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Some Examples of Parametric Models



Regression with Basis Functions

» Supervised learning of a function f* : X — Y from training data
{Xia ,Vi}/n:1 .

fe—




Regression with Basis Functions

» Assume a set of basis functions ¢1, ..., ¢x and parametrize a function:

K
= Widk(x)
k=1

Parameters w = {wy, ..., wk}.
» Find optimal parameters

2

Yi— ZL{:‘] Wk Pk (Xi)

yi— f(xi;w

n
= argmin

» We will be Bayesian in this lecture, so we need to rephrase using
probabilistic model with priors on parameters:
y,-\x,-,w: f(X,';W)-‘rE,' €] NN(O,UZ)
Wk ~ N(O7 7-2)

» Computer posterior p(wW|{x;, yi}).



Regression with Basis Functions

K
foxaw) = wo(x)
pa

» What basis functions to use?
» How many basis functions to use?

» Do we really believe that the true f*(x) can be expressed as
f*(x) = f(x; w*) for some w*?

¢ ~ N(0,0°)

» Do we believe the noise process is Gaussian?



Density Estimation with Mixture Models

» Unsupervised learning of a density f*(x) from training samples {x;}.

v

Perhaps use an exponential family distribution, e.g. Gaussian?
N (X, T) = [27E] "2 exp (=3 (x — ) T= 7" (x — )

Unimodal, restrictive shape, light tail...

v

Use a mixture model instead,

K
f(x) = mkN(X; ik, k)

k=1

v

Do we believe that the true density is a mixture of K components?

v

How many mixture components to use?



Latent Variable Modelling

» Say we have n vector observations xi, ..., X,.

» Model each observation as a linear combination of K latent sources:
K
X =Y MYk + €i
k=1

Yik: activity of source k in datum i.
Ak basis vector describing effect of source k.

» Examples include principle components analysis, factor analysis,
independent components analysis.

» How many sources are there?
» Do we believe that K sources is sufficient to explain all our data?

» What prior distribution should we use for sources?



Topic Modelling with Latent Dirichlet Allocation

» Infer topics from a document corpus, topics
being sets of words that tend to co-occur

together.
» Using (Bayesian) latent Dirichlet allocation:

7 ~ Dirichlet(%, ..., 2)

0« ~ Dirichlet({y, ..., %)
Zjj|mj ~ Multinomial(7r;)
Xii| Zji, 0z, ~ Multinomial(6,)

94_

= @
words i=1...nd topics k=1..K

» How many topics can we find from the document (=1..D
corpus?

©
<
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Bayesian Nonparametric Modelling



Modelling Data

» Models are almost never correct for real world data.
» How do we deal with model misfit?

» Quantify closeness to true model, and optimality of fitted model;
» Model selection or averaging;
» Increase the flexibility of your model class.

» Bayesian nonparametrics are good solutions from the second and third
perspectives.



Model Selection and Model Averaging

> Data x = {xq,%2,...,Xp}.
» Model My parametrized by 6, for k =1,2,....

» Marginal likelihood:
p(xMy) = [ Pl Mp(6i. M)t

» Model selection and averaging:

P(K)p(Ok| Mk )p(X|0k, My)
M = argmax p(x|Mx) or Kk, 0k|x) =
gmax px|M) - or - U OkX) = 5= % 40 ot M Yol M)

» Model selection and averaging is to prevent overfitting and underfitting,
and are usually expense to compute.

» But reasonable and proper Bayesian methods should not overfit anyway
[Rasmussen and Ghahramani 2001].



Nonparametric Modelling

» What is a nonparametric model?

» A parametric model where the number of parameters increases
with data;

» Areally large parametric model;

» A model over infinite dimensional function or measure spaces.

» A family of distributions that is dense in some large space.

» Why nonparametric models in Bayesian theory of learning?

» broad class of priors that allows data to “speak for itself”;
» side-step model selection and averaging.

» How do we deal with the very large parameter spaces?

» Marginalize out all but a finite number of parameters;
» Define infinite space implicitly (akin to the kernel trick) using either
Kolmogorov Consistency Theorem or de Finetti’s Theorem.



