$$

where
$$x_{1:k}^* = (x_1^*, \dots, x_k^*)$$
 and $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$

• $\mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^*\right]$ denotes the predictive

 $\triangleright\,$ For large n virtually impossible to evaluate exactly

▷ The need of MCMC methods is evident

$$\mathsf{E}\left[\mathsf{f}(y) \mid Y^{(n)}\right] = \sum_{k=1}^{n} \int_{\mathbb{X}} f(y \mid x) \sum_{\mathbf{p}_{k} \in \mathscr{P}_{[n]}^{k}} \mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^{*}\right] \mathbb{P}[x_{1:k}^{*} \in \mathbf{p}_{k} \mid Y^{(n)}]$$

where $x_{1:k}^* = (x_1^*, \dots, x_k^*)$ and $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$

- $\mathsf{E}\left[\mu(\mathrm{d}x) \mid x_{1:k}^*\right]$ denotes the predictive
 - $\triangleright\,$ For large n virtually impossible to evaluate exactly
 - $\triangleright\,$ The need of MCMC methods is evident

• Posterior clustering under BNP mixture (or clustering likelihood!)

$$\mathbb{P}[\mathbf{p}_k \mid Y^{(n)}] \propto \Pi_k^{(n)}(n_1, \dots, n_k) \prod_{j=1}^k \int_{\mathbb{X}} \prod_{i \in \mathcal{J}_j} f(y_i \mid x_i) \nu_0(\mathrm{d}x_i)$$

where as before $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$ and $\mathcal{J}_j := \{i : X_i = X_j^*\}, \quad j = 1, \dots, k$

 \triangleright No longer exchangeable due to effect of $f(\cdot | x)$ the y's

• Summing over all the partitions for fixed k we obtain the posterior on the number of groups of size $k = 1, \ldots, n$

$$\mathbb{P}[K_n = k \mid Y^{(n)}] = \sum_{\mathbf{p}_k \in \mathcal{P}_{[n]}^k} \mathbb{P}[\mathbf{p}_k \mid Y^{(n)}]$$

• Posterior clustering under BNP mixture (or clustering likelihood!)

$$\mathbb{P}[\mathbf{p}_k \mid Y^{(n)}] \propto \Pi_k^{(n)}(n_1, \dots, n_k) \prod_{j=1}^k \int_{\mathbb{X}} \prod_{i \in \mathcal{J}_j} f(y_i \mid x_i) \nu_0(\mathrm{d}x_i)$$

where as before $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$ and $\mathcal{J}_j := \{i : X_i = X_j^*\}, \quad j = 1, \dots, k$

 \triangleright No longer exchangeable due to effect of $f(\cdot \mid x)$ the y's

• Summing over all the partitions for fixed k we obtain the posterior on the number of groups of size k = 1, ..., n

$$\mathbb{P}[K_n = k \mid Y^{(n)}] = \sum_{\mathbf{p}_k \in \mathcal{P}_{[n]}^k} \mathbb{P}[\mathbf{p}_k \mid Y^{(n)}]$$

• Posterior clustering under BNP mixture (or clustering likelihood!)

$$\mathbb{P}[\mathbf{p}_k \mid Y^{(n)}] \propto \Pi_k^{(n)}(n_1, \dots, n_k) \prod_{j=1}^k \int_{\mathbb{X}} \prod_{i \in \mathcal{J}_j} f(y_i \mid x_i) \nu_0(\mathrm{d}x_i)$$

where as before $\mathbf{p}_k \in \mathscr{P}_{[n]}^k$ and $\mathcal{J}_j := \{i : X_i = X_j^*\}, \quad j = 1, \dots, k$

▷ No longer exchangeable due to effect of $f(\cdot | x)$ the y's

• Summing over all the partitions for fixed k we obtain the posterior on the number of groups of size k = 1, ..., n

$$\mathbb{P}[K_n = k \mid Y^{(n)}] = \sum_{\mathbf{p}_k \in \mathcal{P}_{[n]}^k} \mathbb{P}[\mathbf{p}_k \mid Y^{(n)}]$$

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$

▷ If $\theta = 0.5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31$ & $\mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59$ - $\mathsf{E}(K_{10}) = 2.1$ - ▷ If $\theta = 5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80$ & $\mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02$ - $\mathsf{E}(K_{10}) = 5.8$ -

