Hierarchical Bayesian Nonparametric Models
 HDP, HPYP, Sequence Memoizer

Jan Gasthaus \& Yee Whye Teh

Bayesian Nonparametrics Course

Apr 13th, 2012

$G \sim \mathcal{D} \mathcal{P}(\alpha, H)$

$G_{0} \sim \mathcal{D} \mathcal{P}(\gamma, H)$
 $G \mid G_{0} \sim \mathcal{D} \mathcal{P}\left(\alpha, G_{0}\right)$

11 Cl

$$
\begin{array}{rlrl}
G_{0} & \sim \mathcal{D} \mathcal{P}(\gamma, H) & & \\
G_{j} \mid G_{0} & \sim \mathcal{D} \mathcal{P}\left(\alpha_{j}, G_{0}\right) & j=1, \ldots, J \\
\theta_{i j} \mid G_{j} & \sim G_{j} & i=1, \ldots, N_{J} \\
x_{i j} \mid \theta_{j} & \sim F\left(\theta_{i j}\right) & &
\end{array}
$$

$G_{0} \sim \mathcal{P} \mathcal{Y}(\gamma, H)$
 $G_{1} \mid G_{0} \sim \mathcal{P} \mathcal{Y}\left(\alpha_{1}, G_{0}\right)$
 $G_{2} \mid G_{1} \sim \mathcal{P} \mathcal{Y}\left(\alpha_{2}, G_{1}\right)$
 ■ ■

(1) Hierarchical Dirichlet Processes

- Representations: Stick-breaking and Chinese Restaurant Franchise
- Prominent Models

$$
\star \text { HDP-LDA }
$$

* Infinite HMM
(2) Hierarchical Pitman-Yor Processes
- Representations
(3) Sequence Memoizer
- Model
- Coagulation-Fragmentation Properties
(4) Inference

Hierarchical Dirichlet Processes

 IICL- Main idea: make the base measure of a DP a draw from another DP:

$$
\begin{aligned}
G_{0} & \sim \mathcal{D P}(\gamma, H) \\
G_{j} \mid G_{0} & \sim \mathcal{D P}\left(\alpha_{j}, G_{0}\right) \quad j=1, \ldots, J
\end{aligned}
$$

Hierarchical Dirichlet Processes

- Main idea: make the base measure of a DP a draw from another DP:

$$
\begin{aligned}
G_{0} & \sim \mathcal{D P}(\gamma, H) \\
G_{j} \mid G_{0} & \sim \mathcal{D P}\left(\alpha_{j}, G_{0}\right) \quad j=1, \ldots, J
\end{aligned}
$$

- Induces sharing of atoms among the G_{j}
- Atoms are are inherited from G_{0}
- Each G_{j} has a distinct set of weights associated with the atoms

HDP: Stick-breaking Representation

- Stick-breaking representation of the DP $G_{0} \sim \mathcal{D P}(\gamma, H)$:

$$
G_{0}=\sum_{k=1}^{\infty} \beta_{k} \delta_{\theta_{k}^{* *}}
$$

where for $k=1,2 \ldots$

$$
\nu_{k} \sim \operatorname{Beta}(1, \gamma) \quad \beta_{k}=\nu_{k} \prod_{l=1}^{k-1}\left(1-\nu_{l}\right) \quad \theta_{k}^{* *} \sim H
$$

HDP: Stick-breaking Representation

- Stick-breaking representation of the DP $G_{0} \sim \mathcal{D P}(\gamma, H)$:

$$
G_{0}=\sum_{k=1}^{\infty} \beta_{k} \delta_{\theta_{k}^{* *}}
$$

- The support of each G_{j} is contained within the support of G_{0}, so that for each $j=1, \ldots, J$

$$
\boldsymbol{G}_{j}=\sum_{k=1}^{\infty} \pi_{j k} \delta_{\theta_{k}}
$$

- What is the relationship between β and π_{j} ?