Gaussian Processes

» A Gaussian process (GP) is a random function f : X — R such that for

any finite set of input points x, ..., Xp,
f(x1) m(xy) c(x1,x1) ... c(x1,Xn)
LN S : : :
f(Xn) m(xn) c(Xn, X1) ... C(Xn,Xn)

where the parameters are the mean function m(x) and covariance
kernel c(x, y).

» Note: a random function f is a stochastic process. It is a collection of
random variables {f(x)}xex one for each possible input value x.

» Can also be expressed as

K
f(x) =) wkok(x) as K — o
=

[Rasmussen and Williams 2006]



Posterior and Predictive Distributions

» How do we compute the posterior and predictive distributions?
» Training set (x1, y1), (X2, ¥2), - .., (Xn, ¥n) and test input X, 1.

» Out of the (uncountably infinitely) many random variables {f(x)}xex
making up the GP only n+ 1 has to do with the data:

f(X1)7 f(Xg)7 ey f(Xn+1)

» Training data gives observations f(x1) = y1,...,f(Xn) = ¥n. The
predictive distribution of f(x,.1) is simply

P(f(xni1)lf(x1) = y1, ... 1(Xn) = ¥n)
which is easy to compute since f(x1),. .., f(X,11) is Gaussian.

» This can be generalized to noisy observations y; = f(x;) + ¢; or non-linear
effects y; ~ D(f(x;)) where D(#) is a distribution parametrized by 6.



Consistency and Existence

» The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

» Fortunately these marginal distributions are consistent.

» For every finite set x C X we have a distinct distribution
pPx([f(x)]xex)- These distributions are said to be consistent if

Px([F(X)lxex) = / Pxuy ([F(X)Lxexuy ) Alf(X)]xey

for disjoint and finite x,y C X.
» The marginal distributions for the GP are consistent because
Gaussians are closed under marginalization.

» The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f(x)}xex-

» Further information in Peter Orbanz’ lectures.
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Bayesian Mixture Models

> Let’s be Bayesian about mixture models, and place
priors over our parameters (and to compute
posteriors).

» First, introduce variable z; indicator which
component x; belongs to.

Zj|m ~ Multinomial()
Xi|zi = Kk, p, X ~ N (pk, Xk)

» Second, introduce conjugate priors for parameters:

m ~ Dirichlet(%,..., %)
Ik, Yk~H= N-ZW(O, S, d, ¢)

[Rasmussen 2000]




Gibbs Sampling for Bayesian Mixture Models

» All conditional distributions are simple to compute:

,D(Z,‘ = k|others) X ﬂkN(X,'; Ik, Zk)

m|z ~ Dirichlet(% + ni(2), ..., % + nk(z))
uk, Zg|others ~ N-IW(/', s, d’, d')
v

> Not as efficient as collapsed Gibbs sampling which

integrates out 7, u, X: ?

o n(z_;
p(z; = k|others) o<'<+7k(’)><

a+n-—1 @/
p(xil{x = i # i,z = k}) ,,

» Demo: fm_demointeractive.



Infinite Bayesian Mixture Models

> We will take K — oc.
> Imagine a very large value of K.

» There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:

QJrn Z .
p(z; = k|others) m%p(ﬂxk N
Empty clusters:
) Q%
p(Zi = Kempty|2™') “mp(’(i\{})

» Demo: dpm_demointeractive.




Infinite Bayesian Mixture Models

> We will take K — oc.
> Imagine a very large value of K.

» There are at most n < K occupied components, so
most components are empty. We can lump these
empty components together:

Occupied clusters:
nk(z_,-)

p(xilx;")

Empty clusters:

(xil{})

. «
p(z,- = empty|z I) fxmp

» Demo: dpm_demointeractive.




Infinite Bayesian Mixture Models

> The actual infinite limit of finite mixture models does not make sense:
any particular component will get a mixing proportion of 0.

» In the Gibbs sampler we bypassed this by lumping empty clusters
together.

» Other better ways of making this infinite limit precise:

» Look at the prior clustering structure induced by the Dirichlet prior
over mixing proportions—Chinese restaurant process.

» Re-order components so that those with larger mixing proportions
tend to occur first, before taking the infinite limit—stick-breaking
construction.

» Both are different views of the Dirichlet process (DP).
» DPs can be thought of as infinite dimensional Dirichlet distributions.

