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Suppose we observe the following data
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we could fit of DP mixture f(·) =
∫
X f(· | x)µ(dx), µ ∼ Dθν0

Fitted DP Mixture 
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. . . or alternatively a NIG mixture model

Fitted DP Mixture 
Fitted NIG Mixture  
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. . . or even a more elaborated GG mixture model

Fitted DP Mixture 
Fitted NIG Mixture  
Fitted GG model 
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These estimators are result of a convergent MCMC
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→A convergent state of these MCMC estimators typically needs:

Hyper-parameters specifications in the kernel f(· | x) and ν0

Randomization of the parameters of RPMs µ

Techniques to accelerate and attain convergence

→ “ General ” RPMs partially ease some of these aspects, however
there is a tractability issue:

The more general the rpm the less manageable it becomes

Here we present a simplistic approach that addresses some of these
issues and explore its applications in depending settings
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Stick breaking weights

• Any discrete dist. can be represented as

P (B) =

∞∑
i=1

wi δzi(B), B ∈ X ,
∑
i

wi = 1

• Make the “ weights ”, (wi)i≥1, and “ locations ”, (zi)i≥1 random
⇒ µ is a Random Prob. Measure (RPM)

• Stick-breaking weights

w1 = V1, wi = Vi
∏
j<i

(1− Vj), i ≥ 2

• Let (Vi)i≥1 indep. [0, 1]-valued r.v.’s with E[
∑

i≥1 log(1−Vi)] = −∞
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Dirichlet process Dθ,ν0

• Sethuraman (1994)

if Vi
iid∼ Be(1, θ) and zi

iid∼ ν0 (indep. of Vi’s)

µ follows Ferguson (1973) Dirichlet process (µ ∼ Dθ,ν0)

i.e. a stochastic processes, {µ(B)}B∈X , with finite dim. dist.

(µ(B1), . . . , µ(Bk)) ∼ Dirichlet(θν0(B1), . . . , θν0(Bk))

for all k ≥ 1 and all partitions (B1, . . . , Bk) of X.
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Some basic properties of Dα

E[µ(B)] = ν0(B), Var[µ(B)] = ν0(B)(1−ν0(B))
θ+1

Cov(µ(B2), µ(B2)) = ν0(B1∩B2)−ν0(B1)ν0(B2)
θ+1

If Xi | µ
iid∼ µ and µ ∼ Dθ,ν0 , hence Xi ∼ ν0, forall i = 1, 2, . . .

µ | X1, . . . , Xn ∼ Dθν0+nµn ( Conjugate posterior)

with µn = n−1
∑n

i=1 δXi

E[µ | X1, . . . , Xn] =
θ

θ + n
ν0 +

n

θ + n

n∑
i=1

δXi
n
, (Bayes estimator)

• Dθν0(µ : µ is discrete ) = 1
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Precision parameter θ
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Precision parameter θ
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Clustering induced by Dα

Since Dα a.s. discrete, P (Xi = Xj) > 0 for i 6= j

(X1, . . . , Xn) can be encoded to (X∗1 , . . . , X
∗
Kn

) unique values

with random frequencies (N1, . . . , NKn), i.e.
∑Kn

i=1Ni = n

The support of (N1, . . . , NKn) is in bijection with

P[n] := Set of all partitions of {1, . . . , n}

Selecting Dα induces an Exchangeable Partition Probability
Function (EPPF) –Ewens (1972) and Antoniak (1974)–



Outline Motivation Geometric weights Dependent processes Estimation

Clustering induced by Dα

Since Dα a.s. discrete, P (Xi = Xj) > 0 for i 6= j

(X1, . . . , Xn) can be encoded to (X∗1 , . . . , X
∗
Kn

) unique values

with random frequencies (N1, . . . , NKn), i.e.
∑Kn

i=1Ni = n

The support of (N1, . . . , NKn) is in bijection with

P[n] := Set of all partitions of {1, . . . , n}

Selecting Dα induces an Exchangeable Partition Probability
Function (EPPF) –Ewens (1972) and Antoniak (1974)–



Outline Motivation Geometric weights Dependent processes Estimation

Clustering induced by Dα

Since Dα a.s. discrete, P (Xi = Xj) > 0 for i 6= j

(X1, . . . , Xn) can be encoded to (X∗1 , . . . , X
∗
Kn

) unique values

with random frequencies (N1, . . . , NKn), i.e.
∑Kn

i=1Ni = n

The support of (N1, . . . , NKn) is in bijection with

P[n] := Set of all partitions of {1, . . . , n}

Selecting Dα induces an Exchangeable Partition Probability
Function (EPPF) –Ewens (1972) and Antoniak (1974)–

P(Obs. in k groups with freq. n1, . . . , nk) =
θk

(θ)n

k∏
j=1

(nj − 1)!