HDP: Stick-breaking Representation

- Stick-breaking representation

$$
\boldsymbol{G}_{0}=\sum_{k=1}^{\infty} \beta_{k} \delta_{\theta_{k}^{* *}} \quad \boldsymbol{G}_{j}=\sum_{k=1}^{\infty} \pi_{j k} \delta_{\theta_{k}^{* *}}
$$

- Interpreting $\boldsymbol{\beta}$ and π_{j} as discrete probability measures on $\{1,2, \ldots\}$ we have

$$
\boldsymbol{\pi}_{j} \mid \boldsymbol{\beta} \sim \mathcal{D P}\left(\alpha_{j}, \boldsymbol{\beta}\right)
$$

- Using the defining property of the DP, we can explicitly construct $\pi_{j k}$ given β_{k} as follows:

$$
\nu_{j k} \sim \operatorname{Beta}\left(\alpha \beta_{k}, \alpha\left(1-\sum_{l=1}^{k} \beta_{l}\right)\right) \quad \pi_{j k}=\nu_{k} \prod_{l=1}^{k-1}\left(1-\nu_{j l}\right)
$$

HDP: Stick-breaking Representation

- The weights are equal to the base distribution in expectation

$$
E\left[\pi_{j k}\right]=E\left[\beta_{k}\right]=\gamma^{k-1}(1+\gamma)^{-k}
$$

- However, the variance of the weight is higher, typically leading to "sparser" π_{j}

$$
\operatorname{Var}\left[\pi_{j k}\right]=E\left[\frac{\beta_{k}\left(1-\beta_{k}\right)}{1+\alpha}\right]+\operatorname{Var}\left[\beta_{k}\right]>\operatorname{Var}\left[\beta_{k}\right]
$$

HDP: Chinese Restaurant Franchise

 AICL- The CRP describes the marginal distribution of draws $\theta_{i} \sim G, G \sim \mathcal{D P}(\alpha, H)$ with G integrated out

HDP: Chinese Restaurant Franchise

- The CRP describes the marginal distribution of draws $\theta_{i} \sim G, G \sim \mathcal{D P}(\alpha, H)$ with G integrated out
- The CRF extends the Chinese Restaurant metaphor for draws from a hierarchical model $G_{0} \sim \mathcal{D P}(\gamma, H)$ and $G_{j} \mid G_{0} \sim \mathcal{D} \mathcal{P}\left(\alpha_{j}, G_{0}\right)$

HDP: Chinese Restaurant Franchise

- The CRP describes the marginal distribution of draws $\theta_{i} \sim G, G \sim \mathcal{D P}(\alpha, H)$ with G integrated out
- The CRF extends the Chinese Restaurant metaphor for draws from a hierarchical model $G_{0} \sim \mathcal{D P}(\gamma, H)$ and $G_{j} \mid G_{0} \sim \mathcal{D P}\left(\alpha_{j}, G_{0}\right)$
- The idea is to have a "franchise" with a shared menu of dishes
- In each restaurant, dishes are chose with probability proportional to the total number of tables serving them (in the entire franchise)

HDP: Chinese Restaurant Franchise

global

$\underset{\psi_{24} \psi_{21}}{\psi_{3}}$	π

group $\mathrm{j}=2$

HDP: Chinese Restaurant Franchise

- Some notation
- i-th customer in j-th restaurant $\theta_{j i} \sim G_{j}$
- t-th table in j-th restaurant $\theta_{j t}^{*} \sim G_{0}$
- k-th dish $\theta_{k}^{* *} \sim H$
- Customer i in restaurant j sits at table $t_{j i}$ and table t serves dish $k_{j t}$
- $\theta_{j i}=\theta_{j t_{j i}}^{*}=\theta_{k_{j_{j i j}}^{* *}}^{*}$
- $n_{j t k}$ number of customers in restaurant j around table t serving dish k
- $m_{j k}$ number of tables in restaurant j serving dish k

HDP: Chinese Restaurant Franchise

 ± 101- Recall the CRP for the DP $\theta_{i} \sim G, G \sim \mathcal{D P}(\alpha, H)$:

$$
\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1} \sim \frac{\alpha}{\alpha+n .} H+\sum_{t=1}^{T} \frac{n_{t}}{\alpha+n .} \delta_{\theta_{t}}^{*}
$$

HDP: Chinese Restaurant Franchise

 EICL- Recall the CRP for the DP $\theta_{i} \sim \mathcal{G}, G \sim \mathcal{D P}(\alpha, H)$:

$$
\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1} \sim \frac{\alpha}{\alpha+n .} H+\sum_{t=1}^{T} \frac{n_{t}}{\alpha+n .} \delta_{\theta_{t}}^{*}
$$

- In the HDP, integrating out the G_{j} we have similarily:

$$
\theta_{j i} \mid \theta_{j 1}, \ldots, \theta_{j i-1}, G_{0} \sim \frac{\alpha_{j}}{\alpha_{j}+n_{j . .}} G_{0}+\sum_{t=1}^{m_{j}} \frac{n_{j t .}}{\alpha_{j}+n_{j . .}} \delta_{\theta_{j t}^{*}}
$$