» The K — oo Gibbs sampler is for DP mixture models.
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Dirichlet Processes
Measure Theoretic Probability Theory
Representations of Dirichlet Processes



A Tiny Bit of Measure Theoretic Probability Theory

> A o-algebra ¥ is a family of subsets of a set © such that

» Y is not empty;
» fAec X then©\Ae X;
> If Ay, Az,... € X then U A € .

> (©,Y)is a measure space and A € ¥ are the measurable sets.

> A measure 1 over (©,%) is a function p : ¥ — [0, o] such that

1(0) = 0;

If A, Az, ... € X are disjoint then p(UX,A) = Y7 1(A).
Everything we consider here will be measurable.

A probability measure is one where ;(©) = 1.

vV vyVvyy

» Given two measure spaces (©,%) and (A, ®), afunction f: © — A'is
measurable if f~1(A) € ¥ for every A € ®.



A Tiny Bit of Measure Theoretic Probability Theory

> If pis a probability measure on (©, X), a random variable X taking
values in A is simply a measurable function X : © — A.

» Think of the probability space (0, ¥, p) as a black-box random
number generator, and X as a function taking random samples in ©
and producing random samples in A.

» The probability of an event A € ® is p(X € A) = p(X~'(A)).

» A stochastic process is simply a collection of random variables {X;};c1
over the same measure space (0, ¥), where I is an index set.

» What distinguishes a stochastic process from, say, a graphical
model is that T can be infinite, even uncountably so.

» This raises issues of how do you even define them and how do you
ensure that they can even existence (mathematically speaking).

» Stochastic processes form the core of many Bayesian nonparametric
models.

» Gaussian processes, Poisson processes, gamma processes,
Dirichlet processes, beta processes...



Dirichlet Distributions

» A Dirichlet distribution is a distribution over the K-dimensional probability
simplex:
Ak ={(m1,...,7Kk) : Tk > 0,>, Tk =1}

» We say (71, ..., k) is Dirichlet distributed,
(71’17. .. ,7TK) ~ Dirichlet()m. .. ,/\K)

with parameters (A1, ..., \k), if

r(2:/()%) - 77”\"_1
HkF(Ak)E K

» Equivalent to normalizing a set of independent gamma variables:

p(ms, ... mk) =

(71-1"--77TK): ﬁ(Vh--w’YK)

vk ~ Gamma( k) fork=1,....K



Dirichlet Distributions

DIf1.01.0.1.0)

Dir5.05.020)

DIr202020)

DIr502020)

Dir5.05050)

0i(07.0707)



Dirichlet Processes

» A Dirichlet Process (DP) is a random probability measure G over (©,Y)
such that for any finite set of measurable partitions A;U...UAx = ©,
(G(A1),...,G(Ak)) ~ Dirichlet(A(A1), ..., A(Ak))

where )\ is a base measure.

A

A

» The above family of distributions is consistent (next slide), and
Kolmogorov Consistency Theorem can be applied to show existence (but
there are technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]



Consistency of Dirichlet Marginals

» If we have two partitions (As,...,Ax) and (B, ..., By) of ©, how do we
see if the two Dirichlets are consistent?

» Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (4, ..., /;) is a partition of (1,..., K),

(Zieh Ty, Ziel/m) ~ Dirichlet (Z,E,1 Ais s 2iey, Ai)




Consistency of Dirichlet Marginals

» Form the common refinement (Cy, ..., C;) where each C; is the
intersection of some A, with some B;. Then:

By definition, (G(Cy), ..., G(C.)) ~ Dirichlet(A(Cy), ..., A(CL))
(G(A1),- .. G(AK)) = (Xg,ca, G(Cr). - 3o, cn, G(CY))
~ Dirichlet(A(A1), ..., A(Ak))
Similarly, (G(B1), ..., G(B,)) ~ Dirichlet(A(B1), ..., A(B)))
so the distributions of (G(A+), ..., G(Ak)) and (G(By),...,G(B,)) are
consistent.
» Demonstration: DPgenerate.



Parameters of Dirichlet Processes

» Usually we split the A\ base measure into two parameters A = aH:

» Base distribution H, which is like the mean of the DP.
» Strength parameter «, which is like an inverse-variance of the DP.

