The beta process: survival analysis, latent feature models, and the Indian buffet process

Lloyd Elliott

Acknowledgements: Yee Whye Teh, Vinayak Rao

March 30, 2012

Outline

Conjugate priors for survival analysis

Link to completely random measures

Indian buffet process

Applications to machine learning

Survival analysis [Cox, 1972]
 Let $X \geq 0$ be the lifetime of a process with $\operatorname{cdf} F(t)$.

Survival analysis [Cox, 1972]

We want to estimate the hazard rate:

$$
\begin{equation*}
h(t)=\lim _{\delta \rightarrow 0^{+}} \delta^{-1} \operatorname{Pr}(X \leq t+\delta \mid X>t) \tag{1}
\end{equation*}
$$

We are given right censored observations:

$$
\begin{aligned}
& X_{i} \text { lifetime, } \\
& T_{i} \text { time of last observation, } \\
& d_{i} \text { censoring indicator, } \\
& c_{i} \text { time of censoring, } \\
& T_{i}=\min \left\{X_{i}, c_{i}\right\} \\
& d_{i}=\mathbb{I}\left\{X_{i} \leq c_{i}\right\}
\end{aligned}
$$

Survival analysis [Cox, 1972]

We want to estimate the hazard rate:

$$
\begin{equation*}
h(t)=\lim _{\delta \rightarrow 0^{+}} \delta^{-1} \operatorname{Pr}(X \leq t+\delta \mid X>t) \tag{1}
\end{equation*}
$$

We are given right censored observations:

$$
\begin{align*}
& X_{i} \text { lifetime, } \\
& T_{i} \text { time of last observation, } \\
& d_{i} \text { censoring indicator, } \\
& c_{i} \text { time of censoring, } \\
& T_{i}=\min \left\{X_{i}, c_{i}\right\} \tag{6}\\
& d_{i}=\mathbb{I}\left\{X_{i} \leq c_{i}\right\} \tag{7}
\end{align*}
$$

Discrete approximation [Hjort, 1990]

First, we will look at the sets $[t, t+\delta)$ for $t=0, \delta, 2 \delta, \ldots$

$$
\begin{equation*}
h(t)=\operatorname{Pr}(X \in[t, t+\delta) \mid T \geq t) . \tag{8}
\end{equation*}
$$

Define the counting process $N(t)$ and the number at risk $Y(t)$ as follows:

Discrete approximation [Hjort, 1990]

First, we will look at the sets $[t, t+\delta)$ for $t=0, \delta, 2 \delta, \ldots$

$$
\begin{equation*}
h(t)=\operatorname{Pr}(X \in[t, t+\delta) \mid T \geq t) \tag{8}
\end{equation*}
$$

Define the counting process $N(t)$ and the number at risk $Y(t)$ as follows:

$$
\begin{align*}
d N(t) & =\sum_{i=1}^{n} \mathbb{I}\left\{T_{i} \in[t, t+\delta) \text { and } d_{i}=1\right\} \tag{9}\\
Y(t) & =\sum_{i=1}^{n} \mathbb{I}\left\{T_{i} \geq t\right\} \tag{10}
\end{align*}
$$

Hazard rates

We assume that hazard rates $h(t)$ are independent r.v.'s in $[0,1]$. Suppose that a priori $h(t)$ is distributed as $\alpha_{t}(u)$.

Theorem

The posterior density of $h(t)$ after observing $\left(T_{i}, d_{i}\right)_{i=1}^{n}$ is:

This suggests that we should place a beta prior on $h(t)$:
$h(t) \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t), c(t)\left(1-\mu_{\delta}(t)\right)\right)$
$h(t) \mid T_{i}, d_{i} \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t)+d N(t), c(t) \mu_{\delta}(t)+Y(t)-d N(t)\right), \quad(15)$
$\mu_{\delta}(t)=\mu[t, t+\delta)$ is a mean measure and $c(t) \geq 0$ is a concentration.

Hazard rates

We assume that hazard rates $h(t)$ are independent $r . v . ' s$ in $[0,1]$. Suppose that a priori $h(t)$ is distributed as $\alpha_{t}(u)$.