HDP: Chinese Restaurant Franchise

- Recall the CRP for the DP $\theta_{i} \sim \mathcal{G}, \boldsymbol{G} \sim \mathcal{D P}(\alpha, H)$:

$$
\theta_{i} \mid \theta_{1}, \ldots, \theta_{i-1} \sim \frac{\alpha}{\alpha+n .} H+\sum_{t=1}^{T} \frac{n_{t}}{\alpha+n .} \delta_{\theta_{t}}^{*}
$$

- In the HDP, integrating out the G_{j} we have similarily:

$$
\theta_{j i} \mid \theta_{j 1}, \ldots, \theta_{j i-1}, G_{0} \sim \frac{\alpha_{j}}{\alpha_{j}+n_{j . .}} G_{0}+\sum_{t=1}^{m_{j .}} \frac{n_{j t .}}{\alpha_{j}+n_{j . .}} \delta_{\theta_{j t}^{*}}
$$

- And for the customers in the higher-level restaurant

$$
\theta_{j t}^{*} \left\lvert\, \boldsymbol{\theta}^{*} \sim \frac{\gamma}{\gamma+m_{. .}} H+\sum_{k=1}^{K} \frac{m_{. k}}{\gamma+m_{. .}} \delta_{\theta_{k}^{* *}}\right.
$$

HDP: Chinese Restaurant Franchise

global

$\underset{\psi_{24} \psi_{21}}{\psi_{3}}$	π

group $\mathrm{j}=2$

HDP-LDA

- Recall the standard LDA model

- Recall the standard LDA model

- Within each document, each word is drawn from a finite mixture model, where each mixture component is a distribution over words (a "topic")
- The mixture components are shared between documents, but their weights differ.
- Recall the standard LDA model

- Within each document, each word is drawn from a finite mixture model, where each mixture component is a distribution over words (a "topic")
- The mixture components are shared between documents, but their weights differ.
- Can we take $T \rightarrow \infty$?

HDP-LDA

IICL
$G_{0} \sim \mathcal{D P}(\gamma, H)$
$G_{j} \mid G_{0} \sim \mathcal{D P}\left(\alpha_{j}, G_{0}\right) \quad j=1, \ldots, J$
$\theta_{i j} \mid G_{j} \sim G_{j}$
$i=1, \ldots, N_{J}$
$x_{i j} \mid \theta_{j} \sim F\left(\theta_{i j}\right)$

The Infinite HMM

- A traditional Hidden Markov Model is described by a set of states $\theta_{1}, \ldots, \theta_{K}$, a transition distribution $\pi\left(\theta_{t} \mid \theta_{t-1}\right)$ and an emission distribution $f\left(x_{t} \mid \theta_{t}\right)$
- Note that this defines a set of mixture distributions - one for each state - with shared mixture components

The Infinite HMM

- We can define the iHMM as an infinite collection of DP draws G_{θ} with a common base measure G_{0}, representating the transition distributions.
- However, the description becomes clearer in the stick-breaking representation:

$$
\begin{aligned}
\theta_{k}^{* *} & \sim H \\
\boldsymbol{\beta} & \sim \operatorname{GEM}(\gamma) \\
\pi_{\theta_{k}^{* *}} & \sim \mathcal{D P}(\alpha, \boldsymbol{\beta})
\end{aligned}
$$

Hierarchical Pitman-Yor Processes

- Same idea as with the HDP, but with a PYP:

$$
\begin{aligned}
G_{0} & \sim \mathcal{P Y Y}\left(d_{0}, \alpha_{0}, H\right) \\
G_{j} \mid G_{0} & \sim \mathcal{P Y Y}\left(d_{j}, \alpha_{j}, G_{0}\right) \quad j=1, \ldots, J
\end{aligned}
$$

Hierarchical Pitman-Yor Processes

- Same idea as with the HDP, but with a PYP:

$$
\begin{aligned}
G_{0} & \sim \mathcal{P Y}\left(d_{0}, \alpha_{0}, H\right) \\
G_{j} \mid G_{0} & \sim \mathcal{P} \mathcal{Y}\left(d_{j}, \alpha_{j}, G_{0}\right) \quad j=1, \ldots, J
\end{aligned}
$$

- Useful if distributions have known power-law properties

Pitman-Yor Process

- What does $\operatorname{PY}(G \mid \alpha, d, H)$ look like?
- No closed form expression, but can draw $G \sim \operatorname{PY}(\alpha, d, H)$

