
PS1Q5 (PCA) Show that tr(Ṽ T
q X

TXṼq) is maximized (up to permutation) over matrices Ṽq =

(ṽ1, . . . , ṽq) ∈ Rp×q with q orthonormal columns (i.e. Ṽ T
q Ṽq = 1) by ṽi = vi, where vi,

i = 1, . . . , q are the q eigenvectors of XTXvi = λivi, i = 1, 2...q corresponding to the
first (i.e. the largest) q eigenvalues of XTX .

Answer: Let V be the orthogonal matrix consisting of eigenvectors vi. Since col(V ) is
a basis for the column space of Ṽq, there is a p × q matrix A = (aij) so that Ṽq = V A

and since Ṽq and V are both orthogonal, so is A. Now XTX = V D2V T , with D2 =

diag(λ1, ..., λp) the diagonal matrix of eigenvalues of XTX .

tr(Ṽ T
q X

TXṼq) = tr(ATV TV D2V TV A) (1)

= tr(ATD2A) (2)

=

q∑
j=1

p∑
i=1

λia
2
ij (3)

=

p∑
i=1

λibi (4)

where bi =
∑q

j=1 a
2
ij . Now 0 ≤ bi ≤ 1 (since AAT is a projection into col(A), and the

length of the projection of a unit vector is smaller than one) and
∑

i bi = q (since
∑

i bi =∑
ij a

2
ij = tr(ATA) = tr(Iq) = q). The maximum of

∑p
i=1 λibi over bi, i = 1, ..., p is

achieved by the choice [bi = 1, i = 1, ..., q, bj = 0, j = q + 1, ..., p], since λi ≥ λi+1,
so any other choice can be beaten by moving mass from bj, j > q into bi, i ≤ q. Hence
the maximum of tr(Ṽ T

q X
TXṼq) is λ1 + λ2 + ... + λq which is achieved by the choice

ṽi = vi, i = 1...q.

Note that maximising over Ṽq is clearly equivalent to maximizing over A, but we didn’t
show that this was again equivalent to maximizing over bi, i = 1, ..., p subject to 0 ≤ bi ≤
1,
∑

i bi = q; there might be no A to achieve a given b. However since the solution we
obtained was achieved within the space of matrices Ṽq, we must have the correct upper
bound.

PS2Q4 (EDA) Obtain http://www.stats.ox.ac.uk/\%7Eteh/teaching/datamining/
cognate.txt and load it using something like X <- read.table("cognate.txt").
It contains an 87× 2665 matrix of observations on each of 87 Indo-European languages
where the presence (1) or absence (0) of 2665 homologous traits has been recorded.

Historical linguists have grouped these languages into clades. Most large scale groupings
are contested, but something like

{Indic, Iranian}

{Balto− Slav, (Germanic, Italic, Celtic)}
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is not too controversial. The position of the Armenian, Greek, Albanian, Tocharian and
Hittite groups is in doubt (though not within the second of the above super-clade).

We would like to cluster the languages into groups on the basis of these data. It is also
of interest to represent the languages in a planar map in order to visualise similarities
between languages.

(a) These data are categorical. The Simple Matching Coefficient for two data vectors
is the proportion of variables which are unequal. The Jaccard coefficient for two
language data vectors is the proportion of variables with at least one present which
are unequal (so 1100 and 1010 have SMC 2/4 and JC 2/3). Which dissimilarity
measure is appropriate for these data?

Answer: Probably Jaccard. These are trait data. If two objects both lack many
irrelevant traits, that should not make them more similar. So dist(1100,1000) and
d(1111,1100) should be the same, a vote for Jaccard. In this data 1’s make up only
about 5% of the data values, so shared absence of traits is much more common than
shared presence, again pointing to Jaccard.

(b) Compute an agglomerative clustering of the data, and plot a dendrogram with lan-
guage labels on the leaves. You will need to specify a distance measure between
clusters. Include your R code for generating the dendrogram.

