
MS1b: SDM - Problem Sheet 7
1. Consider a neural network with two hidden layers. Let x be an observation vector with

corresponding label y. The unit activations in first hidden layer are computed as

hj = f(Wjx)

where W is a matrix of parameters, Wj is the jth row, f is some non-linear differentiable
function and j runs over indices of units in first hidden layer. Similarly the second layer
activations are

sk = f(Ukh)

with Uk the kth row of weight matrix U and k runs over units in second hidden layer.
Finally the predicted output is then

ŷ = V s

where V is a row vector of parameters.

Suppose we use the squared-loss (y − ŷ)2. Calculate the derivative of the loss with
respect to parameters Vk, Ukj , and Wji, showing that these derivatives can be computed
recursively using a back-ward pass through the network.

Answer: By chain rule, the derivative wrt Vk is:

2(ŷ − y)sk

the derivative wrt Ukj is:
2(ŷ − y)Vkf

′(Ukh)hj

and finally the derivative wrt Wji is:

2(ŷ − y)
∑
k

Vkf
′(Ukh)Ukjf

′(Wjx)xi

Thus in the backward pass we

(a) compute 2(ŷ − y), at which point we can get derivative wrt Vk,

(b) then compute 2(ŷ − y)Vkf
′(Ukh), at which point we can get derivative wrt Ukj ,

(c) finally compute 2(ŷ − y)
∑

k Vkf
′(Ukh)Ukjf

′(Wjx) at which point we can get
derivative wrt Wji.

2. Consider selecting between multi-level attributes, in order to make a multi-way split (at
node t say), using the expected decrease in the Gini index to decide the choice of attribute.
Consider a generic attribute A ∈ {a1, a2, ..., aL} with L levels, for data in two classes,
so that K = 2, and pk, k = 1, 2, is the class distribution at node t. The Gini index of
impurity is 2p1(1−p1). If we split using attribute A (and are not using dummy variables)
we will have an L-way split.

1

Consider data (X, Y)=(data-vector, class label) passing through the tree, and denote by
Xt, Yt a generic pair reaching node t, so that pk = Pr(Yt = k). Denote by qi =

Pr(A(Xt) = ai), i = 1, 2, ..., L, the distribution of the attribute-level of Xt. Let
pk|i = Pr(Yt = k|A(Xt) = ai) be the distribution of class labels conditioned on the
attribute level of Xt. Suppose in fact Ni = ni of N = n data vectors reaching node
t possess attribute-level ai, Nk = nk are in class k, and Nk

i = nk
i are in class k with

attribute level ai.

(a) Explain why Ni|N = n, Nk|N = n and Nk
i |Ni = ni have respectively multino-

mial, binomial and binomial distributions, and give the parameters of these distri-
butions in terms of qi, pk and pk|i.

Answer: Given the number of data vectors at node t, each data vector at node t has
attribute A(x) = ai with probability qi. If the data vectors are independent, then the
number with level ai is multinomial with parameters q1, ..., qL. Since there are just
two classes in this problem, similar reasoning gives Nk|N = n ∼ Bin(n, pk) and
Nk

i |Ni = ni ∼ Bin(ni, pk|i).

(b) The parameters pk, qi and pk|i are unknown. The Gini index is computed using the
plug-in estimates p̂k = nk/n, q̂i = ni/n and p̂ki = nk

i /ni respectively. Calculate
the expected change in the Gini index between node t and its L child-nodes, condi-
tioned on N = n data vectors at node t.

Answer:

∆Gini = 2p1(1− p1)− 2
L∑
i=1

qip1|i(1− p1|i)

and we will form

∆̂Gini =
2n1

n

(
1− n1

n

)
−

L∑
i=1

ni

n

2n1
i

ni

(
1− n1

i

ni

)
.

We compute E(∆̂Gini) with variation over n1, n1
i , and ni, i = 1, ..., L. Identities∑

npn = p (d/dp)
∑

pn are handy if you cant recall the sums.

E

(
2
N1

n

(
1− N1

n

))
=

2

n2
E(N1(n−N1))

=
2

n2

n∑
n1=0

(
n

n1

)
n1(n− n1)pn1

1 (1− p1)
n−n1

= 2
(n− 1)

n
p1(1− p1)

2

E

(
Ni

n

(
2
N1

i

Ni

(
1− N1

i

Ni

)))
=

2

n
E

(
1

Ni

E(N1
i (Ni −N1

i)|Ni)

)
=

2p1|i(1− p1|i)

n
E(Ni − 1)

=
2p1|i(1− p1|i)

n
(nqi − 1)

so

E(∆̂Gini) = 2
(n− 1)

n
p1(1− p1)− 2

L∑
i=1

p1|i(1− p1|i)

n
(nqi − 1).

(c) Suppose the attribute-levels are actually uninformative of class, so that pk|i = pk.
Show that, conditioned on N = n, the expected decrease in the Gini index is equal

2p1(1− p1)(L− 1)/n.

Answer: In this case p1|i = p1 and

E(∆̂Gini) = 2n(n− 1)p1(1− p1)− 2
L∑
i=1

p1|i(1− p1|i)

n
(nqi − 1)

= 2
(n− 1)

n
p1(1− p1)− 2p1(1− p1)

n− L

n

= 2p1(1− p1)
(L− 1)

n

(d) Is this attribute selection criterion biased in favor of multi-level attributes?

Answer: Yes. If we have two uninformative attributes, A with levels 1, ..., L and A′

with fewer levels 1, ..., L′, L′ < L, selection on the ∆Gini-criterion will be biased
towards A, as A has more attribute-levels so its ∆Gini will typically be larger.