HPYP: Stick-breaking Representation $\boldsymbol{\pm 1 / \mathbf { C I }}$

- Stick-breaking representation of the PYP $G_{0} \sim \mathcal{D P}(d, \alpha, H)$:

$$
G_{0}=\sum_{k=1}^{\infty} \beta_{k} \delta_{\theta_{k}^{* *}}
$$

where for $k=1,2 \ldots$
$\nu_{k} \sim \operatorname{Beta}(1-d, \alpha+k d) \quad \beta_{k}=\nu_{k} \prod_{l=1}^{k-1}\left(1-\nu_{l}\right) \quad \theta_{k}^{* *} \sim H$

HPYP: Chinese Restaurant Process

- Customers labeled $\{1, \ldots, c\}$ enter restaurant sequentially
- Customer i either joins other customers or sits at a new table

$$
P(\text { join table } a) \propto|a|-d \quad P(\text { new table }) \propto \alpha+\left|A_{i-1}\right| d
$$

where $A_{i-1} \in \mathcal{A}_{i-1}$ is the current arrangement and $a \in A$

- Induces $\operatorname{CRP}_{c}(\alpha, d)$, a distribution over \mathcal{A}_{c}
- Let $G \sim \operatorname{PY}(\alpha, d, H)$ and $x_{1: c} \mid G \stackrel{\text { iid }}{\sim} G$; equivalently draw

$$
A \sim \operatorname{CRP}_{c}(\alpha, d) \quad \theta_{a} \sim H \quad \text { for all } a \in A
$$

and set $x_{i}=\theta_{a}$ for all $i \in a$.

HPYP: Chinese Restaurant Process

- CRP seating arrangement with c customers around t tables; $\boldsymbol{A} \sim \operatorname{CRP}_{c}(\alpha, d)$:

$$
\begin{equation*}
P(A)=\frac{[\alpha+d]_{d}^{|A|-1}}{[\alpha+1]_{1}^{c-1}} \prod_{a \in A}[1-d]_{1}^{|a|-1} \quad \text { for each } A \in \mathcal{A}_{c}, \tag{1}
\end{equation*}
$$

- CRP with fixed \# of tables $t ; A \sim \operatorname{CRP}_{c t}(\alpha, d)$

$$
P(A)=\frac{\prod_{a \in A}[1-d]_{1}^{|a|-1}}{S_{d}(c, t)} \quad \text { for each } A \in \mathcal{A}_{c t},
$$

- Normalization constant is a generalized Stirling number of type ($-1,-d, 0$)

Joint \& Predictive Distribution

- Joint distribution of all seating arrangements

$$
P\left(\left\{c_{\mathbf{u s}}, t_{\mathbf{u s}}, A_{\mathbf{u s}}\right\}, x_{1: T}\right)=\left(\prod_{s \in \Sigma} H(s)^{t_{\varepsilon s}}\right) \prod_{\mathbf{u} \in \Sigma^{*}}\left(\frac{\left[\alpha_{\mathbf{u}}+d_{\mathbf{u}}\right]_{d_{\mathbf{u}}}^{t_{\mathbf{u}}-1}}{\left[\alpha_{\mathbf{u}}+1\right]_{1}^{c_{\mathbf{u}}-1}} \prod_{s \in \Sigma} \prod_{a \in A_{\mathbf{u s}}}\left[1-d_{\mathbf{u}}\right]_{1}^{|a|-1}\right) .
$$

- Predictive distribution

$$
P_{\mathbf{v}}^{*}(s)=\frac{c_{\mathrm{vs}}-t_{\mathbf{v} s} d_{\mathbf{v}}}{\alpha_{\mathbf{v}}+c_{\mathbf{v}}}+\frac{\alpha_{\mathbf{v}}+t_{\mathrm{v}} \cdot d_{\mathbf{v}}}{\alpha_{\mathbf{v}}+c_{\mathbf{v}}} P_{\sigma(\mathbf{v})}^{*}(s)
$$

- The numbers of customers and tables have to satisfy the constraints

$$
\begin{equation*}
c_{\mathrm{us}}=c_{\mathrm{us}}^{X}+\sum_{\mathbf{v}: \sigma(\mathbf{v})=\mathbf{u}} t_{\mathrm{vs}}, \tag{2}
\end{equation*}
$$

where $c_{\mathrm{us}}^{X}=1$ if $s=x_{i}$ and $\mathbf{u}=x_{1: i-1}$ for some i, and 0 otherwise.