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$

 $\triangleright \text{ If } \theta = 0.5; \ \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59 \quad -\mathsf{E}(K_{10}) = 2.1 - \mathsf{E}(K_{10}) = 5; \quad \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02 \quad -\mathsf{E}(K_{10}) = 5.8 - \mathsf{E}(K_{10}) = 5.8 - \mathsf$

Posterior on #groups: mode at k = 3 -2

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$

0.0

2

3

 $\triangleright \text{ If } \theta = 0.5; \ \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59 \quad -\mathsf{E}(K_{10}) = 2.1 - \mathsf{E}(K_{10}) = 5; \quad \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02 \quad -\mathsf{E}(K_{10}) = 5.8 - \mathsf{E}(K_{10}) = 5.8 - \mathsf$

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$

 $\triangleright \text{ If } \theta = 0.5; \ \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59 \quad -\mathsf{E}(K_{10}) = 2.1 - \mathsf{E}(K_{10}) = 5; \quad \mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80 \ \& \ \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02 \quad -\mathsf{E}(K_{10}) = 5.8 - \mathsf{E}(K_{10}) = 5.8 - \mathsf$

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$ \triangleright If $\theta = 0.5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59 - \mathsf{E}(K_{10}) = 2.1 - \mathsf{E}(K_{10}) = 5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02 - \mathsf{E}(K_{10}) = 5.8 -$

 \triangleright Posterior on #groups: mode at k=3

with $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.39 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.37$ \triangleright If $\theta = 0.5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.31 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.59 - \mathsf{E}(K_{10}) = 2.1 - \mathsf{E}(K_{10}) = 5$: $\mathbb{P}[K_{10} = 3 \mid y^{(n)}] = 0.80 \& \mathbb{P}[K_{10} = 2 \mid y^{(n)}] = 0.02 - \mathsf{E}(K_{10}) = 5.8 -$

-2

-1

Λ

1

2

3

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{E}[\mathsf{w}_i] \delta_{z_i}(B) = \sum_{i=1}^{\infty} \lambda (1-\lambda)^{i-1} \delta_{z_i}(B)$$

- > Namely, a DP with the randomness of the weights removed!
- ▷ This RPM has ordered weights!
- Still has full support wrt weak topology

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{E}[\mathsf{w}_i] \delta_{z_i}(B) = \sum_{i=1}^{\infty} \lambda (1-\lambda)^{i-1} \delta_{z_i}(B)$$

- ▷ Namely, a DP with the randomness of the weights removed!
- ▷ This RPM has ordered weights!
- Still has full support wrt weak topology

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{E}[\mathsf{w}_i] \delta_{z_i}(B) = \sum_{i=1}^{\infty} \lambda (1-\lambda)^{i-1} \delta_{z_i}(B)$$

- ▷ Namely, a DP with the randomness of the weights removed!
- ▷ This RPM has ordered weights!
- ▷ Still has full support wrt weak topology

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{E}[\mathsf{w}_i] \delta_{z_i}(B) = \sum_{i=1}^{\infty} \lambda (1-\lambda)^{i-1} \delta_{z_i}(B)$$

- ▷ Namely, a DP with the randomness of the weights removed!
- ▷ This RPM has ordered weights!
- ▷ Still has full support wrt weak topology

100 iter. BNP mixture model based on geom. weights

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{oooooooooo} \end{array}$	Geometric weights	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{ooooooooo} \end{array}$	Estimation 000000000000
Proper	rties			

So why is that it works so well?

Weights are ordered

But let us find an alternative explanation for it!

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{0000000000} \end{array}$	Geometric weights ○○○●○○○○	Dependent processes	Estimation 000000000000
Proper	ties			

So why is that it works so well?

Weights are ordered

But let us find an alternative explanation for it!

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{0000000000} \end{array}$	Geometric weights	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{ooooooooo} \end{array}$	Estimation 000000000000
Propert	ties			

So why is that it works so well?