> We write:
G ~ DP(a, H)
if for any partition (Aq, ..., Ak) of ©:
(G(A1),...,G(Ak)) ~ Dirichlet(aH(A+), ..., aH(Ak))

» The first and second moments of the DP:
Expectation: E[G(A)] = H(A)
Variance: VIG(A)] = w

where A is any measurable subset of ©.



Representations of Dirichlet Processes

» Draws from Dirichlet processes will always place all their mass on a
countable set of points:
o0
G= D my;
k=1

where )", 7 =1 and 6; € ©.
» What is the joint distribution over 7y, 7, ... and 65,605,...?

» Since G is a (random) probability measure over ©, we can treat it as a
distribution and draw samples from it. Let

01,0,...~ G

be random variables with distribution G.

» What is the marginal distribution of 61, 65, . .. with G integrated out?

» There is positive probability that sets of §;’s can take on the same
value 0} for some k, i.e. the 0;’s cluster together. How do these
clusters look like?

» For practical modelling purposes this is sufficient. But is this
sufficient to tell us all about G?



Stick-breaking Construction

0; ~ H

k—1
Tk = Vg H(1 — V,')
i=1

vk ~ Beta(1, o)

G = Z 7Tk59;
k=1

» There is a simple construction giving the joint distribution of 7y, 7o, . ..
and 67,63, ... called the stick-breaking construction.

Tls)

)

l®)

T2

> Also known as the GEM distribution, write = ~ GEM(«).

[Sethuraman 1994]

Ty



Pélya Urn Scheme

|

01,02,...~G

The marginal distribution of 01,65, ... has a simple generative process
called the Pdlya urn scheme.

oH + Y75 6,

Onl01.0—1 ~ p—

Picking balls of different colors from an urn:

» Start with no balls in the urn.

» with probability o o, draw 6, ~ H, and add a ball of color 6, into urn.

» With probability o« n — 1, pick a ball at random from the urn, record
0, to be its color and return two balls of color 6, into urn.

Pélya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.

Also known as the Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Chinese Restaurant Process

> 01,...,0, take on K < ndistinct values, say 07, ..., 0.

> This defines a partition of (1,..., n) into K clusters, such that if / is in
cluster k, then 0; = 0;.

» The distribution over partitions is a Chinese restaurant process (CRP).
» Generating from the CRP:

» First customer sits at the first table.
» Customer n sits at:
» Table k with probability _-"“— where ny is the number of customers
at table k.
> Anew table K + 1 with probability 7.

» Customers < integers, tables < clusters.

OO00000




Chinese Restaurant Process

a=30, d=0

200

1507

50,

TG T e T v

0 200 4000 6000 8000 10000
customer

» The CRP exhibits the clustering property of the DP.

» Rich-gets-richer effect implies small number of large clusters.
» Expected number of clusters is K = O(« log n).



Posterior of Dirichlet Processes

» Since G is a probability measure, we can draw samples from it,

G ~ DP(a, H)
01,...,0,G~ G
What is the posterior of G given observations of 64,...,60,7

» The usual Dirichlet-multinomial conjugacy carries over to the
nonparametric DP as well:

G|91,...,9nNDP(a+n’M)

a+n



Exchangeability

» Instead of deriving the Pélya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

oH + Y7 6,
On|01:n—1 ~ Tatn_1
» For any n, the joint distribution of 44, ..., 6, is:
K K *
Q@ L h(05)(mp, — 1)!
p(917~-~:9n): Hk_fl ( k)( n )
[loi—1+a
where h(0) is density of 6 under H, 05, ..., 0} are the unique values, and
05 occurred myx times among 64, ..., 0.
» The joint distribution is exchangeable wrt permutations of 04, ..., 6.

» De Finetti’s Theorem says that there must be a random probability
measure G making 61, 6,, ... iid. This is the DP.



De Finetti’'s Theorem
Let64,02,... be an infinite sequence of random variables with joint
distribution p. If for all n > 1, and all permutations o € ¥, on n objects,

p(91,‘ .. ,9,7) = p(90(1), .. .,90(,7))

That is, the sequence is infinitely exchangeable. Then there exists a latent
random parameter G such that:

P01, 0 /p p(6G)dG

where p is a joint distribution over G and 6;’s.
> 0;'s are independent given G.
» Sufficient to define G through the conditionals p(6,|01,...,0,-1).
» G can be infinite dimensional (indeed it is often a random measure).

