

Yee Whye Teh Gatsby Computational Neuroscience Unit, UCL

http://www.gatsby.ucl.ac.uk/~ywteh/teaching/npbayes2012

Bayesian Machine Learning

^aUCl

Probabilistic Machine Learning

- Machine Learning is all about data.
 - Stochastic, chaotic and/or complex process
 - Noisily observed
 - Partially observed
- **Probability theory** is a rich language to express these uncertainties.
 - Probabilistic models
- Graphical tool to visualize complex models for complex problems.
- Complex models can be built from simpler parts.
- Computational tools to derive algorithmic solutions.
- Separation of modelling questions from algorithmic questions.

UCI

Probabilistic Modelling

- Data: $x_1, x_2, ..., x_n$.
- Latent variables: y_1, y_2, \dots, y_n .
- Parameter: *θ*.
- A probabilistic model is a parametrized joint distribution over variables. $P(x_1, \ldots, x_n, y_1, \ldots, y_n | \theta)$
- Typically interpreted as a **generative model** of data.
- Inference, of latent variables given observed data:

$$P(y_1, \dots, y_n | x_1, \dots, x_n, \theta) = \frac{P(x_1, \dots, x_n, y_1, \dots, y_n | \theta)}{P(x_1, \dots, x_n | \theta)}$$

Probabilistic Modelling

• Learning, typically by maximum likelihood:

$$\theta^{\mathrm{ML}} = \operatorname*{argmax}_{\theta} P(x_1, \dots, x_n | \theta)$$

• Prediction:

$$P(x_{n+1}, y_{n+1} | x_1, \dots, x_n, \theta)$$

• Classification:

$$\operatorname*{argmax}_{c} P(x_{n+1}|\theta^c)$$

- Visualization, interpretation, summarization.
- Standard algorithms: EM, junction tree, variational inference, MCMC...

Bayesian Modelling

• Prior distribution:

 $P(\theta)$

• Posterior distribution (both inference and learning):

$$P(y_1,\ldots,y_n,\theta|x_1,\ldots,x_n) = \frac{P(x_1,\ldots,x_n,y_1,\ldots,y_n|\theta)P(\theta)}{P(x_1,\ldots,x_n)}$$

• Prediction:

$$P(x_{n+1}|x_1,\ldots,x_n) = \int P(x_{n+1}|\theta)P(\theta|x_1,\ldots,x_n)d\theta$$

• Classification:

$$P(x_{n+1}|x_1^c,\ldots,x_n^c) = \int P(x_{n+1}|\theta^c)P(\theta^c|x_1^c,\ldots,x_n^c)d\theta^c$$

Nonparametric Statistical Inference

- Draw inferences without making overly restrictive assumptions about underlying distribution.
 - What is $E_{\mu}[f]$?
 - What is the q'th quantile of μ ?
 - Given two distributions μ , v, are they the same?
 - Given two distributions, $X \sim \mu$, $Y \sim v$, is P(X > Y) > .5?

Large Function/Distribution Spaces

- Large function/distribution spaces.
- More straightforward to infer the infinite-dimensional objects themselves.

Novel and Useful Properties

- Many interesting Bayesian nonparametric models with interesting and useful properties:
 - Projectivity, exchangeability.
 - Zipf, Heap and other power laws (Pitman-Yor, 3-parameter IBP).
 - Flexible ways of building complex models

(Hierarchical nonparametric models, dependent Dirichlet processes).

Model Selection and Averaging

- Model selection/averaging typically very expensive computationally.
- Used to prevent overfitting and underfitting.
- But a well-specified Bayesian model should not overfit anyway.
- By using a very large Bayesian model or one that grows with amount of data, we will not underfit either.

Structural Learning

- Learning structures.
- Bayesian prior over combinatorial structures.
- Nonparametric priors sometimes end up simpler than parametric priors.

Q

- What is Bayesian nonparametrics?
 - Coverage: Bayesian modelling over large families of distributions.
 - Rich prior: Prior assumptions made explicit. Flexible framework allowing for rich structures in prior.

Are Nonparametric Models Nonparametric?

- Nonparametric just means *not parametric*: *cannot be described by a fixed set of parameters*.
 - Nonparametric models still have parameters, they just have an infinite number of them.
- No free lunch: cannot learn from data unless you make assumptions.
 - Nonparametric models still make modelling assumptions, they are just less constrained than the typical parametric models.
- Models can be nonparametric in one sense and parametric in another: **semiparametric** models.

Issues with Bayesian Nonparametrics

- Modelling:
 - Classes of nonparametric priors suitable for modelling data.
- Algorithms:
 - Efficiently compute the posterior.
- Theory:
 - Asymptotic and finite sample guarantees for Bayesian nonparametrics.

Previous Tutorials and Reviews

- Tutorials: Mike Jordan NIPS 2005, Zoubin Ghahramani UAI 2005, Peter Orbanz MLSS 2009, Teh MLSS 2007, 2009, 2011, Orbanz & Teh NIPS 2011.
- Introduction to Dirichlet process [Teh 2010], nonparametric Bayes [Orbanz & Teh 2010, Gershman & Blei 2011], hierarchical Bayesian nonparametric models [Teh & Jordan 2010].
- Bayesian nonparametrics book [Hjort et al 2010].

Tiny Bit of Probability Theory

- A σ -algebra Σ is a family of subsets of a set Θ such that
 - Σ is not empty;
 - if $A \in \Sigma$ then $\Theta \setminus A \in \Sigma$;
 - if $A_1, A_2, \ldots \in \Sigma$ then $\bigcup_i A_i \in \Sigma$.
- (Θ , Σ) is a **measure space** and $A \in \Sigma$ are the **measurable sets**.
- A measure μ over (Θ, Σ) is a function $\mu : \Sigma \to [0, \infty]$ such that
 - $\mu(\emptyset) = 0;$
 - if $A_1, A_2, \ldots \in \Sigma$ are disjoint then $\mu(\bigcup_i A_i) = \sum_i \mu(A_i)$;
 - a **probability measure** is one where $\mu(\Theta) = 1$.
- Everything we consider here will be measurable.

Tiny Bit of Probability Theory

- Given two measure spaces (Θ, Σ) and (Δ, Φ) a function $f: \Theta \to \Delta$ is **measurable** if $f^{-1}(A) \in \Sigma$ for every $A \in \Phi$.
- If *P* is a probability measure on (Θ, Σ) , a **random variable** *X* taking values in Δ is simply a measurable function $X : \Theta \to \Delta$.
 - This of the probability space (Θ, Σ, P) as a black-box random number generator, and X as a fixed function taking random samples in Θ and producing random samples in Δ .
 - The probability of an event $A \in \Phi$ is $P(X \in A) = P(X^{-1}(A))$.
- A stochastic process is simply a collection of random variables $\{X_i\}_{i \in I}$ over the same measure space (Θ, Σ) , where *I* is an index set.
 - *I* can be an infinite (even uncountably infinite) set.