IUCI

Bayesian Nonparametrics

Yee Whye Teh
Gatsby Computational Neuroscience Unit, UCL

http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012

Bayesian Machine Learning

Probabilistic Machine Learning

- Machine Learning is all about data.
- Stochastic, chaotic and/or complex process
- Noisily observed
- Partially observed
- Probability theory is a rich language to express these uncertainties.
- Probabilistic models
- Graphical tool to visualize complex models for complex problems.
- Complex models can be built from simpler parts.
- Computational tools to derive algorithmic solutions.
- Separation of modelling questions from algorithmic questions.

Probabilistic Modelling

- Data: $x_{1}, x_{2}, \ldots, x_{n}$.
- Latent variables: $y_{1}, y_{2}, \ldots, y_{n}$.
- Parameter: θ.
- A probabilistic model is a parametrized joint distribution over variables.

$$
P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \mid \theta\right)
$$

- Typically interpreted as a generative model of data.
- Inference, of latent variables given observed data:

$$
P\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}, \theta\right)=\frac{P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \mid \theta\right)}{P\left(x_{1}, \ldots, x_{n} \mid \theta\right)}
$$

Probabilistic Modelling

- Learning, typically by maximum likelihood:

$$
\theta^{\mathrm{ML}}=\underset{\theta}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

- Prediction:

$$
P\left(x_{n+1}, y_{n+1} \mid x_{1}, \ldots, x_{n}, \theta\right)
$$

- Classification:

$$
\underset{c}{\operatorname{argmax}} P\left(x_{n+1} \mid \theta^{c}\right)
$$

- Visualization, interpretation, summarization.
- Standard algorithms: EM, junction tree, variational inference, MCMC...

Bayesian Modelling

- Prior distribution:

$$
P(\theta)
$$

- Posterior distribution (both inference and learning):

$$
P\left(y_{1}, \ldots, y_{n}, \theta \mid x_{1}, \ldots, x_{n}\right)=\frac{P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \mid \theta\right) P(\theta)}{P\left(x_{1}, \ldots, x_{n}\right)}
$$

- Prediction:

$$
P\left(x_{n+1} \mid x_{1}, \ldots, x_{n}\right)=\int P\left(x_{n+1} \mid \theta\right) P\left(\theta \mid x_{1}, \ldots, x_{n}\right) d \theta
$$

- Classification:

$$
P\left(x_{n+1} \mid x_{1}^{c}, \ldots, x_{n}^{c}\right)=\int P\left(x_{n+1} \mid \theta^{c}\right) P\left(\theta^{c} \mid x_{1}^{c}, \ldots, x_{n}^{c}\right) d \theta^{c}
$$

1

Bayesian Nonparametrics

Nonparametric Statistical Inference

- Draw inferences without making overly restrictive assumptions about underlying distribution.
- What is $\mathrm{E}_{\mu}[f]$?
- What is the q'th quantile of μ ?
- Given two distributions μ, ν, are they the same?
- Given two distributions, $X \sim \mu, Y \sim v$, is $\mathrm{P}(X>Y)>.5$?

Large Function/Distribution Spaces

- Large function/distribution spaces.

- More straightforward to infer the infinite-dimensional objects themselves.

Novel and Useful Properties

- Many interesting Bayesian nonparametric models with interesting and useful properties:
- Projectivity, exchangeability.
- Zipf, Heap and other power laws
(Pitman-Yor, 3-parameter IBP).
- Flexible ways of building complex models
(Hierarchical nonparametric models, dependent Dirichlet processes).

Model Selection and Averaging

- Model selection/averaging typically very expensive computationally.
- Used to prevent overfitting and underfitting.
- But a well-specified Bayesian model should not overfit anyway.
- By using a very large Bayesian model or one that grows with amount of data, we will not underfit either.

Structural Learning

- Learning structures.
- Bayesian prior over combinatorial structures.
- Nonparametric priors sometimes end up simpler than parametric priors.

Bayesian Nonparametrics

- What is Bayesian nonparametrics?
- Coverage: Bayesian modelling over large families of distributions.
- Rich prior: Prior assumptions made explicit. Flexible framework allowing for rich structures in prior.

Bayesian Nonparametrics

f*

Bayesian Nonparametrics
f*

Bayesian Nonparametrics

f*

Bayesian Nonparametrics

f*

Bayesian Nonparametrics

Are Nonparametric Models Nonparametric?

- Nonparametric just means not parametric: cannot be described by a fixed set of parameters.
- Nonparametric models still have parameters, they just have an infinite number of them.
- No free lunch: cannot learn from data unless you make assumptions.
- Nonparametric models still make modelling assumptions, they are just less constrained than the typical parametric models.
- Models can be nonparametric in one sense and parametric in another: semiparametric models.

Issues with Bayesian Nonparametrics

- Modelling:
- Classes of nonparametric priors suitable for modelling data.
- Algorithms:
- Efficiently compute the posterior.
- Theory:
- Asymptotic and finite sample guarantees for Bayesian nonparametrics.

Previous Tutorials and Reviews

- Tutorials: Mike Jordan NIPS 2005, Zoubin Ghahramani UAI 2005, Peter Orbanz MLSS 2009, Teh MLSS 2007, 2009, 2011, Orbanz \& Teh NIPS 2011.
- Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz \& Teh 2010, Gershman \& Blei 2011], hierarchical Bayesian nonparametric models [Teh \& Jordan 2010].
- Bayesian nonparametrics book [Hjort et al 2010].

Tiny Bit of Probability Theory

- A σ-algebra Σ is a family of subsets of a set Θ such that
- Σ is not empty;
- if $A \in \Sigma$ then $\Theta \backslash A \in \Sigma$;
- if $A_{1}, A_{2}, \ldots \in \Sigma$ then $\cup_{i} A_{i} \in \Sigma$.
- (Θ, Σ) is a measure space and $A \in \Sigma$ are the measurable sets.
- A measure μ over (Θ, Σ) is a function $\mu: \Sigma \rightarrow[0, \infty]$ such that
- $\mu(\varnothing)=0$;
- if $A_{1}, A_{2}, \ldots \in \Sigma$ are disjoint then $\mu\left(\cup_{i} A_{i}\right)=\Sigma_{i} \mu\left(A_{i}\right)$;
- a probability measure is one where $\mu(\Theta)=1$.
- Everything we consider here will be measurable.

Tiny Bit of Probability Theory

- Given two measure spaces (Θ, Σ) and (Δ, Φ) a function $f: \Theta \rightarrow \Delta$ is measurable if $f^{-1}(A) \in \Sigma$ for every $A \in \Phi$.
- If P is a probability measure on (Θ, Σ), a random variable X taking values in Δ is simply a measurable function $X: \Theta \rightarrow \Delta$.
- This of the probability space (Θ, Σ, P) as a black-box random number generator, and X as a fixed function taking random samples in Θ and producing random samples in Δ.
- The probability of an event $A \in \Phi$ is $P(X \in A)=P\left(X^{-1}(A)\right)$.
- A stochastic process is simply a collection of random variables $\left\{X_{i}\right\}_{i \in I}$ over the same measure space (Θ, Σ), where I is an index set.
- I can be an infinite (even uncountably infinite) set.