Weights are ordered

But let us find an alternative explanation for it!

$$\mathsf{f}(y) = \sum_{i=1}^{\infty} \mathsf{w}_i f(y \mid z_i) \tag{*}$$

 \triangleright Infinite summation becomes a problem since w_i 's are not ordered

• Augment (*) through a uniform latent variable

$$f(y, u) = \sum_{j=1}^{\infty} \mathbb{I}(u < \mathsf{w}_j) f(y \mid z_i)$$

• Given u the set $A_u := \{j : w_j > u\}$ is finite. The infinite summation disappear since the summation

$$f(y \mid u) = \frac{1}{\#A_u} \sum_{j \in A_u} f(y \mid z_i) \quad \text{is finite}$$

$$f(y) = \sum_{i=1}^{\infty} w_i f(y \mid z_i) \tag{*}$$

 \triangleright Infinite summation becomes a problem since w_i 's are not ordered

• Augment (*) through a uniform latent variable

$$f(y, u) = \sum_{j=1}^{\infty} \mathbb{I}(u < \mathsf{w}_j) f(y \mid z_i)$$

• Given u the set $A_u := \{j : w_j > u\}$ is finite. The infinite summation disappear since the summation i

$$f(y \mid u) = \frac{1}{\#A_u} \sum_{j \in A_u} f(y \mid z_i) \quad \text{is finite}$$

$$f(y) = \sum_{i=1}^{\infty} w_i f(y \mid z_i) \tag{*}$$

 \triangleright Infinite summation becomes a problem since w_i 's are not ordered

• Augment (*) through a uniform latent variable

$$f(y, u) = \sum_{j=1}^{\infty} \mathbb{I}(u < \mathsf{w}_j) f(y \mid z_i)$$

• Given u the set $A_u := \{j : w_j > u\}$ is finite. The infinite summation disappear since the summation in

$$f(y \mid u) = \frac{1}{\#A_u} \sum_{j \in A_u} f(y \mid z_i) \quad \text{is finite}$$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{00000000000} \end{array}$	Geometric weights ○○○○○●○○	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{000000000} \end{array}$	$\begin{array}{c} \mathbf{Estimation} \\ 00000000000000000000000000000000000$
Rando	m set A_u			

• So A_u is a finite subset of the set of positive integers

- For the DP weights the A_u typically generates set of integers with gaps, e.g. $\{2, 5, 16, 40, 200, 3029\}$
- But given that the representation

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}$$

- The same mass could be attained with a set $\{1, 2, 3, 4, 5, 6\}$
- No need for the gaps!!

- So A_u is a finite subset of the set of positive integers
- For the DP weights the A_u typically generates set of integers with gaps, e.g. $\{2, 5, 16, 40, 200, 3029\}$

• But given that the representation

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}$$

- The same mass could be attained with a set $\{1, 2, 3, 4, 5, 6\}$
- No need for the gaps!!

- So A_u is a finite subset of the set of positive integers
- For the DP weights the A_u typically generates set of integers with gaps, e.g. $\{2, 5, 16, 40, 200, 3029\}$
- But given that the representation

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}$$

- The same mass could be attained with a set $\{1, 2, 3, 4, 5, 6\}$
- No need for the gaps!!

- So A_u is a finite subset of the set of positive integers
- For the DP weights the A_u typically generates set of integers with gaps, e.g. $\{2, 5, 16, 40, 200, 3029\}$
- But given that the representation

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}$$

- The same mass could be attained with a set $\{1, 2, 3, 4, 5, 6\}$
- No need for the gaps!!

- So A_u is a finite subset of the set of positive integers
- For the DP weights the A_u typically generates set of integers with gaps, e.g. $\{2, 5, 16, 40, 200, 3029\}$
- But given that the representation

$$\mu(B) = \sum_{i=1}^{\infty} \mathsf{w}_i \, \delta_{z_i}(B), \quad B \in \mathcal{X}$$

- The same mass could be attained with a set $\{1, 2, 3, 4, 5, 6\}$
- No need for the gaps!!

Consider the random density defined by

$$f(y \mid A) = \frac{1}{\#A} \sum_{j \in A} f(y \mid z_i)$$

with A a finite random subset of \mathbb{N}_+

• Here we look at $A = \{1, \ldots, N\}$ with $N \sim q_N$ so

$$f(y \mid N) = \frac{1}{N} \sum_{j=1}^{N} f(y \mid z_i)$$

which marginalizing corresponds to

$$f(y) = \sum_{i=1}^{\infty} \left\{ \frac{1}{N} \sum_{l=1}^{N} f(y \mid z_i) \right\} q_N$$

Consider the random density defined by

$$f(y \mid A) = \frac{1}{\#A} \sum_{j \in A} f(y \mid z_i)$$

with A a finite random subset of \mathbb{N}_+

• Here we look at $A = \{1, \ldots, N\}$ with $N \sim q_N$ so

$$f(y \mid N) = \frac{1}{N} \sum_{j=1}^{N} f(y \mid z_i)$$

which marginalizing corresponds to

$$f(y) = \sum_{i=1}^{\infty} \left\{ \frac{1}{N} \sum_{l=1}^{N} f(y \mid z_i) \right\} q_N$$

This can be seen as a BNP mixture with weights

$$\mathsf{w}_i = \sum_{N=i}^{\infty} \frac{q_N}{N}$$

 q_N a prob. mass function on \mathbb{N}_+

▷ Weights are ordered!