Answer: Using Jaccard for the distance measure between data-vectors, and “average”
between clusters. In R, “average” is the average distance between points in dif-
ferent clusters. This measure generates trees with no inversions, and reproduces
most of the prior clade structure. “complete” is similar. “single” produces
strange groupings. Replacing Jaccard with SMC (“manhattan” in dist())
seems to do little damage: in fact “manhattan” with “complete” predicts all
prior clade structure.
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rm(list = ls(all = TRUE))

X <- read.table("cognate.R")

## calculate Jaccard distances

D <- dist(X,method="binary")

## form clusters by agglomerative cluster using "average"

## or "complete". The choice "single" is not robust.

hi <- hclust(D, method="average")

plot(hi,labels=row.names(X),cex=0.6,font=2,ann=FALSE)

(c) Compute K-means clustering with 10 groups. Include your R code.

Answer:

## make 10 clusters with kmeans

K <- 10

km <- kmeans(X, K, nstart=100, iter.max=100)

Showing the clustering result

> str(km)

List of 4

$ cluster : Named int [1:87] 7 7 7 7 7 7 7 4 4 4 ...

..- attr(*, "names")= chr [1:87] "Irish_A" "Irish_B" "Welsh_N" ...

$ centers : num [1:10, 1:2665] 0 0 0 0 0 0 0 1 1 0 ...
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..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:10] "1" "2" "3" "4" ...

.. ..$ : chr [1:2665] "V1" "V2" "V3" "V4" ...

$ withinss: num [1:10] 153 336 923 933 838 ...

$ size : int [1:10] 5 5 15 16 11 5 7 13 3 7

- attr(*, "class")= chr "kmeans"

> km$cluster

Irish_A Irish_B Welsh_N Welsh_C ...

7 7 7 7

Breton_SE Breton_ST Romanian_List Vlach

7 7 4 4

Ladin Provencal French Walloon

4 4 4 4

French_Creole_D Sardinian_N Sardinian_L Sardinian_C

4 4 4 4

Portuguese_ST Brazilian Catalan German_ST

4 4 4 3

Dutch_List Afrikaans Flemish Frisian

3 3 3 3

Swedish_VL Swedish_List Danish Riksmal

3 3 3 3

Faroese English_ST Takitaki Lithuanian_O

3 3 3 9

Latvian Slovenian Lusatian_L Lusatian_U

9 8 8 8

Slovak Czech_E Ukrainian Byelorussian

8 8 8 8

Russian Macedonian Bulgarian Serbocroatian

8 8 8 8

Singhalese Kashmiri Marathi Gujarati

5 5 5 5

Lahnda Hindi Bengali Nepali_List

5 5 5 5

Greek_ML Greek_MD Greek_Mod Greek_D

6 6 6 6

Armenian_Mod Armenian_List Ossetic Afghan

2 2 10 10

Persian_List Tadzik Baluchi Wakhi

10 10 10 10

Albanian_Top Albanian_G Albanian_K Albanian_C ...

1 1 1 1
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(d) Using MDS (the Sammon map may be best), represent the languages in a 2D plot.
Plot the clusters obtained in part ?? using different symbols, or colors and super-
pose the language name. Can you see any geographical grouping in the layout?

Answer: MDS gives a nice visualization if we use sammon. This MDS scheme
minimizes a stress function with terms like (di(j)−d̃i(j))2

di(j)
as opposed to “classical”

MDS (i.e. cmdscale) which minimizes (d2i(j) − d̃2i(j))
2. Sammon thereby puts

more weight on reproducing the separation of points which are close by forcing
them apart. Projection by MDS(Jaccard/sammon) with cluster discovery by k-
means (Jaccard): There is an obvious east to west (top-left to bottom-right) separa-
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tion of languages in the MDS and the clusters in the MDS grouping agree with the
clusters discovered by agglomerative clustering and k-means. The two clustering
methods group languages slightly differently with k-means splitting the Germanic
languages.
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## (alternative/MDS) make a field to display the clusters

## use MDS - sammon does this nicely

di.sam <- sammon(D,magic=0.20000002,niter=1000,tol=1e-8)

eqscplot(di.sam$points,pch=km$cluster,col=km$cluster)

text(di.sam$points,labels=row.names(X),pos=4,col=km$cluster)

PS5Q2 (Bayesian classification) Consider some training dataD = {(xi, zi) , yi}ni=1 where (xi, zi) ∈
Rp × R is the vector of inputs and yi ∈ {0, 1} the response. We adopt the following re-
gression model for class k

Z = βT
kX + ε

where ε i.i.d.∼ N (0, σ2
k) if Y = k. Hence we have for the class conditional density

fk (z|x) = N
(
z; βT

kx, σ
2
k

)
so that the unconditional density of Z follows a so-called

mixture of regressions model. Note that this model differs conceptually from the exam-
ples discussed in lectures as we do not model X . We adopt the notation P (Y = k) = πk
and denote θ = (π1, β0, β1, σ

2
0, σ

2
1) the set of unknown parameters.