Outline Motivation Geometric weights Dependent processes Estimation

Clustering induced by Dα

Since Dα a.s. discrete, P (Xi = Xj) > 0 for i 6= j

(X1, . . . , Xn) can be encoded to (X∗1 , . . . , X
∗
Kn

) unique values

with random frequencies (N1, . . . , NKn), i.e.
∑Kn

i=1Ni = n

The support of (N1, . . . , NKn) is in bijection with

P[n] := Set of all partitions of {1, . . . , n}

Selecting Dα induces an Exchangeable Partition Probability
Function (EPPF) –Ewens (1972) and Antoniak (1974)–

Π
(n)
k (n1, . . . , nk) =

θk

(θ)n

k∏
j=1

(nj − 1)!



Outline Motivation Geometric weights Dependent processes Estimation

Clustering induced by Dα
Summing over all posible partitions for fixed k

P(Kn = k) =
θk

(θ)n
|s(n, k)|

where s(n, k) for n ≥ k ≥ 1 Stirling numbers of the first type.

The precision
param. θ also
controls the
grouping.
Too informative!
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BNP mixtures

For continuous data use µ-mixtures

BNP mixture models

Yi | f
iid∼ f where f(·) =

∫
X
f(· | x)µ(dx)

f(·) random density (Lo 84’: Q = Dα)

Density estimation & Clustering problems



Outline Motivation Geometric weights Dependent processes Estimation

BNP mixtures

For continuous data use µ-mixtures

BNP mixture models

Yi | Xi
ind∼ f(Yi | Xi) i ≥ 1 (e.g . f(·) Leb. density)

Xi | µ
iid∼ µ

µ ∼ Q (e.g. a discrete RPM)

Equivalently

Yi | f
iid∼ f where f(·) =

∫
X
f(· | x)µ(dx)

f(·) random density (Lo 84’: Q = Dα)

Density estimation & Clustering problems



Outline Motivation Geometric weights Dependent processes Estimation

BNP mixtures

For continuous data use µ-mixtures

BNP mixture models

Yi | Xi
ind∼ f(Yi | Xi) i ≥ 1 (e.g . f(·) Leb. density)

Xi | µ
iid∼ µ

µ ∼ Q (e.g. a discrete RPM)

Equivalently

Yi | f
iid∼ f where f(·) =

∫
X
f(· | x)µ(dx)

f(·) random density (Lo 84’: Q = Dα)

Density estimation & Clustering problems



Outline Motivation Geometric weights Dependent processes Estimation

BNP mixtures

For continuous data use µ-mixtures

BNP mixture models

Yi | Xi
ind∼ f(Yi | Xi) i ≥ 1 (e.g . f(·) Leb. density)

Xi | µ
iid∼ µ

µ ∼ Q (e.g. a discrete RPM)

Equivalently

Yi | f
iid∼ f where f(·) =

∫
X
f(· | x)µ(dx)

f(·) random density (Lo 84’: Q = Dα)

Density estimation & Clustering problems



Outline Motivation Geometric weights Dependent processes Estimation

BNP mixtures: Density estimation

A Bayes density estimator, e.g.

E
[
f(y) | Y (n)

]
=

n∑
k=1

∫
X
f(y | x)

∑
pk∈Pk

[n]

E [µ(dx) | x∗1:k]P[x∗1:k ∈ pk | Y (n)]

where x∗1:k = (x∗1, . . . , x
∗
k) and pk ∈Pk

[n]

• E [µ(dx) | x∗1:k] denotes the predictive

. For large n virtually impossible to evaluate exactly

. The need of MCMC methods is evident
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BNP mixtures: Posterior distribution on P[n]

• Posterior clustering under BNP mixture (or clustering likelihood!)