Theorem

The posterior density of $h(t)$ after observing $\left(T_{i}, d_{i}\right)_{i=1}^{n}$ is:

$$
\begin{align*}
p\left(h(t)=u \mid T_{i}, d_{i}\right) & \propto \operatorname{Pr}\left(T_{i}, d_{i} \mid h(t)=u\right) p(h(t)=u), \tag{11}\\
& =u^{\# i: T_{i} \in[t, t+\delta) \text { and } d_{i}=1}(1-u)^{\# i: T_{i} \geq t+\delta} \alpha_{t}(u) \tag{12}\\
& =u^{d N(t)}(1-u)^{Y(t)-d N(t)} \alpha_{t}(u) . \tag{13}
\end{align*}
$$

This suggests that we should place a beta prior on $h(t)$:
$h(t) \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t), c(t)\left(1-\mu_{\delta}(t)\right)\right)$

Hazard rates

We assume that hazard rates $h(t)$ are independent $r . v . ' s$ in $[0,1]$. Suppose that a priori $h(t)$ is distributed as $\alpha_{t}(u)$.

Theorem

The posterior density of $h(t)$ after observing $\left(T_{i}, d_{i}\right)_{i=1}^{n}$ is:

$$
\begin{align*}
p\left(h(t)=u \mid T_{i}, d_{i}\right) & \propto \operatorname{Pr}\left(T_{i}, d_{i} \mid h(t)=u\right) p(h(t)=u), \tag{11}\\
& =u^{\# i: T_{i} \in[t, t+\delta) \text { and } d_{i}=1}(1-u)^{\# i: T_{i} \geq t+\delta} \alpha_{t}(u) \tag{12}\\
& =u^{d N(t)}(1-u)^{Y(t)-d N(t)} \alpha_{t}(u) . \tag{13}
\end{align*}
$$

This suggests that we should place a beta prior on $h(t)$:

$$
\begin{align*}
h(t) & \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t), c(t)\left(1-\mu_{\delta}(t)\right)\right) \tag{14}\\
h(t) \mid T_{i}, d_{i} & \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t)+d N(t), c(t) \mu_{\delta}(t)+Y(t)-d N(t)\right) \tag{15}
\end{align*}
$$

Hazard rates

We assume that hazard rates $h(t)$ are independent $r . v . ' s$ in $[0,1]$. Suppose that a priori $h(t)$ is distributed as $\alpha_{t}(u)$.

Theorem

The posterior density of $h(t)$ after observing $\left(T_{i}, d_{i}\right)_{i=1}^{n}$ is:

$$
\begin{align*}
p\left(h(t)=u \mid T_{i}, d_{i}\right) & \propto \operatorname{Pr}\left(T_{i}, d_{i} \mid h(t)=u\right) p(h(t)=u), \tag{11}\\
& =u^{\# i: T_{i} \in[t, t+\delta) \text { and } d_{i}=1}(1-u)^{\# i: T_{i} \geq t+\delta} \alpha_{t}(u) \tag{12}\\
& =u^{d N(t)}(1-u)^{Y(t)-d N(t)} \alpha_{t}(u) . \tag{13}
\end{align*}
$$

This suggests that we should place a beta prior on $h(t)$:

$$
\begin{align*}
h(t) & \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t), c(t)\left(1-\mu_{\delta}(t)\right)\right) \tag{14}\\
h(t) \mid T_{i}, d_{i} & \sim \operatorname{Beta}\left(c(t) \mu_{\delta}(t)+d N(t), c(t) \mu_{\delta}(t)+Y(t)-d N(t)\right) \tag{15}
\end{align*}
$$

$\mu_{\delta}(t)=\mu[t, t+\delta)$ is a mean measure and $c(t) \geq 0$ is a concentration.

Continuous hazard rates

We can write the cdf of the lifetime X in terms of the hazard rate:

$$
\begin{align*}
F(t) & \asymp 1-\prod_{k=0}^{\lfloor t / \delta\rfloor}(1-h(k \delta)) \tag{16}\\
& \asymp 1-\underbrace{\exp (-0}_{\text {limit is } A(t)} \sum_{k=0}^{\lfloor t / \delta\rfloor} h(k \delta)) \tag{17}
\end{align*}
$$

Theorem

Iet ॥ be a measure and let $c(t) \geq 0$ be piecewise continuous. The cumulative hazard exists \& is called a beta process:

Continuous hazard rates

We can write the cdf of the lifetime X in terms of the hazard rate:

$$
\begin{align*}
F(t) & \asymp 1-\prod_{k=0}^{\lfloor t / \delta\rfloor}(1-h(k \delta)) . \tag{16}\\
& \asymp 1-\exp (-\underbrace{\sum_{k=0}^{\lfloor t / \delta\rfloor} h(k \delta)}_{\text {limit is } A(t)}) \tag{17}
\end{align*}
$$