HPYP Sequence Model

- Model for discrete sequences with power law properties
- $\mathrm{P}\left(x_{1: N}\right)=\mathrm{P}\left(x_{1}\right) \prod_{i=2}^{N} \mathrm{P}\left(x_{i} \mid x_{1: i-1}\right)$

HPYP Sequence Model

- Model for discrete sequences with power law properties
- $\mathrm{P}\left(x_{1: N}\right)=\mathrm{P}\left(x_{1}\right) \prod_{i=2}^{N} \mathrm{P}\left(x_{i} \mid x_{1: i-1}\right)$
- Directly estimate the set $\left\{\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)\right\}_{i=1, \ldots, N}$
- Treat distributions $\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)$ as random variables; call them $G_{\left[x_{1: i-1}\right]}(\cdot)$
- $G_{[\mathbf{u}]}(t)=$ probability of observing symbol t in context u

HPYP Sequence Model

- Model for discrete sequences with power law properties
- $\mathrm{P}\left(x_{1: N}\right)=\mathrm{P}\left(x_{1}\right) \prod_{i=2}^{N} \mathrm{P}\left(x_{i} \mid x_{1: i-1}\right)$
- Directly estimate the set $\left\{\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)\right\}_{i=1, \ldots, N}$
- Treat distributions $\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)$ as random variables; call them $G_{\left[X_{1: j-1]}\right]}(\cdot)$
- $G_{[u]}(t)=$ probability of observing symbol t in context \mathbf{u}
(1) Make prior assumptions about each individual G
- Pitman-Yor process prior: $G \sim \operatorname{PY}(\alpha, d, H)$

HPYP Sequence Model

- Model for discrete sequences with power law properties
- $\mathrm{P}\left(x_{1: N}\right)=\mathrm{P}\left(x_{1}\right) \prod_{i=2}^{N} \mathrm{P}\left(x_{i} \mid x_{1: i-1}\right)$
- Directly estimate the set $\left\{\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)\right\}_{i=1, \ldots, N}$
- Treat distributions $\mathrm{P}\left(\cdot \mid x_{1: i-1}\right)$ as random variables; call them $G_{\left[x_{1: i-1}\right]}(\cdot)$
- $G_{[u]}(t)=$ probability of observing symbol t in context \mathbf{u}
(1) Make prior assumptions about each individual G
- Pitman-Yor process prior: $\mathbf{G} \sim \operatorname{PY}(\alpha, d, H)$
(2) Make use of hierarchical structure

HPYP Language Model

EICL
$G_{\square} \mid d_{0}, \alpha_{0}, H \sim \operatorname{PY}\left(d_{0}, \alpha_{0}, H\right)$

HPYP Language Model

$G_{[]} \mid d_{0}, \alpha_{0}, H \quad \sim \operatorname{PY}\left(d_{0}, \alpha_{0}, H\right)$
$G_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]} \quad \sim \operatorname{PY}\left(d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]}\right) \quad \forall \mathbf{u} \in \bigcup_{k \leq m} \Sigma^{k}$

HPYP Language Model

$G_{[]} \mid d_{0}, \alpha_{0}, H \quad \sim \operatorname{PY}\left(d_{0}, \alpha_{0}, H\right)$
$\begin{array}{rlr}G_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]} & \sim \operatorname{PY}\left(d_{|\mathbf{u}|}, \alpha_{[\mathbf{u} \mid}, G_{[\sigma(\mathbf{u})]}\right) & \forall \mathbf{u} \in \bigcup_{k \leq m} \Sigma^{k} \\ x_{i} \mid \mathbf{x}_{i-m: i-1}=\mathbf{u} & \sim G_{[\mathbf{u}]} & i=1, \ldots, T\end{array}$

HPYP Language Model

$G_{[]} \mid d_{0}, \alpha_{0}, H \quad \sim \operatorname{PY}\left(d_{0}, \alpha_{0}, H\right)$
$G_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]} \sim \operatorname{PY}\left(d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]}\right) \quad \forall \mathbf{u} \in \bigcup_{k \leq m} \Sigma^{k}$

$$
x_{i} \mid \mathbf{x}_{i-m: i-1}=\mathbf{u} \quad \sim G_{[\mathbf{u}]} \quad i=1, \ldots, T
$$

$x_{1: 5}=(o, a, c, a, c)$
[] o
[o]a
[oa]c
[oac] a
[aca]c
[cac]