» The set of infinitely exchangeable sequences is convex and it is an
important theoretical topic to study the set of extremal points.

> Partial exchangeability: Markov, group, arrays,...
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Binary Latent Variable Models

» Consider a latent variable model with binary sources/features,

i 1 with probability juk;
““ Y0 with probability 1 — s

» Example: Data items could be movies like “Terminator 2”, “Shrek” and
“Lord of the Rings”, and features could be “science fiction”, “fantasy”,
“action” and “Arnold Schwarzenegger”.

> Place beta prior over the probabilities of features:

pk ~ Beta(%, 1)

> We will again take K — oc.



Indian Buffet Processes

» The Indian Buffet Process (IBP) is akin to the Chinese restaurant
process but describes each customer with a binary vector instead of
cluster.

» Generating from an IBP:

>

Parameter a.

» First customer picks Poisson(«) dishes to eat.
» Subsequent customer i picks dish k with probability T%; and picks
Poisson(%) new dishes.

<— Customers

Tables —

<— Customers

Dishes —>




Indian Buffet Processes and Exchangeability

» The IBP is infinitely exchangeable. For this to make sense, we need to
“forget” the ordering of the dishes.

» “Name” each dish k with a A drawn iid from H.
» Each customer now eats a set of dishes: V; = {A, : zx = 1}.
» The joint probability of W4, ..., W, can be calculated:

n K
(V.. V) = oxp <QZ1;> KM= D= mat
i=1

n!
k=1

K: total number of dishes tried by n customers.
Aj: Name of kth dish tried.
my: number of customers who tried dish Aj.

» De Finetti’'s Theorem again states that there is some random measure
underlying the IBP.

» This random measure is the beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

> A beta process B ~ BP(c, aH) is a random discrete measure with form:

B=Y by
pa

where the points P = {(07, 1u1), (65, 112), . . .} are spikes in a 2D Poisson
process with rate measure:

cu™ (1 — p)° " duaH(d)
> The beta process with ¢ = 1 is the de Finetti measure for the IBP. When
¢ # 1 we have a two parameter generalization of the IBP.
» This is an example of a completely random measure.

> A beta process does not have Beta distributed marginals.

[Hjort 1990, Ghahramani et al. 2007]



Stick-breaking Construction for Beta Processes

» When ¢ = 1 it was shown that the following generates a draw of B:

k—1
vk ~ Beta(1, a) pe=(1-v) [T = w) 0 ~ H

i=1
o0

B =D ko
k=1

» The above is the complement of the stick-breaking construction for DPs!

Tl2)

Tl
e Tl

[Teh et al. 2007]



Applications of Indian Buffet Processes

|

The IBP can be used in concert with different likelihood models in a
variety of applications.

Z ~ IBP(a) X ~ F(Z,Y)
p(Z, Y)p(X|Z,Y)
p(X)

Y ~H p(Z,Y|X) =

Latent factor models for distributed representation [Griffiths and
Ghahramani 2005].

Matrix factorization for collaborative filtering [Meeds et al 2007].
Latent causal discovery for medical diagnostics [Wood et al 2006].
Protein complex discovery [Chu et al 2006].

Psychological choice behaviour [Gériir and Rasmussen 2006].

Independent Components Analysis [Knowles and Ghahramani 2007].



Infinite Independent Components Analysis

» Each image X; is a linear combination of sparse features:
Xi = MY
k

where yj is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

Yik = Zik@ik ax ~N(0,1) Z ~ IBP(«)

» An ICA model with infinite number of features.

[Knowles and Ghahramani 2007]
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Topic Modelling with Latent Dirichlet Allocation

» Infer topics from a document corpus, topics
being sets of words that tend to co-occur
together.

» Using (Bayesian) latent Dirichlet allocation:
m; ~ Dirichlet(%, ..., %)
0« ~ Dirichlet({y, ..., %)
Zjj|mj ~ Multinomial(r;)
Xii| Zji, 0z, ~ Multinomial(6_,)

» Can we take K — 00?

!
)

©

Lji =

words i=1...nd

@

topics k=1...K

document j=1...D




Hierarchical Dirichlet Processes

VA . .
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Hierarchical Dirichlet Processes

» Use a DP mixture for each group.