(a) Give an expression of the estimate θ̂ of θ maximizing the conditional log-likelihood

l (θ) =
n∑
i=1

log p (yi, zi|xi, θ) .

What happens when n < p?

Answer: We have simply

π̂k =
nk
n

σ̂2
k =

1

nk

n∑
i=1

I (yi = k)
(
zi − β̂

T
kxi

)2
β̂k =

[
n∑
i=1

I (yi = k)xix
T
i

]−1 [ n∑
i=1

I (yi = k) zixi

]
.

When n < p, then β̂k is not defined as the p× p matrix
[∑n

i=1 I (yi = k)xix
T
i

]
is at

most of rank n.

(b) Consider a Bayesian approach with π1 ∼Beta(a, b) and

p
(
σ2
0, β0, σ

2
1, β1

)
= p

(
σ2
0, β0

)
p
(
σ2
1, β1

)
where p (σ2

k, βk) satisfies a normal inverse-Gamma distribution; e.g.

p
(
σ2
k, βk

)
= p

(
σ2
k

)
p
(
βk|σ2

k

)
= IG

(
σ2
k;
ν

2
,
κ

2

)
N
(
βk; 0, σ2

kΣ
)
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with some hyperparameters (ν, κ, δΣ) such that ν, κ > 0 and Σ is a positive definite
matrix. IG

(
σ2; ν

2
, κ
2

)
denotes the inverse-Gamma density given by

IG
(
σ2;

ν

2
,
κ

2

)
=

(
κ
2

) ν
2

Γ
(
ν
2

) (σ2
)− ν

2
−1

exp
(
− κ

2σ2

)
.

The posterior distribution p (θ|D) satisfies

p (θ|D) = p (π1|D) p
(
σ2
0, β0

∣∣D) p (σ2
1, β1

∣∣D) .
Show that p (π1|D) is a Beta distribution and p (σ2

k, βk|D) a normal inverse-Gamma
distribution.

Answer: We have p (π1|D) = Beta (π1; a+ n1, b+ n− n1) and

p
(
βk, σ

2
k

∣∣D) = IG
(
σ2
k;
νk
2
,
κk
2

)
N
(
βk;µk, σ

2
kΣk

)
where

p
(
βk, σ

2
k

∣∣D) ∝ (
σ2
k

)− ν
2
−1

exp

(
− κ

2σ2
k

) exp
(
− 1

2σ2
k
βT
kΣ

−1βk

)
σ
p/2
k |Σk|1/2

× 1

(σ2
k)
n/2

exp

(
−
∑n

i=1 I (yi = k)
(
zi − βT

kxi
)2

2σ2
k

)

but

1

2σ2
k

βT
kΣ

−1βk +

∑n
i=1 I (yi = k)

(
zi − βT

kxi
)2

2σ2
k

=
1

2σ2
k

βT
kΣ

−1βk +
(Zk −Xkβk)

T (Zk −Xkβk)

2σ2
k

=
1

2σ2
k

βT
kΣ

−1βk + βT
k

XT
kXk

2σ2
k

βk − 2βT
k

XT
kZk

2σ2
k

+
ZT
kZk

2σ2
k

=
1

2σ2
k

βT
kΣ

−1
k βk − 2βT

k

Σ−1
k µk
2σ2

k

+
ZT
kZk

2σ2
k

=
1

2σ2
k

(βk − µk)
T Σ−1

k (βk − µk) +
ZT
kZk

2σ2
k

− µT
kΣ

−1
k µk

2σ2
k

with

Σk =

(
Σ−1 +

n∑
i=1

I (yi = k)xix
T
i

)−1

,

µk = Σk

(
n∑
i=1

I (yi = k) zixi

)
= ΣkX

T
kZk
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and as µT
kΣ

−1
k µk = ZT

kXkΣkX
T
kZk

νk = ν + n,

κk = κ+ ZT
k

(
Ink −XkΣkX

T
k

)
Zk.