For example if q_N is a Neg – Bin (r, λ) we get

$$w_{i} = \frac{1}{i} \binom{i+r-2}{r-1} \lambda^{r} (1-\lambda)^{i-1} {}_{2} \mathsf{F}_{1}(1,i+r-1;i+1;\lambda)$$

which for r = 2 we recover the geometric case

$$\mathsf{w}_i = \lambda (1 - \lambda)^{i-1}$$

This can be seen as a BNP mixture with weights

$$\mathsf{w}_i = \sum_{N=i}^{\infty} \frac{q_N}{N}$$

 q_N a prob. mass function on \mathbb{N}_+

▷ Weights are ordered!

For example if q_N is a Neg – Bin (r, λ) we get

$$w_{i} = \frac{1}{i} \binom{i+r-2}{r-1} \lambda^{r} (1-\lambda)^{i-1} {}_{2} \mathsf{F}_{1}(1,i+r-1;i+1;\lambda)$$

which for r = 2 we recover the geometric case

$$\mathsf{w}_i = \lambda (1 - \lambda)^{i-1}$$

This can be seen as a BNP mixture with weights

$$\mathsf{w}_i = \sum_{N=i}^{\infty} \frac{q_N}{N}$$

 q_N a prob. mass function on \mathbb{N}_+

▷ Weights are ordered!

For example if q_N is a Neg – Bin (r, λ) we get

$$\mathsf{w}_{i} = \frac{1}{i} \binom{i+r-2}{r-1} \lambda^{r} (1-\lambda)^{i-1} {}_{2}\mathsf{F}_{1}(1,i+r-1;i+1;\lambda)$$

which for r = 2 we recover the geometric case

$$\mathsf{w}_i = \lambda (1 - \lambda)^{i-1}$$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{oooooooooo} \end{array}$	Geometric weights	Dependent processes $\bullet 0 \circ 0 \circ 0 \circ 0 \circ 0$	$\begin{array}{c} \mathbf{Estimation} \\ 00000000000000000000000000000000000$
P				

Dependent processes

What happens with a different type of dependence?

Namely, we have observations typically capture with models such as:

- $X_{n+1} = \phi X_n + \varepsilon_t$
- $dX_t = a(X_t, \theta)dt + \sigma(X_t, \theta)dW_t$
- $X_i = f(\mathbf{Z}, \beta)$

• etc..

We still want to be nonparametric!

• Nonparametric dependent random measures, *i.e.*

 $\{\mu_n\}_{n=0}^{\infty}, \quad \{\mu_t\}_{t\geq 0}, \quad \{\mu_z\}_{z\in Z}$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{0000000000} \end{array}$	Geometric weights	Dependent processes	Estimation 000000000000
Depend	lent proce	sses		

What happens with a different type of dependence?

Namely, we have observations typically capture with models such as:

- X_{n+1} = φX_n + ε_t
 dX_t = a(X_t, θ)dt + σ(X_t, θ)dW_t
- $X_i = f(\mathbf{Z}, \beta)$
- etc..

We still want to be nonparametric!

• Nonparametric dependent random measures, *i.e*

 $\{\mu_n\}_{n=0}^{\infty}, \quad \{\mu_t\}_{t\geq 0}, \quad \{\mu_z\}_{z\in Z}$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{0000000000} \end{array}$	Geometric weights	Dependent processes	Estimation 000000000000
Depend	lent proce	sses		

What happens with a different type of dependence?

Namely, we have observations typically capture with models such as:

- X_{n+1} = φX_n + ε_t
 dX_t = a(X_t, θ)dt + σ(X_t, θ)dW_t
- $X_i = f(\mathbf{Z}, \beta)$
- etc..

We still want to be nonparametric!