G, Go

» Unfortunately there is no sharing of clusters
across different groups because H is smooth.

» Solution: make the base distribution H discrete.

» Put a DP prior on the common base distribution.

[Teh et al. 2006]

©

Q)

&

&




Hierarchical Dirichlet Processes

» A hierarchical Dirichlet process:

Gp ~ DP(«, H)
G1, Gz|Go ~ DP(O[, Go) iid

> Extension to larger hierarchies is straightforward.

©

Q)

&

&




Hierarchical Dirichlet Processes

» Making Gy discrete forces shared cluster between Gy and Go.

Go

Go




Hierarchical Dirichlet Processes

» Document topic modelling:

» Allows documents to be modelled with DP mixtures of topics, with
topics shared across corpora.

» Infinite hidden Markov modelling:

» Allows HMMs with an infinite number of states, with transitions from
each allowable state to every other allowable state.

» Learning discrete structures from data:

» Determining number of objects, nonterminals, states etc.



Infinite Hidden Markov Models

et o= ==
@ @ cocs @

B~ GEM(y) 7B ~DP(a,B) zi|zi1, 74, ~ Multinomial(m_.)
Oy ~H Xi|zi, 03 ~ F(03)

» Hidden Markov models with an infinite number of states.

» Hierarchical DPs used to share information among transition probability
vectors prevents “run-away” states.

[Beal et al. 2002, Teh et al. 2006]



Hierarchical Modelling

RIE)E

i=1..n1 i=1...n2 i=1...n3

> Better estimation of parameters.

» Multitask learning, learning to learn: generalizing across related tasks.



Hierarchical Modelling

&)
&
S

RIE)E

i=1..n1 i=1...n2 i=1...n3

> Better estimation of parameters.

» Multitask learning, learning to learn: generalizing across related tasks.
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Pitman-Yor Processes

» Two-parameter generalization of the Chinese restaurant process:

n—5_if occupied table
customer n sat at table k|past) = { " '1¢
A past) { tBKif new table

» Associating each cluster k with a unique draw ¢; ~ H, the
corresponding Pdélya urn scheme is also exchangeable.

» De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

» This is the Pitman-Yor process.
» The Pitman-Yor process also has a stick-breaking construction:

k—1 o)
me=v [[(1=v) Bk~Beta(l —B,a+pBk) bi~H G=) mdy;
i=1 k=1

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

» Two salient features of the Pitman-Yor process:

» With more occupied tables, the chance of even more tables
becomes higher.

» Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

» The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(an®).
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Pitman-Yor Processes

Draw from a Pitman-Yor process

a=1,d=5 a=1,d=5
a=1,d=5 1o 10%
" "
o 10 10
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Draw from a Dirichlet process
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Hierarchical Pitman-Yor Language Models

> Pitman-Yor processes can be suitable models for many natural
phenomena with power-law statistics.
» Language modelling with Markov assumption:

p(Mary has a little lamb)
~p(Mary)p(has|Mary)p(a|Mary has)p(little|has a)p(lamb|a little)

» Parameterize with p(ws|wq, wo) = Gy, w,[Ws] and use a hierarchical
Pitman-Yor process prior:

GW1,W2|GW2 ~ PY(OCZaﬂZa Gwz)
Gw, |Gy ~ PY (a1, 1, Gp)
G@|U ~ PY(O&mﬁo, U)

» State-of-the-art results, connection to Kneser-Ney smoothing.

[Goldwater et al. 2006a, Teh 2006b]



Image Segmentation with Pitman-Yor Processes

— Segment Labels| — Segment Areas|
——PY(0.39,3.70) ~PY(0.02,2.20)
— —~ DP(2.40)
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» Human segmentations of images also seem to follow power-law.

» An unsupervised image segmentation model based on dependent
hierarchical Pitman-Yor processes achieves state-of-the-art results.

[Sudderth and Jordan 2009]
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Summary

» Motivation for Bayesian nonparametrics:

» Allows practitioners to define and work with models with large
support, sidesteps model selection.

» New models with useful properties.

» Large variety of applications.

» Various standard Bayesian nonparametric models:

Dirichlet processes

Hierarchical Dirichlet processes
Infinite hidden Markov models
Indian buffet and beta processes
Pitman-Yor processes

vV vy vy VvYyy

» Touched upon two important theoretical tools:

» Consistency and Kolmogorov’s Consistency Theorem
» Exchangeability and de Finetti’'s Theorem

» Described a number of applications of Bayesian nonparametrics.