(c) Given a new test data (x, z), establish the expression of p (z|D, x, y = k) and ex-
plain how you would use this expression to obtain a Bayesian classifier. What are
the potential benefits of this approach over using p

(
z| θ̂, x, y = k

)
?

Answer: We have

p (z|D, x, y = k) =

∫
p (z| θ, x, y = k) p (θ|D) dθ

=

∫
N
(
z; βT

kx, σ
2
k

)
IG
(
σ2
k;
νk
2
,
κk
2

)
N
(
βk;µk, σ

2
kΣk

)
dθ

where(
z − βT

kx
)2

+ (βk − µk)
T Σ−1

k (βk − µk)
= βT

k

(
Σ−1
k + xxT) βk − 2βk

(
Σ−1
k µk + xz

)
+ z2 + µT

kΣ
−1
k µk

= βT
kΣ

−1
k (x) βk − 2βkΣ

−1
k (x)µk (x, z) + z2 + µT

kΣ
−1
k µk

= (βk − µk (x, z))T Σ−1
k (x) (βk − µk (x, z)) + z2 + µT

kΣ
−1
k µk − µT

k (x, z) Σ−1
k (x)µk (x, z)

so

p
(
z, σ2

k

∣∣D, x, y = k
)

= IG
(
σ2
k;
νk
2
,
κk
2

) |Σk (x)|1/2
√

2πσk |Σk|1/2

× exp

(
− 1

2σ2
k

(
z2 + µT

kΣ
−1
k µk − µT

k (x, z) Σ−1
k (x)µk (x, z)

))
where

Σ−1
k (x) = Σ−1

k + xxT,

µk (x, z) = Σk (x)
(
Σ−1
k µk + xz

)
.
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So

IG
(
σ2
k;
νk
2
,
κk
2

)
×|Σk (x)|1/2√

2πσk
exp

(
− 1

2σ2
k

(
z2 + µT

kΣ
−1
k µk − µT

k (x, z) Σ−1
k (x)µk (x, z)

))
=
|Σk (x)|1/2√

2π

(
κ
2

) ν
2

Γ
(
ν
2

) (σ2
k

)− νk+1

2
−1

× exp

(
− 1

2σ2
k

(
z2 + µT

kΣ
−1
k µk − µT

k (x, z) Σ−1
k (x)µk (x, z) + κk

))
=
|Σk (x)|1/2√

2π

(
κ
2

) ν
2

Γ
(
ν
2

) (σ2
k

)− νk+1

2
−1

× exp

(
− 1

2σ2
k

(
κ+ z2 + ZT

kZk − µT
k (x, z) Σ−1

k (x)µk (x, z)
))

but ∫ (
σ2
)− ν+1

2
−1

exp
(
− κ

2σ2

)
dσ2 =

Γ
(
ν+1
2

)(
κ
2

) ν+1
2

so

p (z|D, x, y = k) =
|Σk (x)|1/2√

2π

(
κk
2

) νk
2

Γ
(
νk
2

) Γ

(
νk + 1

2

)

×
(
κ+ z2 + ZT

kZk − µT
k (x, z) Σ−1

k (x)µk (x, z)

2

)− νk+1

2

which is a t-student. (Final calculations on the student to check Yuanyuan...)

PS5Q4 Load the Vanveer gene expression data used in a previous practical. Make use of the 20
‘best’ genes (according to a marginal t-test) by using the following commands.

load(url("http://www.stats.ox.ac.uk/%7Eteh/MS1b/PracticalObjects.RData"))

vanv<- vanveer.4000[,2:21]

prog<- vanveer.4000[,1]

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and
training set (of equal size). Using logistic regression, plot a ROC curve.