• Nonparametric dependent random measures, *i.e*

 $\{\mu_n\}_{n=0}^{\infty}, \quad \{\mu_t\}_{t\geq 0}, \quad \{\mu_z\}_{z\in Z}$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{0000000000} \end{array}$	Geometric weights	Dependent processes	Estimation 000000000000
Depend	lent proce	sses		

What happens with a different type of dependence?

Namely, we have observations typically capture with models such as:

- $X_{n+1} = \phi X_n + \varepsilon_t$ • $dX_t = a(X_t, \theta)dt + \sigma(X_t, \theta)dW_t$
- $X_i = f(\mathbf{Z}, \beta)$
- etc..

We still want to be nonparametric!

 $\bullet\,$ Nonparametric dependent random measures, i.e

$$\{\mu_n\}_{n=0}^{\infty}, \quad \{\mu_t\}_{t\geq 0}, \quad \{\mu_z\}_{z\in Z}$$

$$\mu(t) = \sum_{i \ge 0} w_i(t) \,\delta_{x_i(t)}$$

where, for each $i \ge 0$, $\{w_i(t)\}_{t\ge 0}$, $\{x_i(t)\}_{t\ge 0}$ are certain *ad hoc* stochastic processes.

• In general we might think $\mu(t)$ inherits some of the continuity and stability properties of the processes $\{w_i(t)\}\$ and $\{x_i(t)\}\$
Geometric stick-breaking process

Definition

Let $\{\mu(t), t \ge 0\}$ a stochastic process with values on $\mathcal{P}_{\mathbb{X}}$ defined on $(\Omega, \mathscr{F}, \mathbb{P})$ such that for each $t \ge 0$

$$\mu(t) = \lambda_t \sum_{i \ge 0} (1 - \lambda_t)^{i-1} \,\delta_{x_i}$$

where ν_0 is an non-atomic distribution on $(\mathbb{X}, \mathcal{B}(\mathbb{X}))$ and $\{\lambda_t\}_{t\geq 0}$ is a diffusion process with paths in $\mathcal{C}_{[0,1]}([0,\infty))$ and infinitesimal generator

$$\mathcal{A} = \left[\frac{c}{a+b-1}(a-(a+b)\lambda)\right]\frac{\mathrm{d}}{\mathrm{d}\lambda} + \frac{c}{a+b-1}\lambda(1-\lambda)\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}$$

with domain $\mathscr{D}(\mathcal{A}) = \mathcal{C}^2([0, 1])$. We name $\{\mu(t), t \geq 0\}$ the Geometric Stick Breaking process with parameters (a, b, c, ν_0) denoted by $\text{GSB}(a, b, c, \nu_0)$

Geometric stick-breaking process

- $\{\lambda_t\}_{t\geq 0}$ is a diffusion process with the following features:
 - Stationary with invariant distribution $\mathsf{Be}(a,b)$
 - Reversible
 - When $c := (a + b 1)/2 \Rightarrow {\lambda_t}_{t \ge 0}$ Wright-Fisher model

Which of these properties are inherited by $\mu_t \sim \text{GSBP}(a, b, c, \nu_0)$?

• Let $\mathscr{P}_g(\mathbb{X}) \subset \mathcal{P}_{\mathbb{X}}$ the set of purely atomic probability measures on \mathbb{X}

Proposition

Let $\{\mu_t\}_{t\geq 0}$ a GSB (a, b, c, ν_0) process. Then, $\{\mu_t\}_{t\geq 0}$ has an infinitesimal generator given by

$$\mathcal{B}\varphi_m(\mu) = \left(\frac{a}{2}(1-\lambda) - \frac{b}{2}\lambda\right)_{i_1,\dots,i_m \ge 1} f(x_{i_1},\dots,x_{i_m}) \frac{\partial}{\partial\lambda} h(\lambda;m,i_1,\dots,i_m) \\ + \frac{1}{2}\lambda(1-\lambda)\sum_{i_1,\dots,i_m \ge 1} f(x_{i_1},\dots,x_{i_m}) \frac{\partial^2}{\partial\lambda^2} h(\lambda;m,i_1,\dots,i_m)$$

with domain

$$\mathscr{D}(\mathcal{B}) = \left\{ \varphi \in C(\mathscr{P}_g(\mathbb{X})) : \ \varphi = \varphi_m(\mu) = \langle f, \mu^m \rangle, \ f \in C(\mathbb{X}^m), \ m \in \mathbb{N} \right\}$$

and where

$$h(\lambda; m, i_1, \dots, i_m) = \lambda_t^m (1 - \lambda_t)^{\sum_{j=1}^m i_j - m}.$$

Proposition

Let X be a Polish space, $\{\mu_t\}_{t\geq 0}$ a GSB (a, b, c, ν_0) process on $\mathscr{P}_g(X)$. Hence $\{\mu_t\}_{t\geq 0}$ is a Feller process with trajectories on $\mathcal{C}_{\mathscr{P}_g(X)}([0,\infty))$.

