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Bayesian Machine Learning



Probabilistic Machine Learning

• Machine Learning is all about data.

• Stochastic, chaotic and/or complex process

• Noisily observed

• Partially observed

• Probability theory is a rich language to express these uncertainties.

• Probabilistic models 

• Graphical tool to visualize complex models for complex problems.

• Complex models can be built from simpler parts.

• Computational tools to derive algorithmic solutions.

• Separation of modelling questions from algorithmic questions.



Probabilistic Modelling

• Data: x1,x2,....,xn.

• Latent variables: y1,y2,...,yn.

• Parameter: θ.

• A probabilistic model is a parametrized joint distribution over variables.

• Typically interpreted as a generative model of data.

• Inference, of latent variables given observed data:

P (y1, . . . , yn|x1, . . . , xn, θ) =
P (x1, . . . , xn, y1, . . . , yn|θ)

P (x1, . . . , xn|θ)

P (x1, . . . , xn, y1, . . . , yn|θ)



Probabilistic Modelling

• Learning, typically by maximum likelihood:

• Prediction:

• Classification:

• Visualization, interpretation, summarization.

• Standard algorithms: EM, junction tree, variational inference, MCMC...

P (xn+1, yn+1|x1, . . . , xn, θ)

argmax
c

P (xn+1|θc)

θML = argmax
θ

P (x1, . . . , xn|θ)



Bayesian Modelling

• Prior distribution:

• Posterior distribution (both inference and learning):

• Prediction:

• Classification:

P (θ)

P (y1, . . . , yn, θ|x1, . . . , xn) =
P (x1, . . . , xn, y1, . . . , yn|θ)P (θ)

P (x1, . . . , xn)

P (xn+1|xc
1, . . . , x

c
n) =

�
P (xn+1|θc)P (θc|xc

1, . . . , x
c
n)dθ

c

P (xn+1|x1, . . . , xn) =

�
P (xn+1|θ)P (θ|x1, . . . , xn)dθ



Bayesian Nonparametrics



Nonparametric Statistical Inference

• Draw inferences without making overly restrictive assumptions 
about underlying distribution.

• What is Eµ[f]?

• What is the q’th quantile of µ?

• Given two distributions µ, ν, are they the same?

• Given two distributions, X ~ µ, Y ~ ν, is P(X>Y)>.5? 

µ

i = 1 . . . n

xi



Large Function/Distribution Spaces

• Large function/distribution spaces.

• More straightforward to infer the 
infinite-dimensional objects themselves.
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Novel and Useful Properties

• Many interesting Bayesian nonparametric models with interesting and useful 
properties:

• Projectivity, exchangeability.

• Zipf, Heap and other power laws 

• (Pitman-Yor, 3-parameter IBP).

• Flexible ways of building complex models 

• (Hierarchical nonparametric models, dependent Dirichlet processes).



Model Selection and Averaging

• Model selection/averaging typically very expensive computationally.

• Used to prevent overfitting and underfitting.

• But a well-specified Bayesian model should not overfit anyway.

• By using a very large Bayesian model or one that grows with amount of data, 
we will not underfit either.



Structural Learning

• Learning structures.

• Bayesian prior over 
combinatorial structures.

• Nonparametric priors 
sometimes end up simpler 
than parametric priors.

duck
chicken

seal
dolphin
mouse

rat
squirrel

cat
cow

sheep
pig

deer
horse

tiger
lion

lettuce
cucumber

carrot
potato
radish
onions

tangerine
orange

grapefruit
lemon
apple
grape

strawberry
nectarine
pineapple

drill
clamp
pliers

scissors
chisel
axe

tomahawk
crowbar

screwdriver
wrenchhammer

sledgehammer
shovel
hoe
rake
yacht
ship

submarine
helicopter

train
jet
carvan

truck
bus

motorcycle
bike

wheelbarrow
tricycle
jeep[Adams et al 2010, Blundell et al 2010]



Bayesian Nonparametrics

• What is Bayesian nonparametrics?

• Coverage: Bayesian modelling over large families of distributions.

• Rich prior: Prior assumptions made explicit.  Flexible framework allowing 
for rich structures in prior.
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Are Nonparametric Models Nonparametric?

• Nonparametric just means not parametric: cannot be described by a fixed set 
of parameters.

• Nonparametric models still have parameters, they just have an infinite 
number of them.

• No free lunch: cannot learn from data unless you make assumptions.

• Nonparametric models still make modelling assumptions, they are just 
less constrained than the typical parametric models.

• Models can be nonparametric in one sense and parametric in another: 
semiparametric models.



Issues with Bayesian Nonparametrics

• Modelling: 

• Classes of nonparametric priors suitable for modelling data.

• Algorithms:

• Efficiently compute the posterior.

• Theory:

• Asymptotic and finite sample guarantees for Bayesian nonparametrics.



Previous Tutorials and Reviews

• Tutorials: Mike Jordan NIPS 2005, Zoubin Ghahramani UAI 2005, Peter 
Orbanz MLSS 2009, Teh MLSS 2007, 2009, 2011, Orbanz & Teh NIPS 2011.

• Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz & 
Teh 2010, Gershman & Blei 2011], hierarchical Bayesian nonparametric 
models [Teh & Jordan 2010].

• Bayesian nonparametrics book [Hjort et al 2010].



Tiny Bit of Probability Theory

• A σ-algebra Σ is a family of subsets of a set Θ such that

• Σ is not empty;

• if A ∈ Σ then Θ\A ∈ Σ;

• if A1,A2,... ∈ Σ then ∪iAi ∈ Σ.

• (Θ, Σ) is a measure space and A ∈ Σ are the measurable sets.

• A measure µ over (Θ, Σ) is a function µ : Σ →[0,∞] such that

• µ(∅) = 0;

• if A1, A2,... ∈ Σ are disjoint then µ(∪iAi) = Σi µ(Ai);

• a probability measure is one where µ(Θ) = 1.

• Everything we consider here will be measurable.



Tiny Bit of Probability Theory

• Given two measure spaces (Θ, Σ) and (Δ, Φ) a function f : Θ → Δ is 
measurable if f -1(A) ∈ Σ for every A ∈ Φ.

• If P is a probability measure on (Θ, Σ), a random variable X taking values in 
Δ is simply a measurable function X : Θ → Δ.

• This of the probability space (Θ, Σ, P) as a black-box random number 
generator, and X as a fixed function taking random samples in Θ and 
producing random samples in Δ.

• The probability of an event A ∈ Φ is P(X ∈ A) = P(X-1(A)).

• A stochastic process is simply a collection of random variables {Xi}i ∈ I over 
the same measure space (Θ, Σ), where I is an index set.

• I can be an infinite (even uncountably infinite) set.