Answer: Here is a R-script that plots the ROC curve. Many variations are possi-
ble, clearly.

load(url("http://www.stats.ox.ac.uk/˜doucet/MS1/PracticalObjects.RData"))

vanv <- vanveer.4000[,2:21]

prog <- vanveer.4000[,1]

n <- nrow(vanv) ## Number of samples

p <- ncol(vanv) ## Number of variables (genes)

9



indtrain <- sort(sample(1:n,round(n/2))) ## which observations

## to use for training?

indtest <- (1:n)[ -indtrain] ## remaining for testing

Y <- as.numeric(prog=="good") ## make binary response

## vector 0="bad" and 1="good"

Ytest <- Y[indtest] ## response for training data

Ytrain <- Y[indtrain] ## response for test data

X <- data.frame(scale(vanv)) ## scaled predictor matrix X

Xtrain <- X[indtrain,] ## for training and for

Xtest <- X[indtest,] ## test data

fitglm <- glm(Ytrain ˜ ., data=Xtrain,family=binomial) ## fit GLM model

## estimate probabilities for "good"

## on test data

predicted <- predict(fitglm, newdata=Xtest,type="response")

cutoff <- seq(0,1,length=100) ## where to put the decision boundary ?

specificity <- numeric(length(cutoff))

sensitivity <- numeric(length(cutoff))

## loop over all decision boundaries

for (cutc in 1:length(cutoff)){

specificity[cutc] <- mean( predicted[ Ytest==1] > cutoff[cutc] )

sensitivity[cutc] <- mean( predicted[ Ytest==0] <=cutoff[cutc] )

}

## plot results

plot(sensitivity, specificity, type="b")
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Reading just one point on the curve: if 80% of all “good” patients are thus cor-
rectly classified as “good”, also roughly 80% of all “bad” patients are classified
correctly as “bad”. The ROC curve here is not very smooth as there are not very
many samples in the test data set.

PS6Q3 Load the Vanveer gene expression data used in a previous practical and the previous
problem sheet. Make use of the 20 ‘best’ genes (according to a marginal t-test) by using
the following commands.

load(url(”http://www.stats.ox.ac.uk/%7Eteh/MS1b/PracticalObjects.RData”))

vanv <- vanveer.4000[,2:21]

prog <- vanveer.4000[,1]

Your X matrix is thus vanv and the response Y is prog. Split the data into a test and
training set (of equal size).

Use k-nearest neighbour classification. Find an estimate of the test error rate as you vary
k, the number of nearest neighbours. What seems to be a good choice of k, the number
of nearest neighbours? What is the estimated misclassification error under an optimal
choice of k? Is it possible to produce a ROC curve for k-nearest neighbour classification?

Answer:

kvec <- 1:30 ## test k-NN for k=1,...,30

## record miscl. error in vector misclasserror

misclasserror <- numeric(length(kvec))

## loop over k=1,...,30

for (k in kvec){
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predict <- numeric(length(Ytest)) ## vector with prediction

## loop over test samples i

for (i in 1:length(Ytest)){

## vector with distances between test sample i and

## all training samples j

distance <- numeric(length(Ytrain))

for (j in 1:length(Ytrain)){

distance[j] <- mean( (Xtrain[j,]-Xtest[i,])ˆ2 )

}

## which are the nearest neighbours?

nearestneighbour <- order(distance)[1:k]

## what is the most common value among them ?

meanpred <- mean(Ytrain[nearestneighbour])

## take this to be the prediction

predict[i] <- if( meanpred>0.5) 1 else 0

}

## record misclassification error for this value of k

misclasserror[k] <- mean(predict != Ytest)

}

plot(misclasserror,type="b")
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A good choice of k is a choice that minimizes the misclassification error rate.
From the estimated curve, k = 12 seems a reasonable choice. The misclas-
sification error for this choice is in general, however, larger than the estimated
curve would suggest (as we picked this value to be the minimum) and can only
be honestly assessed with new test data or a more elaborate cross-validation
scheme.

K-nearest neighbours does not produce estimated probabilities (at least for k =

1), and so it is very difficult to impossible to adjust the tradeoff between sensi-
tivity and specificity (and thus produce a ROC curve). For large values of k, the
empirical proportion of samples among the k nearest neighbours could be taken
as a probability estimate, albeit a very coarse one.

PS7Q3 The files wine.txt is available on the course website. You can again read it directly
with

td <- read.table(

"http://www.stats.ox.ac.uk/%7Eteh/teaching/datamining/wine.data",

sep=",")

These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of
13 constituents found in each of the three types of wines.

The first column contains the class label (1, 2 or 3), which is denoting the grower the
wine came from. The goal is to predict the grower (the class 1, 2 or 3) given, some
predictor variables. These are, in columns 2-14,
2) Alcohol
3) Malic acid
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4) Ash
5) Alcalinity of ash
6) Magnesium
7) Total phenols
8) Flavanoids
9) Nonflavanoid phenols
10) Proanthocyanins
11) Color intensity
12) Hue
13) OD280/OD315 of diluted wines
14) Proline.