Theorem

Let μ be a measure and let $c(t) \geq 0$ be piecewise continuous. The cumulative hazard exists \& is called a beta process:

$$
\begin{equation*}
A(t)=\lim _{\delta \rightarrow 0^{+}} \sum_{k=0}^{\lfloor t / \delta\rfloor} h(k \delta) \tag{18}
\end{equation*}
$$

Properties of the cumulative hazard

Corollary

1. $A(0)=0$,
2. $A\left(t_{i}\right)-A\left(t_{i-1}\right)$ are independent for all $0 \leq t_{1}<t_{2}<\ldots$,
3. $A(t)$ is right continuous,

The beta process A can be seen as a measure on $\mathbb{R}_{\geq 0}$ by defining $A\left(t_{0}, t_{1}\right]=A\left(t_{1}\right)-A\left(t_{0}\right)$. By the above corollary, A is a completely random measure (CRM): if $B_{1}, \ldots . B_{n}$ are disjoint then $A\left(B_{1}\right), \ldots, A\left(B_{n}\right)$ are independent.

Properties of the cumulative hazard

Corollary

1. $A(0)=0$,
2. $A\left(t_{i}\right)-A\left(t_{i-1}\right)$ are independent for all $0 \leq t_{1}<t_{2}<\ldots$,
3. $A(t)$ is right continuous,

The beta process A can be seen as a measure on $\mathbb{R}_{\geq 0}$ by defining $A\left(t_{0}, t_{1}\right]=A\left(t_{1}\right)-A\left(t_{0}\right)$. By the above corollary, A is a completely random measure (CRM): if B_{1}, \ldots, B_{n} are disjoint then $A\left(B_{1}\right), \ldots, A\left(B_{n}\right)$ are independent.

Representation as a CRM

By the Lévy-Khinchine representation theorem (from lecture 2), there exists a measure $\lambda(d u, d s)$ such that for all functions $f(s)$ on $\mathbb{R}_{\geq 0}$:

$$
\begin{align*}
\mathbb{E}\left[\exp \left(-\int_{0}^{\infty} f(s) A(d s)\right)\right] & =\exp \left(-\int_{0}^{\infty} \int_{0}^{1} 1-e^{-u f(s)} \lambda(d u, d s)\right) \\
\lambda(d u, d s) & =c(s) u^{-1}(1-u)^{c(s)-1} \mu(d s) .
\end{align*}
$$

Write $A \sim B P(c, \mu)$ in this case.

Representation as a CRM

By the Lévy-Khinchine representation theorem (from lecture 2), there exists a measure $\lambda(d u, d s)$ such that for all functions $f(s)$ on $\mathbb{R}_{\geq 0}$:

$$
\begin{align*}
\mathbb{E}\left[\exp \left(-\int_{0}^{\infty} f(s) A(d s)\right)\right] & =\exp \left(-\int_{0}^{\infty} \int_{0}^{1} 1-e^{-u f(s)} \lambda(d u, d s)\right) \\
\lambda(d u, d s) & =c(s) u^{-1}(1-u)^{c(s)-1} \mu(d s) .
\end{align*}
$$

Write $A \sim \mathrm{BP}(c, \mu)$ in this case.

Link to completely random measures

Corollary

A beta process $A \sim \mathrm{BP}(c, \mu)$ is a completely random measure s.t.:

$$
\begin{equation*}
A=\sum_{k=1}^{\infty} w_{k} \delta_{s_{k}} \tag{21}
\end{equation*}
$$

where $\left(w_{k}, s_{k}\right)_{k=1}^{\infty}$ is a Poisson process on $[0,1] \times \mathbb{R}_{\geq 0}$ with rate $\lambda(d u, d s)=c u^{-1}(1-u)^{c-1} \mu(d s)$.

Latent feature models

Suppose s_{1}, \ldots, s_{K} are features, and $z_{i k}$ indicates if data item i has feature k.

$$
z_{i k}= \begin{cases}1 & \text { if data item } i \text { has feature } k, \tag{22}\\ 0 & \text { otherwise. }\end{cases}
$$

This is a popular situation in Bayesian statistics, for example the elimination by aspects choice model [Görür et al., 2006]. Subjects are asked 'with whom they would prefer to spend an hour of conversation' given pairs from 9 celebrities (Rumelhart and Greeno 1971).