HPYP Language Model

$G_{[]} \mid d_{0}, \alpha_{0}, H \quad \sim \operatorname{PY}\left(d_{0}, \alpha_{0}, H\right)$
$\begin{array}{rlr}G_{[\mathbf{u}]} \mid d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]} & \sim \operatorname{PY}\left(d_{|\mathbf{u}|}, \alpha_{|\mathbf{u}|}, G_{[\sigma(\mathbf{u})]}\right) & \forall \mathbf{u} \in \bigcup_{k \leq m} \Sigma^{k} \\ x_{i} \mid \mathbf{x}_{i-m: i-1}=\mathbf{u} & \sim G_{[\mathbf{u}]} & i=1, \ldots, T\end{array}$
$x_{1: 5}=(o, a, c, a, c)$
[] o
[o]a
[oa]c
[oac] a
[aca]c
[cac]

Sequence Memoizer: Details

(1) At the root:

$$
G_{\varepsilon} \mid \alpha_{\varepsilon}, d_{\varepsilon}, H \quad \sim \operatorname{PY}\left(\alpha_{\varepsilon}, d_{\varepsilon}, H\right)
$$

Sequence Memoizer: Details

(1) At the root:

$$
G_{\varepsilon} \mid \alpha_{\varepsilon}, d_{\varepsilon}, H \quad \sim \operatorname{PY}\left(\alpha_{\varepsilon}, d_{\varepsilon}, H\right)
$$

(2) For all possible contexts $\mathbf{u} \in \Sigma^{+}$:

$$
G_{[\mathbf{u}]} \mid \alpha_{\mathbf{u}}, d_{\mathbf{u}}, G_{[\sigma(\mathbf{u})]} \sim \operatorname{PY}\left(\alpha_{\mathbf{u}}, d_{\mathbf{u}}, G_{[\sigma(\mathbf{u})]}\right)
$$

Sequence Memoizer: Details

(1) At the root:

$$
G_{\varepsilon} \mid \alpha_{\varepsilon}, d_{\varepsilon}, H \quad \sim \operatorname{PY}\left(\alpha_{\varepsilon}, d_{\varepsilon}, H\right)
$$

(2) For all possible contexts $\mathbf{u} \in \Sigma^{+}$:

$$
G_{[\mathbf{u}]} \mid \alpha_{\mathbf{u}}, d_{\mathbf{u}}, G_{[\sigma(\mathbf{u})]} \sim \operatorname{PY}\left(\alpha_{\mathbf{u}}, d_{\mathbf{u}}, G_{[\sigma(\mathbf{u})]}\right)
$$

(3) Draw observations from context-dependent distributions:

$$
x_{i} \mid \mathbf{x}_{1: i-1}=\mathbf{u} \quad \sim G_{[u]} \quad i=1, \ldots, T
$$

Sequence Memoizer: Illustration

- Hierarchical prior over distributions arranged in a context tree
- Prior assumption $\mathrm{E}\left[G_{[\mathbf{u}]}(\cdot) \mid G_{[\sigma(\mathbf{u})]}\right]=G_{[\sigma(\mathbf{u})]}(\cdot)$

$$
\begin{aligned}
& x_{1: 5}=(o, a, c, a, c) \\
& \text { []o } \\
& \text { [o]a } \\
& \text { [oa]c } \\
& \text { [oac]a } \\
& \text { [oaca]c } \\
& \text { [oacac] }
\end{aligned}
$$

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

$\pm 1 / \mathrm{CL}$

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

$\pm 1 / \mathrm{CL}$

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

$\pm 1 / \mathrm{CL}$

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

$\pm 1 / \mathrm{CL}$

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

今ICL

Marginalization: $\mathcal{O}\left(n^{2}\right) \rightarrow \mathcal{O}(n)$

$\pm 1 \mathrm{Cl}$

Marginalization

Theorem (Pitman, 1999; Ho et al., 2006):
If

$$
\begin{gathered}
G_{[c]} \mid G_{[]} \sim \operatorname{PY}\left(\alpha d_{1}, d_{1}, G_{[]}\right) \\
G_{[a c]} G_{[c]} \sim \operatorname{PY}\left(\alpha d_{1} d_{2}, d_{2}, G_{[c]}\right)
\end{gathered}
$$

then

$$
G_{[a c]} \mid G_{[]} \sim \operatorname{PY}\left(\alpha d_{1} d_{2}, d_{1} d_{2}, G_{[]}\right)
$$

with $G_{[c]}$ marginalized out.
I.e. we set $\alpha_{\mathbf{u}}=\alpha_{\sigma(\mathbf{u})} d_{\mathbf{u}}$.