Proposition

Let X be a Polish space, $\{\mu_t\}_{t\geq 0}$ a $\text{GSB}(a, b, c, \nu_0)$ process on $\mathscr{P}_g(X)$. Hence $\{\mu_t\}_{t\geq 0}$ is reversible and strictly stationary.

Summing up, $\{\mu_t\}_{t\geq 0}$ is a diffusion process with values in the space of purely <u>atomic</u> probability measures, with continuous trajectories, stationary and reversible!

• If we require that the process takes values on $\mathscr{P}_c(\mathbb{X}) \subset \mathcal{P}_{\mathbb{X}}$ (all continuous prob. measures), we consider

$$f_t(y) = \int_{\mathbb{X}} f(y \mid z) \mu_t(\mathrm{d}z) = \sum_{l \ge 1} \lambda_t (1 - \lambda_t)^{l-1} f(y \mid \theta_l)$$

where $f(\cdot \mid \theta)$ is a well defined Lebesgue density and $\theta_l \stackrel{\text{iid}}{\sim} \nu_0, \nu_0$ non-atomic.

Sup. we observe only one trayectory $\{y_{t_i}\}_{i=1}^n$ and we use the mixture model. In hierarchical notation

$$y_i \mid t_i, x_i \sim f(\cdot \mid x_i) \tag{1}$$
$$\{x_i\} \sim \mu_t$$
$$\mu_t \sim \text{GSB}(a, b, c, \nu_0).$$

where $x_i := x_{t_i}$.

• We will estimate this model through a Gibbs sampler algorithm

The transition density for $\{\lambda_t\}$ can be expressed as

$$p(\lambda_t \mid \lambda_0) = \sum_{m=0}^{\infty} \mathsf{q}_t(m) D(\lambda_t \mid m, \lambda_0)$$

where

$$q_t(m) = \frac{(a+b)_m e^{-m c t}}{m!} (1 - e^{-c t})^{a+b}$$

and

$$D(\lambda_t|m,\lambda_0) = \sum_{k=0}^{m} \mathsf{Be}(\lambda_t|a+k,b+m-k)\operatorname{Bin}(k|m,\lambda_0).$$

(M. and Walker, 2009)

Outline	Motivation 0000000000	Geometric weights	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{000000000} \end{array}$	Estimation
Diffusi	on part $\{\lambda$	<i>t</i> }		

• Sup. we have observations (t_i, s_i) , where

$$s_i \mid \lambda_i \sim \text{Geom}(\lambda_i)$$

 $(\lambda_1, \dots, \lambda_n) \sim \text{WF}(a, b, c)$

With the *fidis* for $\{\lambda_t\}$ given by

$$p(\lambda_1, \dots, \lambda_n) = p(\lambda_0) \prod_{i=1}^n p(\lambda_i \mid \lambda_{i-1}), \text{ where } \lambda_i := \lambda_{t_i}$$

and $p(\lambda_0) = \mathsf{Be}(\lambda_0 \mid a, b)$

 $p(\lambda_i \mid \lambda_{i-1})$ has an infinite summation \Rightarrow slice it!

$$p(\lambda_t \mid \lambda_0) = \sum_{m=0}^{\infty} \frac{g(m)}{g(m)} \mathsf{q}_t(m) D(\lambda_t \mid m, \lambda_0)$$

where g is a decreasing func. with known inverse, e.g. $g(m) = e^{-m}$

• Augment the transition density via the latent variables $(u_i, d_i, k_i)_{i=1}^n$

$$\begin{split} p(\lambda_i, u_i, k_i, d_i \mid \lambda_{i-1}) &= \\ \mathbf{1}(u_i < g(d_i)) \, \frac{\mathbf{q}_i(d_i)}{g(d_i)} \operatorname{Be}(\lambda_i | a + k_i, b + d_i - k_i) \operatorname{Bin}(k_i | d_i, \lambda_{i-1}) \end{split}$$