P[pk | Y (n)] ∝ Π
(n)
k (n1, . . . , nk)

k∏
j=1

∫
X

∏
i∈Jj

f(yi | xi)ν0(dxi)

where as before pk ∈Pk
[n] and Jj := {i : Xi = X∗j }, j = 1, . . . , k

. No longer exchangeable due to effect of f(· | x) the y’s

• Summing over all the partitions for fixed k we obtain the posterior
on the number of groups of size k = 1, . . . , n

P[Kn = k | Y (n)] =
∑

pk∈Pk[n]

P[pk | Y (n)]
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BNP mixtures: Toy example (10 data points)

f(y | θ) = N(y | µ, λ−1), µ ∼ Dθν0
ν0(dµ, dλ) = N(µ | 0, 10

λ
)Exp(λ | 1)dµdλ

. p2 = {{y1, . . . , y4}, {y5, . . . , y10}}
→ integer partition (n1, n2) = (4, 6)

. If θ = 1 posterior mode is at p2

with P[p2 | y(n)] = 0.332

. Posterior on #groups: mode at k = 3
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0

with P[K10 = 3 | y(n)] = 0.39 & P[K10 = 2 | y(n)] = 0.37

. If θ = 0.5: P[K10 = 3 | y(n)] = 0.31 & P[K10 = 2 | y(n)] = 0.59 – E(K10) = 2.1 –

. If θ = 5: P[K10 = 3 | y(n)] = 0.80 & P[K10 = 2 | y(n)] = 0.02 – E(K10) = 5.8 –

Need to randomize (put a prior) on θ for DθP0
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BNP mixtures: Toy example (10 data points)
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A simplified RPM: Geometric weights

Given that for the Dθν0 a randomization of θ is needed we could
instead consider the simplified RPM

µ(B) =

∞∑
i=1

E[wi]δzi(B) =

∞∑
i=1

λ(1− λ)i−1δzi(B)

where λ = (θ+ 1)−1 and λ ∼ Be(a, b), i.e. with geometric weights.

. Namely, a DP with the randomness of the weights removed!

. This RPM has ordered weights!

. Still has full support wrt weak topology
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100 iter. BNP mixture model based on geom. weights

f(y) =

∫
X
f(y | z)µ(dz) =

∑
l≥1

λ(1− λ)l−1f(y | θl)
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DP mixture
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Properties

So why is that it works so well?

Weights are ordered

But let us find an alternative explanation for it!
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MCMC methods: via slice sampler (Walker 07’)

f(y) =

∞∑
i=1

wif(y | zi) (*)

. Infinite summation becomes a problem since wi’s are not ordered

• Augment (*) through a uniform latent variable

f(y, u) =

∞∑
j=1

I(u < wj)f(y | zi)

• Given u the set Au := {j : wj > u} is finite.
The infinite summation disappear since the summation in

f(y | u) =
1

#Au

∑
j∈Au

f(y | zi) is finite
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Random set Au

So Au is a finite subset of the set of positive integers

For the DP weights the Au typically generates set of integers
with gaps, e.g. {2, 5, 16, 40, 200, 3029}
But given that the representation

µ(B) =

∞∑
i=1

wi δzi(B), B ∈ X

includes a infinite number of locations zi’s

The same mass could be attained with a set {1, 2, 3, 4, 5, 6}
No need for the gaps!!
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A different construction of the weights

Consider the random density defined by

f(y | A) =
1

#A

∑
j∈A

f(y | zi)

with A a finite random subset of N+

Here we look at A = {1, . . . , N} with N ∼ qN so

f(y | N) =
1

N

N∑
j=1

f(y | zi)

which marginalizing corresponds to

f(y) =
∞∑
i=1

{
1

N

N∑
l=1

f(y | zi)

}
qN
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A different construction of the weights

This can be seen as a BNP mixture with weights

wi =

∞∑
N=i

qN
N

qN a prob. mass function on N+

. Weights are ordered!

For example if qN is a Neg − Bin(r, λ) we get

wi =
1

i

(
i+ r − 2

r − 1

)
λr(1− λ)i−12F1(1, i+ r − 1; i+ 1;λ)

which for r = 2 we recover the geometric case

wi = λ(1− λ)i−1
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Dependent processes

What happens with a different type of dependence?

Namely, we have observations typically capture with models such as:

Xn+1 = φXn + εt

dXt = a(Xt, θ)dt+ σ(Xt, θ)dWt

Xi = f(Z, β)

etc..

We still want to be nonparametric!

Nonparametric dependent random measures, i.e

{µn}∞n=0, {µt}t≥0, {µz}z∈Z
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Covariate dependent

Introduce dependence through {λz}z∈Z

λz =
eξ(z)

1 + eξ(z)
, {ξ(z)} ∼ GP(µ, σ)

ηz :=

∫
y fz(y)dy

fz(y)=
∑
l≥1

λz(1− λz)l−1f(y | θl)
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Let’s look at a continuous time dependent NP process.

µ(t) =
∑
i≥0

wi(t) δxi(t)

where, for each i ≥ 0, {wi(t)}t≥0, {xi(t)}t≥0 are certain ad hoc
stochastic processes.