» Missing: Inference methods based on MCMC, variational etc,
consistency and convergence.



Other Introductions to Bayesian Nonparametrics

v

Zoubin Gharamani, UAI 2005 Tutorial.
Michael Jordan, NIPS 2005 Tutorial.

v

v

Volker Tresp, ICML nonparametric Bayes workshop 2006.

v

Peter Orbanz, Foundations of Nonparametric Bayesian Methods, 2009.

v

| have given a number myself (check webpage).

v

I have an introduction to Dirichlet processes [Teh 2007], and another to
hierarchical Bayesian nonparametric models [Teh and Jordan 2009].



Bayesian Nonparametric Software

» Hierarchical Bayesian Compiler (HBC). Hal Daume III.
http://www.cs.utah.edu/ hal/HBC/

» DPpackage. Alejandro Jara.
http://cran.r-project.org/web/packages/DPpackage/index.html

» Hierarchical Pitman Yor Language Model. Songfang Huang.
http://homepages.inf.ed.ac.uk/s0562315/progs/index.html

» Nonparametric Bayesian Mixture Models. Yee Whye Teh.
http://www.gatsby.ucl.ac.uk/ ywteh/research/software.html

» Others...
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Relating Different Representations of Dirichlet Processes



Representations of Dirichlet Processes
» Posterior Dirichlet process:

G~DP(H) 0~H
|G~ G G|9~DP<a+1,“H+‘59>

a-+1

» Polya urn scheme:

0,10 oH + Y7 6y,
n|Y1:n—1 Oé—|—n—1

» Chinese restaurant process:

——  if occupied table
customer n sat at table k|past) = ¢ "'+«
p( Ipast) { a if new table

n71‘+a
» Stick-breaking construction:
k—1

=0 [J(1=8) Bk~Beta(l,0) Oi~H G=> mdy

i=1 k=1



Posterior Dirichlet Processes

» Suppose G is DP distributed, and 6 is G distributed:

G ~ DP(a, H)
|G ~ G

» We are interested in:

» The marginal distribution of § with G integrated out.
» The posterior distribution of G conditioning on 6.



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

» Consider:
(71'1 s 77TK) ~ Dirichlet(a1 yeeey aK)
z|(m1,...,mk) ~ Discrete(m,...,7k)
z is a multinomial variate, taking on value i € {1, ..., n} with probability
.
> Then:

z ~ Discrete (Eﬁu" o %)
(7T1 e ,WK)‘Z ~ Dirichlet(a1 + 01 (Z), Lo, F (5K(Z))

where 0;(z) = 1 if z takes on value /, 0 otherwise.

» Converse also true.



Posterior Dirichlet Processes
> Fix a partition (A+,...,Ak) of ©. Then

(G(A1),. .., G(Ax)) ~ Dirichlet(aH(A+), .. ., aH(Ax))
P(6 € A|G) = G(A)

» Using Dirichlet-multinomial conjugacy,
P(9 S A,‘) = H(A,)
(G(A1),...,G(Ak))|0 ~ Dirichlet(aH(A1)+dg(A1), ..., aH(Ak)+09(Ak))

» The above is true for every finite partition of ©. In particular, taking a
really fine partition,

p(df) = H(db)
i.e. § ~ H with G integrated out.
» Also, the posterior G|f is also a Dirichlet process:

04H+(59>

G|9~DP(a+1,
a+1



Posterior Dirichlet Processes

G~DP(aH) 0~H
0|G~ G G|o ~ DP (a+1 aH+5e)

Y a1



Pélya Urn Scheme

» First sample:
011G~ G

— 01 ~H

» Second sample:
92‘917 G~G

aH+6¢
— 92|91 ~ 1

» n" sample
9n|91:n—1 ) G~G

aH+3217" 6,

— On|01:n—1 ~ P

G ~ DP(a, H)
G|y ~ DP(a+1,

Gl6s ~ DP(a +1,
G|91 ,0o ~ DP(O& + 2,

6‘91;,7_1 ~ DP(a +n-1,

Gl61.n ~ DP(a + n,

aH+691
a+1 )