Celebredies have features z_{i},
2. Subjects form preferences based on the features.

Generative process:

- A binary feature matrix Z is selected,
- $w_{1}, \ldots, w_{k} \sim \mathcal{N}(1,1)$.

Latent feature models

Suppose s_{1}, \ldots, s_{K} are features, and $z_{i k}$ indicates if data item i has feature k.

$$
z_{i k}= \begin{cases}1 & \text { if data item } i \text { has feature } k, \tag{22}\\ 0 & \text { otherwise. }\end{cases}
$$

This is a popular situation in Bayesian statistics, for example the elimination by aspects choice model [Görür et al., 2006]. Subjects are asked 'with whom they would prefer to spend an hour of conversation' given pairs from 9 celebrities (Rumelhart and Greeno 1971).

1. Celebredies have features z_{i},
2. Subjects form preferences based on the features.

Generative process:

- A binary feature matrix Z is selected,

Latent feature models

Suppose s_{1}, \ldots, s_{K} are features, and $z_{i k}$ indicates if data item i has feature k.

$$
z_{i k}= \begin{cases}1 & \text { if data item } i \text { has feature } k, \tag{22}\\ 0 & \text { otherwise. }\end{cases}
$$

This is a popular situation in Bayesian statistics, for example the elimination by aspects choice model [Görür et al., 2006]. Subjects are asked 'with whom they would prefer to spend an hour of conversation' given pairs from 9 celebrities (Rumelhart and Greeno 1971).

1. Celebredies have features z_{i},
2. Subjects form preferences based on the features.

Generative process:

- A binary feature matrix Z is selected,

Latent feature models

Suppose s_{1}, \ldots, s_{K} are features, and $z_{i k}$ indicates if data item i has feature k.

$$
z_{i k}= \begin{cases}1 & \text { if data item } i \text { has feature } k, \tag{22}\\ 0 & \text { otherwise. }\end{cases}
$$

This is a popular situation in Bayesian statistics, for example the elimination by aspects choice model [Görür et al., 2006]. Subjects are asked 'with whom they would prefer to spend an hour of conversation' given pairs from 9 celebrities (Rumelhart and Greeno 1971).

1. Celebredies have features z_{i},
2. Subjects form preferences based on the features.

Generative process:

- A binary feature matrix Z is selected,
- $w_{1}, \ldots, w_{k} \sim \mathcal{N}(1,1)$.

$$
\begin{equation*}
\operatorname{Pr}(i \text { beats } j) \propto \sum_{k=1}^{K} w_{k} Z_{i}\left(s_{k}\right)\left(1-Z_{j}\left(s_{k}\right)\right. \tag{23}
\end{equation*}
$$

Prior for features

Let π_{k} be the prior probability of having feature s_{k}. If we assume the π_{k} are independent r.v.s, the posterior densities are:

$$
\begin{align*}
p\left(\pi_{k} \mid z_{1}, \ldots, z_{n}\right) & \propto p\left(z_{1}, \ldots, z_{n} \mid \pi_{k}\right) p\left(\pi_{k}\right) \tag{24}\\
& =\pi_{k}^{m_{k}}\left(1-\pi_{k}\right)^{n-m_{k}} p\left(\pi_{k}\right) \tag{25}
\end{align*}
$$

This is the same situation as for the hazard function, suggesting a beta prior for π_{k}.

Latent feature models

[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature s_{k} is $\pi_{k} \sim \operatorname{Beta}(\alpha / K, 1)$. The marginal probability of Z is:

$$
\begin{align*}
\operatorname{Pr}(Z) & =\prod_{k=1}^{K} \int_{0}^{1} \prod_{i=1}^{n} \operatorname{Pr}\left(z_{i k}=1 \mid \pi_{k}\right) p\left(\pi_{k}\right) d \pi_{k}, \tag{26}\\
& =\prod_{k=1}^{K} \alpha / K \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(n-m_{k}+1\right)}{\Gamma(n+1+\alpha / K)} . \tag{27}
\end{align*}
$$

Latent feature models

[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature s_{k} is $\pi_{k} \sim \operatorname{Beta}(\alpha / K, 1)$. The marginal probability of Z is:

$$
\begin{align*}
\operatorname{Pr}(Z) & =\prod_{k=1}^{K} \int_{0}^{1} \prod_{i=1}^{n} \operatorname{Pr}\left(z_{i k}=1 \mid \pi_{k}\right) p\left(\pi_{k}\right) d \pi_{k}, \tag{26}\\
& =\prod_{k=1}^{K} \alpha / K \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(n-m_{k}+1\right)}{\Gamma(n+1+\alpha / K)} . \tag{27}
\end{align*}
$$

As $K \rightarrow \infty$, the expected number of nonzero columns of Z is finite.