HPYP: Coagulation \& Fragmentation

Illustration of the relationship between the restaurants A_{1}, A_{2}, C and F_{a}.

- Theorem: Suppose $A_{2} \in \mathcal{A}_{c}, A_{1} \in \mathcal{A}_{\left|A_{2}\right|}, C \in \mathcal{A}_{c}$ and $F_{a} \in \mathcal{A}_{|a|}$ for each $a \in C$ are related as above. Then the following describe equivalent distributions:
(I) $A_{2} \sim \operatorname{CRP}_{c}\left(\alpha d_{2}, d_{2}\right)$ and $A_{1} \mid A_{2} \sim \operatorname{CRP}_{\left|A_{2}\right|}\left(\alpha, d_{1}\right)$
(II) $C \sim \operatorname{CRP}_{c}\left(\alpha d_{2}, d_{1} d_{2}\right)$ and $F_{a \mid} C \sim \operatorname{CRP}_{|a|}\left(-d_{1} d_{2}, d_{2}\right)$ for each $a \in C$

Language Modeling Results

ATCL

Results: Text Compression

100 MB Wikipedia Compression

INFERENCE

CRF Gibbs Sampler for Conjugate HDPT/CI.

- Basically the hierarchical extension of the conjugate sampler for DP mixture models
$\left\{\begin{array}{l}t_{j i}=t \\ t_{j i}=t^{\text {new }}, k_{j t^{\text {new }}}=k \\ t_{j i}=t^{\text {new }}, k_{j t^{\text {new }}}=k^{\text {new }}\end{array}\right.$

CRF Gibbs Sampler for Conjugate HDPTIC|.

- Basically the hierarchical extension of the conjugate sampler for DP mixture models

$$
\begin{aligned}
& \left\{\begin{array}{l}
t_{j i}=t \\
t_{j i}=t^{\text {new }}, k_{j t^{\text {tee }}}=k \\
t_{j i}=t^{\text {new }}, k_{j t^{\text {new }}}=k^{\text {new }}
\end{array}\right. \\
& \text { with probability } \propto \frac{n_{j t}^{j j^{i}}}{n_{j . w^{3}}^{j j^{2}}+\alpha} f_{k_{j t}}\left(\left\{x_{j i}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& k_{j t}= \begin{cases}k & \text { with probability } \propto \frac{m_{j-j t}^{-j t}}{m_{j-j t}^{j t}+\gamma} f_{k}\left(\left\{x_{j i}: t_{j i}=t\right\}\right) \\
k^{\text {new }} & \text { with probability } \propto \frac{\gamma}{m_{. j}^{-j t}+\gamma} f_{k n e w}\left(\left\{x_{j i}: t_{j i}=t\right\}\right)\end{cases}
\end{aligned}
$$

CRF Gibbs Sampler for Conjugate HDFIJCI

- Basically the hierarchical extension of the conjugate sampler for DP mixture models

$$
\begin{aligned}
& \left\{\begin{array}{l}
t_{j i}=t \\
t_{j i}=t^{\mathrm{new}}, k_{j t^{\text {teew }}}=k \\
t_{j i}=t^{\mathrm{new}}, k_{j t^{\text {new }}}=k^{\text {new }}
\end{array}\right. \\
& \text { with probability } \propto \frac{n_{j t}^{j i i}}{n_{j . .2}^{7 . t^{2}}+\alpha} f_{k_{j t}}\left(\left\{x_{j i}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { with probability } \propto \frac{\alpha}{n_{j .2}^{. n^{2}}+\alpha} \frac{\gamma}{m^{-\gamma^{2}}+\gamma} f_{k^{\operatorname{new}}}\left(\left\{x_{j i}\right\}\right) \\
& k_{j t}= \begin{cases}k & \text { with probability } \propto \frac{m^{-j t}}{m_{j-j t}^{j t}+\gamma} f_{k}\left(\left\{x_{j i}: t_{j i}=t\right\}\right) \\
k^{\text {new }} & \text { with probability } \propto \frac{\gamma}{m_{. j,}^{-j t}+\gamma} f_{k} \text { new }\left(\left\{x_{j i}: t_{j i}=t\right\}\right)\end{cases}
\end{aligned}
$$

- In the non-conjugate case, extensions similar to the ones developed for the non-nojugate DP mixture model can be used
- In many models for discrete data (especially HPYP models), the observed data are direct draws from the random distributions G