Hence, the likelihood for the "complete data" is

$$l(a,b,c) = \text{Beta}(\lambda_0|a,b) \prod_{i=1}^n p(\lambda_i, u_i, k_i, d_i|\lambda_{i-1}) \lambda_i (1-\lambda_i)^{s_i-1}$$

If we assume priors for $a, b, c \stackrel{\text{iid}}{\sim} \text{Exp}(1)$ then the posterior distributions $\pi(a \mid b, c, ...) \propto l(a, b, c)e^{-a}$, etc. are log-concave, *e.g.*

$$\log \pi(c|a, b, \ldots) = \sum_{i=1}^{n} \left\{ (a+b) \log(1 - e^{-c\tau_i}) - d_i c\tau_i \right\} - c + C,$$

$$\pi(k_i|\ldots) \propto \begin{pmatrix} d_i \\ k_i \end{pmatrix} \frac{\mathbf{1}(k_i \in \{0, 1, \ldots, d_i\})}{\Gamma(a+k_i)\Gamma(b+d_i-k_i)} \left\{ \frac{\lambda_i \lambda_{i-1}}{(1-\lambda_i)(1-\lambda_{i-1})} \right\}^{k_i}$$

easy to sample as it takes a finite number of values

$$\pi(u_i \mid \ldots) = \mathrm{U}_{[0,g(d_i)]}(u_i)$$

$$\pi(d_i|\ldots) \propto \frac{\Gamma(a+d+d_i)^2 e^{d_i[1-c\tau_i]} \mathbf{1}(k_i \le d_i \le -\log u_i)}{\Gamma(b+d_i-k_i)\Gamma(d_i-k_i+1)\{(1-\lambda_{i-1})(1-\lambda_i)\}^{-d_i}}$$

Also finite due to the u_i 's

The complete conditionals for λ_i , $i \neq 0, n$, are given by

$$\pi(\lambda_i|\ldots) = \text{Beta}(1+a+k_i+k_{i+1},s_i-1+b+d_i+d_{i+1}-k_i-k_{i+1}),$$

and

$$\pi(\lambda_0|\ldots) = \text{Beta}(a+k_1, b+d_1-k_1)$$

and

$$\pi(\lambda_n|\ldots) = \text{Beta}(1+a+k_n, s_n-1+b+d_n-k_n).$$

This procedure via the latent variables could also be useful to estimate other diffusion processes

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}$	Geometric weights	$\begin{array}{c} \mathbf{Dependent} \ \mathbf{processes} \\ \texttt{000000000} \end{array}$	$ \begin{array}{c} \mathbf{Estimation} \\ \circ \circ \circ \circ \circ \bullet \circ \circ \circ \circ \circ \end{array} $
Gibbs	sampler			

For the remaining part of the model we use a similar idea "slice"

• That is, we "augment" the model

$$y_i|t_i, \lambda_i, \theta \sim \sum_{l=1}^{\infty} \lambda_i (1-\lambda_i)^{l-1} f(y_i|\theta_l),$$

with two random variables (s_i, v_i) and $\{\psi_l\}$ (a seq. of decreasing numbers s.t. $\{l: \psi_l > v\}$ is a known set), i.e.

$$y_i, v_i, s_i | \lambda_i, \theta \sim \psi_{s_i}^{-1} \mathbf{1}(v_i < \psi_{s_i}) \lambda_i (1 - \lambda_i)^{s_i - 1} f(y_i | \theta_{s_i}).$$

In this way

$$\pi(s_i|\ldots) \propto \psi_{s_i}^{-1} \lambda_i (1-\lambda_i)^{s_i-1} f(y_i|\theta_{s_i}) \mathbf{1}(s_i \in \{l: \psi_l > v_i\})$$

$$\pi(v_i|\ldots) = \mathbf{U}_{(0,\psi_{s_i})}(v_i)$$

$$\pi(\theta_l|\ldots) \propto \prod_{s_i=l} f(y_i|\theta_l) g_0(\theta_l) \quad \text{for } l = 1,\ldots, \max_i \{l: \psi_l > v_i\}$$

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}\texttt{o}$	Geometric weights	$\begin{array}{c} \mathbf{Dependent \ processes} \\ \texttt{ooooooooo} \end{array}$	$\mathbf{Estimation}$
Gibbs	sampler			