Latent feature models

[Griffiths and Ghahramani, 2005]

Assume the prior probability of having feature s_{k} is $\pi_{k} \sim \operatorname{Beta}(\alpha / K, 1)$. The marginal probability of Z is:

$$
\begin{align*}
\operatorname{Pr}(Z) & =\prod_{k=1}^{K} \int_{0}^{1} \prod_{i=1}^{n} \operatorname{Pr}\left(z_{i k}=1 \mid \pi_{k}\right) p\left(\pi_{k}\right) d \pi_{k}, \tag{26}\\
& =\prod_{k=1}^{K} \alpha / K \frac{\Gamma\left(m_{k}+\alpha / K\right) \Gamma\left(n-m_{k}+1\right)}{\Gamma(n+1+\alpha / K)} . \tag{27}
\end{align*}
$$

As $K \rightarrow \infty$, the expected number of nonzero columns of Z is finite.

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \operatorname{Pr}([Z])=\alpha^{K_{+}} \exp \left(-\alpha \sum_{i=1}^{n} 1 / i\right) \prod_{k=1}^{K_{+}} \frac{\left(n-m_{k}\right)!\left(m_{k}-1\right)!}{n!} \tag{28}
\end{equation*}
$$

Here, K^{+}is the number of nonzero columns.

The Indian buffet process

 [Griffiths and Ghahramani, 2005]n customers enter an Indian buffet in sequence.

- Customer 1 chooses Poisson (α) dishes.
- Customer $i>1$ picks a previously chosen dish with probability m_{k} / i and Poisson (α / i) new dishes. (m_{k} is the \# of customers who have already chosen dish k.)
The IBP is exchangeable and it induces a prior on binary matrices with
n rows and an arbitrary number of columns.
- Row i, column k indicates if customer i chose dish k.
- Columns are labelled with draws s_{k}.
- Posterior probability is:

The Indian buffet process

 [Griffiths and Ghahramani, 2005]n customers enter an Indian buffet in sequence.

- Customer 1 chooses Poisson (α) dishes.
- Customer $i>1$ picks a previously chosen dish with probability m_{k} / i and Poisson (α / i) new dishes. (m_{k} is the \# of customers who have already chosen dish k.)
The IBP is exchangeable and it induces a prior on binary matrices with n rows and an arbitrary number of columns.
- Columns are labelled with draws s_{k}.
- Posterior probability is:

The Indian buffet process

 [Griffiths and Ghahramani, 2005]n customers enter an Indian buffet in sequence.

- Customer 1 chooses Poisson (α) dishes.
- Customer $i>1$ picks a previously chosen dish with probability m_{k} / i and Poisson (α / i) new dishes. (m_{k} is the \# of customers who have already chosen dish k.)
The IBP is exchangeable and it induces a prior on binary matrices with n rows and an arbitrary number of columns.
- Row i, column k indicates if customer i chose dish k.
- Columns are labelled with draws s_{k}.
- Posterior probability is:

$$
\begin{equation*}
\alpha^{K} \exp \left(-\alpha \sum_{i=1}^{n} 1 / i\right) \prod_{i=1}^{K} \frac{\left(m_{k}-1\right)!\left(n-m_{k}\right)!}{n!} h\left(\theta_{k}^{*}\right) \tag{29}
\end{equation*}
$$

Applications to machine learning:

- Elimination by aspects choice model [Görür et al., 2006],
- Infinite ICA [Knowles and Ghahramani, 2007, Doshi et al., 2009].
- Latent feature relational model [Miller et al., 2009].
- Word frequency models [Teh and Görür, 2009].

Applications: infinite ICA

[Knowles and Ghahramani, 2007, Doshi et al., 2009] Given signals Y_{i}. Assume latent sources X are selected by a binary feature matrix, and then mixed by G.

$$
\begin{equation*}
Y_{i}=G\left(Z_{i} \odot X_{i}\right)+E \tag{30}
\end{equation*}
$$

- $Z \sim \operatorname{IBP}(c, \mu)$,

(a) Hinton diagram of the average mixing matrix, \mathbf{G}, for iICA_{2} applied to the financial dataset.