Inference using Stick-breaking

 11 Cl- Variational inference can be performed in the stick-breaking representation
- Usually the number of stick pieces is fixed to some finite number

CRP Representations

Name	Representation	Size
PARTITIONS	$\{\{1,3\},\{2\},\{5\},\{4,6\},\{7\}\}$	$O(c)$
COUNTS	$[2,1,1][2,1]$	$O(t)$
COMPACT	$(4,3)(3,2)$	$O(1)$
HISTOGRAM	$[1: 2,2: 1][1: 1,2: 1]$	$O(t)$

The new СомрАст representation only stores the \# of customers and the \# of tables (per type).

Gibbs Samplers

- Re-seating sampler
- Iterate through all contexts/restaurants \mathbf{u} and symbols $s \in \Sigma$
- Sequentially remove and re-insert all cus customers
- If removing/inserting a customer leads to removal/creation of a table, update the parent restaurant by removing/inserting a customer
- In all but the Partitions representation, there is no explicit customer-table assignment \Longrightarrow sample table to remove from

Non-Compact Gibbs

- Pick table k to remove customer from with probability $\propto c_{\text {usk }}$
- Remove customer from selected table (recursively)
- Insert customer again (recursively)
- Time complexity: $O\left(c_{\mathrm{us}} \times t_{\mathrm{us}}\right)$

Compact Original Gibbs Sampler

А $1 /$

- Compute probability that a randomly chosen customer sits alone

$$
P\left(\text { decrement } t_{\mathrm{us}}\right)=\frac{S_{d_{u}}\left(c_{\mathrm{us}}-1, t_{\mathrm{us}}-1\right)}{S_{d_{u}}\left(c_{\mathrm{us}}, t_{\mathrm{us}}\right)}
$$

- Flip coin; if $t_{\text {us }}$ decremented, remove customer from parent
- Insert customer again (recursively)

$$
P\left(\text { increment } t_{\mathbf{u s}}\right)=\frac{\left(\alpha_{\mathbf{u}}+d_{\mathbf{u}} t_{\mathbf{u}}\right) P_{\sigma(\mathbf{u})}^{*}(s)}{\left(\alpha_{\mathbf{u}}+d_{\mathbf{u}} t_{\mathbf{u}}\right) P_{\sigma(\mathbf{u})}^{*}(s)+c_{\mathbf{u s}}-t_{\mathbf{u s}} d_{\mathbf{u}}}
$$

- Time complexity: $O\left(c_{\mathrm{us}} \times t_{\mathrm{us}}\right)$; large constant because of log/exp

Re-Instantiating Gibbs Sampler

- Re-instantiate table sizes for restaurants along the path to \mathbf{u}
- Apply original Gibbs sampler
- Discard sizes of individual tables
- Time complexity: $O\left(c_{\mathrm{us}} \times t_{\mathrm{us}}\right)$; no log/exp necessary
- Preferred choice for compact representation

Direct Gibbs Sampler

- Instead of removing/inserting individual customers, sample $t_{\mathrm{us}} \in\left\{1, \ldots, c_{\mathrm{us}}\right\}$ directly from

$$
P\left(t_{\mathbf{u s}} \mid \text { rest }\right) \propto \frac{\left[\alpha_{\mathbf{u}}+d_{\mathbf{u}}\right]_{d_{\mathbf{u}}}^{t_{\mathbf{u}}-1}}{\left[\alpha_{\sigma(\mathbf{u})}+1\right]_{1}^{\sigma_{\sigma(\mathbf{u})}-1}} S_{d_{\mathbf{u}}}\left(c_{\mathbf{u s}}, t_{\mathbf{u s})}\right) S_{d_{\sigma(\mathbf{u})}}\left(c_{\sigma(\mathbf{u}) \mathbf{s}}, t_{\sigma(\mathbf{u}) s}\right)
$$

- Time complexity: $O\left(c_{\text {us }}^{2}\right)$; slow (need log/exp operations)
Y.W. Teh and M.I. Jordan. (2010). Hierarchical Bayesian Nonparametric Models with Applications. Bayesian Nonparametrics, Cambridge University Press.
Ho, M. W., James, L. F., \& Lau, J. W. (2006). Coagulation fragmentation laws induced by general coagulations of two-parameter Poisson-Dirichlet processes.
Pitman, J. (1999). Coalescents with multiple collisions. Annals of Probability, 27, 1870-1902.