In general we might think µ(t) inherits some of the continuity
and stability properties of the processes {wi(t)} and {xi(t)}
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Geometric stick-breaking process

Definition

Let {µ(t), t ≥ 0} a stochastic process with values on PX defined on
(Ω,F ,P) such that for each t ≥ 0

µ(t) = λt
∑
i≥0

(1− λt)i−1 δxi

where ν0 is an non-atomic distribution on (X,B(X)) and {λt}t≥0 is a
diffusion process with paths in C[0,1]([0,∞)) and infinitesimal
generator

A =

[
c

a+ b− 1
(a− (a+ b)λ)

]
d

dλ
+

c

a+ b− 1
λ(1− λ)

d2

dλ2

with domain D(A) = C2([0, 1]). We name {µ(t), t ≥ 0} the Geometric
Stick Breaking process with parameters (a, b, c, ν0) denoted by
GSB(a, b, c, ν0)
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Geometric stick-breaking process

{λt}t≥0 is a diffusion process with the following features:

Stationary with invariant distribution Be(a, b)

Reversible

When c := (a+ b− 1)/2 ⇒ {λt}t≥0 Wright-Fisher model

Which of these properties are inherited by µt ∼ GSBP(a, b, c, ν0)?

Let Pg(X) ⊂ PX the set of purely atomic probability measures
on X
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Propiedades GSB(a, b, c, ν0)

Proposition

Let {µt}t≥0 a GSB(a, b, c, ν0) process. Then, {µt}t≥0 has an
infinitesimal generator given by

Bϕm(µ) =

(
a

2
(1− λ)− b

2
λ

) ∑
i1,...,im≥1

f(xi1 , . . . , xim)
∂

∂λ
h(λ;m, i1, . . . , im)

+
1

2
λ(1− λ)

∑
i1,...,im≥1

f(xi1 , . . . , xim)
∂2

∂λ2
h(λ;m, i1, . . . , im)

with domain

D(B) =
{
ϕ ∈ C(Pg(X)) : ϕ = ϕm(µ) = 〈f, µm〉, f ∈ C(Xm), m ∈ N

}
and where

h(λ;m, i1, . . . , im) = λmt (1− λt)
∑m
j=1 ij−m.
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Properties of GSB(a, b, c, ν0)

Proposition

Let X be a Polish space, {µt}t≥0 a GSB(a, b, c, ν0) process on Pg(X).
Hence {µt}t≥0 is a Feller process with trajectories on CPg(X)([0,∞)).

Proposition

Let X be a Polish space, {µt}t≥0 a GSB(a, b, c, ν0) process on Pg(X).
Hence {µt}t≥0 is reversible and strictly stationary.

Summing up, {µt}t≥0 is a diffusion process with values in the space of
purely atomic probability measures, with continuous trajectories,

stationary and reversible!
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Mixtures of GSB(a, b, c, ν0) process

If we require that the process takes values on Pc(X) ⊂ PX
(all continuous prob. measures), we consider

ft(y) =

∫
X
f(y | z)µt(dz) =

∑
l≥1

λt(1− λt)l−1f(y | θl)

where f(· | θ) is a well defined Lebesgue density and θl
iid∼ ν0, ν0

non-atomic.
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Estimation for single trajectory data

Sup. we observe only one trayectory {yti}ni=1 and we use the mixture
model. In hierarchical notation

yi | ti, xi ∼ f(· | xi) (1)

{xi} ∼ µt
µt ∼ GSB(a, b, c, ν0).

where xi := xti .

We will estimate this model through a Gibbs sampler algorithm
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Diffusion part {λt}

The transition density for {λt} can be expressed as

p(λt | λ0) =

∞∑
m=0

qt(m)D(λt|m,λ0)

where

qt(m) =
(a+ b)m e

−mc t

m!
(1− e−c t)a+b

and

D(λt|m,λ0) =

m∑
k=0

Be(λt|a+ k, b+m− k)Bin(k|m,λ0).