(b) Hinton diagram of the mixing matrix for FastICA (pow3) applied to the financial dataset.

Figure 16: Application to financial data set.

Applications: latent feature relational model [Miller et al., 2009]

Prior for directed graphs. Each vertex has a latent binary feature vector z_{i}. Probability of an edge between vertices is an inner product of the feature vectors passed through a sigmoid.

- $Z \sim \operatorname{IBP}(\alpha)$,
- $\operatorname{Pr}\left(e_{i j}=1\right)=\operatorname{sigmoid}\left(z_{i} B z_{j}^{T}\right)$.

	Countries single	Countries global	Alyawarra single	Alyawarra global
LFRM w/ IRM	0.8521 ± 0.0035	$\mathbf{0 . 8 7 7 2} \pm 0.0075$	0.9346 ± 0.0013	$\mathbf{0 . 9 1 8 3} \pm 0.0108$
LFRM rand	$\mathbf{0 . 8 5 2 9} \pm 0.0037$	0.7067 ± 0.0534	$\mathbf{0 . 9 4 4 3} \pm 0.0018$	0.7127 ± 0.030
IRM	0.8423 ± 0.0034	0.8500 ± 0.0033	0.9310 ± 0.0023	0.8943 ± 0.0300
MMSB	0.8212 ± 0.0032	0.8643 ± 0.0077	0.9005 ± 0.0022	0.9143 ± 0.0097

(a) True relations

(b) Feature predictions

(c) IRM predictions

(d) MMSB predictions

Language modelling [Teh and Görür, 2009].

Beta process conditionals[Thibaux and Jordan, 2007]

Let $A=\sum w_{k} \delta_{s k}$ be a beta process with base measure μ. If $\mu[0, \infty)=\alpha$, then $\mathbb{E}\left[\sum w_{k}\right]=\alpha<\infty$. This means, if we sample from Bernoulli distributions with weight w_{k} at each of the atoms of A, we will get a finite number of 1 s .

$z_{i k} \sim \operatorname{Bernoulli}\left(w_{k}\right)$.

Beta process conditionals[Thibaux and Jordan, 2007]

Let $A=\sum w_{k} \delta_{s k}$ be a beta process with base measure μ. If $\mu[0, \infty)=\alpha$, then $\mathbb{E}\left[\sum w_{k}\right]=\alpha<\infty$. This means, if we sample from Bernoulli distributions with weight w_{k} at each of the atoms of A, we will get a finite number of 1 s .

$$
\begin{align*}
A & =\sum_{k=1}^{\infty} w_{k} \delta_{s k} \tag{31}\\
z_{i} & =\sum_{k=1}^{\infty} z_{i k} \delta_{s k} \tag{32}\\
z_{i k} & \sim \operatorname{Bernoulli}\left(w_{k}\right) \tag{33}
\end{align*}
$$

Beta process conditionals

Beta process conditionals[Thibaux and Jordan, 2007]

$$
\begin{align*}
A & =\sum_{k=1}^{\infty} w_{k} \delta_{s k} \tag{34}\\
z_{i} & =\sum_{k=1}^{\infty} z_{i k} \delta_{s k} \tag{35}\\
z_{i k} & \sim \operatorname{Bernoulli}\left(w_{k}\right), i=1, \ldots, n \tag{36}
\end{align*}
$$

where $\left(s_{k}^{*}\right)=\left\{s_{k}: \exists i\right.$ s.t. $\left.z_{i k}=1\right\}$ and

$$
F_{n k} \sim \operatorname{Beta}\left(m_{k}, n-m_{k}+c\right)
$$

Beta process conditionals[Thibaux and Jordan, 2007]

$$
\begin{align*}
A & =\sum_{k=1}^{\infty} w_{k} \delta_{s k}, \tag{34}\\
Z_{i} & =\sum_{k=1}^{\infty} z_{i k} \delta_{s k}, \tag{35}\\
z_{i k} & \sim \operatorname{Bernoulli}\left(w_{k}\right), i=1, \ldots, n . \tag{36}
\end{align*}
$$

Then,

$$
\begin{equation*}
A \mid Z_{1}, \ldots, Z_{n}=\sum_{k=1}^{K} F_{n k} \delta_{s_{k}^{*}}+\sum_{k=1}^{\infty} w_{k}^{n} \delta_{s k} \tag{37}
\end{equation*}
$$

where $\left(s_{k}^{*}\right)=\left\{s_{k}: \exists i\right.$ s.t. $\left.z_{i k}=1\right\}$ and

$$
\begin{equation*}
F_{n k} \sim \operatorname{Beta}\left(m_{k}, n-m_{k}+c\right) \tag{38}
\end{equation*}
$$

And $\left(w_{k}^{n}, s_{k}\right)$ are drawn from a Poisson process with rate $c u^{-1}(1-u)^{n+c-1} d u \mu(d s)$.