0(H+($g1 )
a+1

aH+5g1 +5@2

a2

a—+n

)

aH+317" 6y,
a+n—1
aH+377 1 O,

)

)



Stick-breaking Construction
» Returning to the posterior process:
G ~ DP(a, H) 0~H
&
0|G ~ G G|0 ~ DP(ar + 1, 200

' a1

» Consider a partition (6, ©\0) of ©. We have:

(G(6), G(©\0))|6 ~ Dirichlet((a + 1)2252(9), (a + 1) 222 (©\0))
= Dirichlet(1, «)

» G has a point mass located at 6:
G=p5%+1-p8)G with 8 ~ Beta(1, «)

and G’ is the (renormalized) probability measure with the point mass
removed.

» Whatis G'?



Stick-breaking Construction

> Currently, we have:

O ~H
G ~ DP(a, H) N Gl0 ~ DP(a + 1, 2500 )
0~G G=pdy+(1-5)G

g8 ~ Beta(1, )

» Consider a further partition (6, Ay, ..., Ax) of ©:
(G(9), G(A1),...,G(AK))

=(8,(1 = B)G'(A1),....(1 = B)G'(Ak))
~ Dirichlet(1, aH(Ar), . . ., aH(Ax))

» The agglomerative/decimative property of Dirichlet implies:
(G'(A1),...,G(Ak))|0 ~ Dirichlet(aH(A1),...,aH(Ak))
G' ~ DP(a, H)



Stick-breaking Construction

» We have:

where

G ~ DP(a, H)

G = B1do; + (1 — B1)Gi

G = B1de; + (1 — B1)(B200; + (1 — 52)G2)

G == Z 7Tk59;
k=1

m= G115 (1 - 6)

Bk ~ Beta(1,a)

T2

Tlo

.| Tls)

Tl

Tl

0; ~ H
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Representations of Hierarchical Dirichlet Processes



Stick-breaking Construction

» We shall assume the following HDP hierarchy:

GO ~ DP(’Yv H)
Gj|Go ~ DP(a, Gg) forj=1,...,J

» The stick-breaking construction for the HDP is:
Gy = ZIC;O:1 7T0k59; 0x ~H
mok = Bok [T/ (1 — Bo)) ~ Bo ~ Beta (1,7)
Gj = 21 mikde;
m = B [1/5' (1 = B) Bk ~ Beta (afok, a(1 — S Bor))



Hierarchical Polya Urn Scheme

» Let G ~ DP(a, H).
» We can visualize the Pdlya urn scheme as follows:

B By B b b G-

RS

6, 6 6 6, 6 6 6----

where the arrows denote to which §; each 6; was assigned and

01,00, ...~ Giid.
01,05, ... ~ Hiid.

(but 81,65, ... are not independent of 67,65, .. .).



Hierarchical Polya Urn Scheme

> Let Gy ~ DP(’}/, H) and G1, Gz‘Go ~ DP(a, Go)

» The hierarchical Pdlya urn scheme to generate draws from G, Go:

B01_0ge B3 Bos Ods Bde - - - -

GD//\\\

e11 e12 e13 e14 e15 e16 e_l.7 """ l e22 e23 e24 e25 G26 """



Chinese Restaurant Franchise

> Let Gy ~ DP(’}/, H) and G1, GZ‘GO ~ DP(O&, Go)

» The Chinese restaurant franchise describes the clustering of data items

in the hierarchy:
D
OO0LOHO
C FG

@6@7@ f@g@e@ on
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Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Pélya urn scheme is exchangeable with the DP being its de
Finetti measure. Further information on the Chinese restaurant process can be obtained at [Aldous 1985, Pitman 2002]. The DP
is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a constructive definition of the DP via a
stick-breaking construction. DPs were rediscovered in the machine learning community by [Neal 1992, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.

Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then

[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of

[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.

Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Ghahramani et al. 2007]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.

Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].

Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an
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improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume Il 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking

[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2008], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007a, Kivinen et al. 2007b].

Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars

[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling

[Blei et al. 2004, Teh et al. 20086, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].

Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include

[Xing et al. 2004, Xing et al. 2007, Xing et al. 2006, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Gortir 2007). The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007]. IBPs have been applied to infer hidden causes

[Wood et al. 2006b], in a choice model [Gorlr et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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