(M. and Walker, 2009)
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Diffusion part {λt}

Sup. we have observations (ti, si), where

si | λi ∼ Geom(λi)

(λ1, . . . , λn) ∼WF(a, b, c)

With the fidis for {λt} given by

p(λ1, . . . , λn) = p(λ0)

n∏
i=1

p(λi | λi−1), where λi := λti

and p(λ0) = Be(λ0 | a, b)

p(λi | λi−1) has an infinite summation ⇒ slice it!

p(λt | λ0) =

∞∑
m=0

g(m)

g(m)
qt(m)D(λt|m,λ0)

where g is a decreasing func. with known inverse, e.g. g(m) = e−m
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Diffusion part {λt}

Augment the transition density via the latent variables
(ui, di, ki)

n
i=1

p(λi, ui, ki, di | λi−1) =

1(ui < g(di))
qi(di)

g(di)
Be(λi|a+ ki, b+ di − ki)Bin(ki|di, λi−1)

Hence, the likelihood for the “ complete data ” is

l(a, b, c) = Beta(λ0|a, b)
n∏
i=1

p(λi, ui, ki, di|λi−1)λi(1− λi)si−1

If we assume priors for a, b, c
iid∼ Exp(1) then the posterior

distributions π(a | b, c, . . .) ∝ l(a, b, c)e−a, etc. are log-concave, e.g.

log π(c|a, b, . . .) =

n∑
i=1

{
(a+ b) log(1− e−c τi)− di c τi

}
− c+ C,
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Condicionales completas

π(ki| . . .) ∝
(
di
ki

)
1(ki ∈ {0, 1, . . . , di})

Γ(a+ ki)Γ(b+ di − ki)

{
λiλi−1

(1− λi)(1− λi−1)

}ki
easy to sample as it takes a finite number of values

π(ui | . . .) = U[0,g(di)](ui)

π(di| . . .)∝
Γ(a+ d+ di)

2edi[1−cτi] 1(ki ≤ di ≤ − log ui)

Γ(b+ di − ki)Γ(di − ki + 1){(1− λi−1)(1− λi)}−di

Also finite due to the ui’s
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Complete conditionals

The complete conditionals for λi, i 6= 0, n, are given by

π(λi| . . .) = Beta(1 + a+ ki + ki+1, si − 1 + b+ di + di+1 − ki − ki+1),

and
π(λ0| . . .) = Beta(a+ k1, b+ d1 − k1)

and
π(λn| . . .) = Beta(1 + a+ kn, sn − 1 + b+ dn − kn).

This procedure via the latent variables could also be useful to
estimate other diffusion processes
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Gibbs sampler

For the remaining part of the model we use a similar idea “ slice ”

That is, we “ augment ” the model

yi|ti, λi, θ ∼
∞∑
l=1

λi(1− λi)l−1f(yi|θl),

with two random variables (si, vi) and {ψl} ( a seq. of decreasing
numbers s.t. {l : ψl > v} is a known set), i.e.

yi, vi, si|λi, θ ∼ ψ−1si 1(vi < ψsi)λi(1− λi)si−1 f(yi|θsi).

In this way

π(si| . . .) ∝ ψ−1si λi(1− λi)
si−1 f(yi|θsi)1(si ∈ {l : ψl > vi})

π(vi| . . .) = U(0,ψsi )
(vi)

π(θl| . . .) ∝
∏
si=l

f(yi|θl) g0(θl) for l = 1, . . . ,máx
i
{l : ψl > vi}



Outline Motivation Geometric weights Dependent processes Estimation

Gibbs sampler

Summarizing, we need

π(a | b, c, . . .), π(b | a, c, . . .) and π(c | a, b, . . .) (via ARS)

π(ki| . . .), π(ui| . . .) y π(di| . . .) (via Inverse CDF)

π(λi| . . .) (Beta’s)

π(si| . . .) and π(vi| . . .) (via Inverse CDF)

π(θi| . . .) (if f y g0 are conjugated !, otherwise via ARMS, M-H,
etc)

A bit long, but only a very simple Gibbs sampler
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Figura: MC estimator for η̄t (solid) and corresponding 99 %
highest posterior density intervals (dotted) for the S&P 500 data
set (dots). The estimates are based on 10000 iterations of the
Gibbs sampler algorithm after 2000 iterations of burn in.
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Figura: MCMC density estimator for the random density process,
f̂t, (heat contour), mean of mean functional η̄t (solid) for the S&P
500 data set (dots). The estimates are based on 10000 effective
iterations, drawn from 100000 iterations thinned each 10, of the
Gibbs sampler algorithm after 20000 iterations of burn in.
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EPPF

Πn
k(n1, n2, . . . , nk) =

(
λ

1− λ

)n∑
(∗)k

(1− λ)
∑k
l=1 nljl

Then, one can obtains results such as

E[Kn] =

n∑
r=1

(−1)r−1
(
n

r

)
λr

1− (1− λ)r

when k is large

Πn
k(n1, n2, . . . , nk) ≈

(
λ

1− λ

)n
(1− λ)n(1)+2n(2)+···+kn(k)

(M. and Walker, 2012)
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Thanks !
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