Beta process conditionals [Thibaux and Jordan, 2007]

Furthermore, the conditional distribution of Z_{n+1} with A marginalized can be found as follows:

$$
\begin{align*}
z_{n+1} & =\sum_{k=1}^{K} z_{k}^{*} \delta_{s_{k}^{*}}+\sum_{k=1}^{\infty} z_{k}^{n} \delta_{s_{k}}, \tag{40}\\
z_{k}^{*} & \sim \operatorname{Bernoulli}\left(\frac{m_{k}}{n+1}\right), z_{k}^{n}=\operatorname{Bernoulli}\left(w_{k}^{n}\right) . \tag{41}
\end{align*}
$$

And as before $\left(w_{k}^{n}, s_{k}\right)$ are drawn from a Poisson process with rate $c u^{-1}(1-u)^{n+c-1} d u \mu(d s)$. So:

Beta process conditionals [Thibaux and Jordan, 2007]

Furthermore, the conditional distribution of Z_{n+1} with A marginalized can be found as follows:

$$
\begin{align*}
z_{n+1} & =\sum_{k=1}^{K} z_{k}^{*} \delta_{s_{k}^{*}}+\sum_{k=1}^{\infty} z_{k}^{n} \delta_{s_{k}}, \tag{40}\\
z_{k}^{*} & \sim \operatorname{Bernoulli}\left(\frac{m_{k}}{n+1}\right), z_{k}^{n}=\operatorname{Bernoulli}\left(w_{k}^{n}\right) . \tag{41}
\end{align*}
$$

And as before $\left(w_{k}^{n}, s_{k}\right)$ are drawn from a Poisson process with rate $c u^{-1}(1-u)^{n+c-1} d u \mu(d s)$. So:

$$
\begin{align*}
\sum_{k=1}^{\infty} z_{k}^{n} & =\int_{0}^{\infty} \int_{0}^{1} c u^{-1}(1-u)^{n+c-1} d u \mu(d s) \tag{42}\\
& =\frac{c}{c+n} \mu[0, \infty) \tag{43}
\end{align*}
$$

This is the link to the IBP.

Outline

Conjugate priors for survival analysis

Link to completely random measures

Indian buffet process

Applications to machine learning

References I

- Cox, D. R. (1972). Regression models and life tables. Journal of the Royal Statistical Society, Series B, 187(34).
- Doshi, F., Miller, K. T., Van Gael, J., and Teh, Y. W. (2009). Variational inference for the Indian buffet process. In JMLR Workshop and Conference Proceedings: AISTATS 2009, volume 5, pages 137-144.
- Görür, D., Jäkel, F., and Rasmussen, C. E. (2006). A choice model with infinitely many latent features. In Proceedings of the International Conference on Machine Learning, volume 23.
- Griffiths, T. L. and Ghahramani, Z. (2005). Infinite latent feature models and the indian Buffet process. Technical Report 001, Gatsby Computational Neuroscience Unit, UCL.
- Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3):1259-1294.
- Knowles, D. and Ghahramani, Z. (2007). Infinite sparse factor analysis and infinite independent components analysis. In International Conference on Independent Component Analysis and Signal Separation, volume 7 of Lecture Notes in Computer Science. Springer.
- Miller, K., Griffiths, T., and Jordan, M. (2009). Nonparametric latent feature models for link prediction. In Advances in neural information processing systems, volume 22.
- Teh, Y. W. and Görür, D. (2009). Indian buffet processes with power-law behavior. In Advances in Neural Information Processing Systems, volume 22, pages 1838-1846.
- Thibaux, R. and Jordan, M. I. (2007). Hierarchical beta processes and the Indian buffet process. In Proceedings of the International Workshop on Artificial Intelligence and Statistics, volume 11, pages 564-571.