(a) Make a biplot using the scale=0 option, and then use the xlabs=as.numeric(td$Type)
option in biplot() to label points by their $Type. The output should look like:
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Answer:

library(rpart)

library(MASS)

td <- read.table("http://www.stats.ox.ac.uk/%7Eteh/teaching/datamining/wine.data",sep=",")

names(td)[1] <- "Type"

td[,1] <- as.factor(td[,1])

td.pc <- princomp(td[,2:14],scale=0,cor=T)

biplot((td.pc),xlabs=as.numeric(td$Type))

(b) Now make a classification tree analysis, and relate the decision rules discovered
there to the projections of the original variable axes displayed in the biplot.
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Answer:

td.tree <- rpart(Type˜.,td,parms=list(split=’gini’),

control = rpart.control(xval=10),method="class")

plot(td.tree)

text(td.tree,use.n=TRUE,digits=4,pretty=0);

plotcp(td.tree)
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The tree was pruned at CP=0.04 (reading from the graph, and choosing the smallest
tree withing 1 sd of the minimum). The relative cross validation error rate was 0.23
relative to an apparent/training root error rate of 0.6.

Referring to the biplot, variable V14 increases towards the 1’s. The tree routes
TRUE to the left. Splitting on large V14 we capture all the 1’s and also a few
3’s from small values of the 2nd principal component (PC). Variable V8 is aligned
with the 1st PC (or rather, it’s -ve), so splitting on large values of V8 (-ve 1st PC)
removes these residual 3’s. Variable 13 has a component in the direction of positive
2nd PC, which splits the 2’s and 3’s routed to the right at the first split. Note that
this is really just a consistency check - we cannot trust that the points at the end of a
particular variable vector in a biplot will have a large value of that component (since
there are more than two variable vectors in the biplot, they are linearly dependent).

(c) Now produce a Random Forest fit, calculating the out-of-bag estimation error and
compare with the tree analysis. You could start like:

library(randomForest)

rf <- randomForest(td[,2:14],td[,1],importance=TRUE)

print(rf)

Experiment with the parameter mtry, the random number of variables the best
splitpoint is searched over. Use varImpPlot to determine what are the most
important variables.
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Answer: The out-of-bag estimation error is lower than for a single tree, as the
following output shows

> print(rf)

Call:

randomForest(x = td[, 2:14], y = td[, 1], importance = TRUE)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 1.69%

Confusion matrix:

1 2 3 class.error

1 59 0 0 0.00000000

2 1 68 2 0.04225352

3 0 0 48 0.00000000

The variable importance plot is obtained by

> varImpPlot(rf)

Two measures of importance are computed, which give a way of interpreting the
forest (which is harder than for a single tree). The left panel shows the decrease
in accuracy if permuting variable x. A larger decrease in accuracy means a higher
“importance”.
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Experimenting with the number of variables over which the best splitpoint is searched,
one obtains in all cases better values than with a single tree, even though the choice
matters. If searching over 9 variables, we get
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> rf <- randomForest(td[,2:14],td[,1],mtry=9)

> print(rf)

> > >

Call:

randomForest(x = td[, 2:14], y = td[, 1], mtry = 9)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 9

OOB estimate of error rate: 2.25%

Confusion matrix:

1 2 3 class.error

1 58 1 0 0.01694915

2 1 68 2 0.04225352

3 0 0 48 0.00000000

rf <- randomForest(td[,2:14],td[,1],mtry=6)

print(rf)

while searching over 3 variables (the default) gives a similar answer as the initial
Random Forests (Remember that the trees are random as the variables over which
the best splitpoint is searched are chosen randomly. The answer will only be the
same if the number of trees is chosen very large.)

> rf <- randomForest(td[,2:14],td[,1],mtry=6)

> print(rf)

> > >

Call:

randomForest(x = td[, 2:14], y = td[, 1], mtry = 6)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 6

OOB estimate of error rate: 2.25%

Confusion matrix:

1 2 3 class.error

1 58 1 0 0.01694915

2 1 68 2 0.04225352

3 0 0 48 0.00000000

This search can be done more systematically but the default value is close to optimal
for this dataset.
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