Summarizing, we need

- $\pi(a \mid b, c, \ldots), \pi(b \mid a, c, \ldots)$ and $\pi(c \mid a, b, \ldots)$ (via ARS)
- $\pi(k_i|\ldots), \pi(u_i|\ldots)$ y $\pi(d_i|\ldots)$ (via Inverse CDF)
- $\pi(\lambda_i|\ldots)$ (Beta's)
- $\pi(s_i|\ldots)$ and $\pi(v_i|\ldots)$ (via Inverse CDF)
- $\pi(\theta_i|\ldots)$ (if $f \neq g_0$ are conjugated \checkmark , otherwise via ARMS, M-H, etc)

A bit long, but only a very simple Gibbs sampler

Figura: MC estimator for $\bar{\eta}_t$ (solid) and corresponding 99% highest posterior density intervals (dotted) for the S&P 500 data set (dots). The estimates are based on 10000 iterations of the Gibbs sampler algorithm after 2000 iterations of burn in.

Geometric weights

Dependent processes

Figura: MCMC density estimator for the random density process, f_t , (heat contour), mean of mean functional $\bar{\eta}_t$ (solid) for the S&P 500 data set (dots). The estimates are based on 10000 effective

Outline	$\begin{array}{c} \mathbf{Motivation} \\ \texttt{00000000000} \end{array}$	Geometric weights	Dependent processes 00000000	
EPPF				

$$\Pi_k^n(n_1, n_2, \dots, n_k) = \left(\frac{\lambda}{1-\lambda}\right)^n \sum_{(*)_k} (1-\lambda)^{\sum_{l=1}^k n_l j_l}$$

Then, one can obtains results such as

$$\mathsf{E}[K_n] = \sum_{r=1}^{n} (-1)^{r-1} \binom{n}{r} \frac{\lambda^r}{1 - (1-\lambda)^r}$$

when k is large

$$\Pi_{k}^{n}(n_{1}, n_{2}, \dots, n_{k}) \approx \left(\frac{\lambda}{1-\lambda}\right)^{n} (1-\lambda)^{n_{(1)}+2n_{(2)}+\dots+kn_{(k)}}$$

(M. and Walker, 2012)

Outline	Motivation	Geometric weights	Dependent processes	Estimation
				000000000000000000000000000000000000000

Thanks !

Outline	Motivation	Geometric weights	Dependent processes	Estimation
				0000000000000

References

ANTONIAK, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist., 2, 1152–1174.

ESCOBAR, M.D. AND WEST, M. (1995). Bayesian density estimation and inference using mixtures. J. Amer. Stat. Assoc., 90, 577–588.

EWENS, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol., 3, 87-112.

FENG, S. (2010). The Poisson-Dirichlet Distribution and Related Topics: Models and Asymptotic Behaviors. Springer.

FERGUSON, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1, 209-230.

FUENTES-GARCÍA, R., MENA, R. H. AND WALKER, S. G. (2009). A nonparametric dependent process for Bayesian regression. *Statistics and Probability Letters*. **79**, 1112–1119.

FUENTES-GARCÍA, R., MENA, R. H. AND WALKER, S. G. (2010). A new Bayesian nonparametric mixture model. Communications in Statistics-Simulation and Computation. 39, 669–682.

FUENTES-GARCÍA, R., MENA, R. H. AND WALKER, S. G. (2010). A probability for classification based on the mixture of Dirichlet process model. *Journal of Classification*. In press.

ISHWARAN, H. AND JAMES, L.F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Stat. Assoc., 96, 161–173.

MENA, R.H. AND WALKER, S.G. (2009). On a construction of Markov models in continuous time. *Metron*, **67**, 303-323.

MENA, R.H. AND WALKER, S.G. (2012). An EPPF from independent sequences of geometric random variables. *Statistics and Probability Letters*. To appear.

MENA, R.H., RUGGIERO, M. AND WALKER, S.G. (2011). Geometric stick-breaking processes for continuous-time Bayesian nonparametric modeling. *Journal of Statistical Planning and Inference*, **141**, 3217-3230.

SETHURAMAN, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica, 4, 639-650.

WALKER, S.G. (2007). Sampling the Dirichlet mixture model with slices. Communications in Statistics, **36**, 45–54.