3. The files wine.txt is available on the course website. You can again read it directly
with

td <- read.table(

"http://www.stats.ox.ac.uk/%7Eteh/teaching/datamining/wine.data",

sep=",")

These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of
13 constituents found in each of the three types of wines.

The first column contains the class label (1, 2 or 3), which is denoting the grower the
wine came from. The goal is to predict the grower (the class 1, 2 or 3) given, some
predictor variables. These are, in columns 2-14,
2) Alcohol

3

3) Malic acid
4) Ash
5) Alcalinity of ash
6) Magnesium
7) Total phenols
8) Flavanoids
9) Nonflavanoid phenols
10) Proanthocyanins
11) Color intensity
12) Hue
13) OD280/OD315 of diluted wines
14) Proline.

(a) Make a biplot using the scale=0 option, and then use the xlabs=as.numeric(td$Type)
option in biplot() to label points by their $Type. The output should look like:

−4 −2 0 2 4

−
4

−
2

0
2

4

Comp.1

C
om

p.
2

1

1

1

1

1

1

1
1

11

1

11
1

1
1

1

1

1

1
1

1
1

1
1

1
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1
11

1

1

2

2

2
2

2 2

2

2

2

2

2

22 2

2

2

2
2

2

2
2

2

2

2

2

2

2
22

2

2

2
2

2

22

2

2

2

2

2
2 2

2

2

2
2

2

2

2

22

2

2

2
2

2

2

2

2

2

2

2

22

2

2

2 2

2

2

3
3 33

3

3
3

3
33 33 33

3

3 3

3
3
3

3
3

3

3

3

33

3

3

3

3
3

33

3

3

3

3

3

3

3

3

3 3
3

3
3

3

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

V2

V3

V4

V5

V6

V7

V8
V9V10

V11

V12

V13

V14

Answer:

library(rpart)

library(MASS)

td <- read.table("http://www.stats.ox.ac.uk/%7Eteh/teaching/datamining/wine.data",sep=",")

names(td)[1] <- "Type"

td[,1] <- as.factor(td[,1])

td.pc <- princomp(td[,2:14],scale=0,cor=T)

biplot((td.pc),xlabs=as.numeric(td$Type))

(b) Now make a classification tree analysis, and relate the decision rules discovered
there to the projections of the original variable axes displayed in the biplot.

4

Answer:

td.tree <- rpart(Type˜.,td,parms=list(split=’gini’),

control = rpart.control(xval=10),method="class")

plot(td.tree)

text(td.tree,use.n=TRUE,digits=4,pretty=0);

plotcp(td.tree)

|V14>=755

V8>=2.165 V13>=2.115

V12>=0.9

1
57/2/0

3
0/2/6

2
2/61/2 2

0/5/2
3

0/1/38

cp

X−
va

l R
el

at
ive

 E
rro

r

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.4 0.13 0.04 0

1 2 3 4 5

size of tree

The tree was pruned at CP=0.04 (reading from the graph, and choosing the smallest
tree withing 1 sd of the minimum). The relative cross validation error rate was 0.23
relative to an apparent/training root error rate of 0.6.

Referring to the biplot, variable V14 increases towards the 1’s. The tree routes
TRUE to the left. Splitting on large V14 we capture all the 1’s and also a few
3’s from small values of the 2nd principal component (PC). Variable V8 is aligned
with the 1st PC (or rather, it’s -ve), so splitting on large values of V8 (-ve 1st PC)
removes these residual 3’s. Variable 13 has a component in the direction of positive
2nd PC, which splits the 2’s and 3’s routed to the right at the first split. Note that
this is really just a consistency check - we cannot trust that the points at the end of a
particular variable vector in a biplot will have a large value of that component (since
there are more than two variable vectors in the biplot, they are linearly dependent).

(c) Now produce a Random Forest fit, calculating the out-of-bag estimation error and
compare with the tree analysis. You could start like:

library(randomForest)

rf <- randomForest(td[,2:14],td[,1],importance=TRUE)

print(rf)

Experiment with the parameter mtry, the random number of variables the best
splitpoint is searched over. Use varImpPlot to determine what are the most

5

important variables.

Answer: The out-of-bag estimation error is lower than for a single tree, as the
following output shows

> print(rf)

Call:

randomForest(x = td[, 2:14], y = td[, 1], importance = TRUE)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 1.69%

Confusion matrix:

1 2 3 class.error

1 59 0 0 0.00000000

2 1 68 2 0.04225352

3 0 0 48 0.00000000

The variable importance plot is obtained by

> varImpPlot(rf)

Two measures of importance are computed, which give a way of interpreting the
forest (which is harder than for a single tree). The left panel shows the decrease
in accuracy if permuting variable x. A larger decrease in accuracy means a higher
“importance”.

V9
V4
V10
V5
V3
V6
V7
V12
V13
V2
V8
V14
V11

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0
MeanDecreaseAccuracy

V9
V4
V10
V5
V6
V3
V7
V12
V2
V13
V8
V14
V11

●

●

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20
MeanDecreaseGini

rf

Experimenting with the number of variables over which the best splitpoint is searched,

6

one obtains in all cases better values than with a single tree, even though the choice
matters. If searching over 9 variables, we get

> rf <- randomForest(td[,2:14],td[,1],mtry=9)

> print(rf)

> > >

Call:

randomForest(x = td[, 2:14], y = td[, 1], mtry = 9)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 9

OOB estimate of error rate: 2.25%

Confusion matrix:

1 2 3 class.error

1 58 1 0 0.01694915

2 1 68 2 0.04225352

3 0 0 48 0.00000000

rf <- randomForest(td[,2:14],td[,1],mtry=6)

print(rf)

while searching over 3 variables (the default) gives a similar answer as the initial
Random Forests (Remember that the trees are random as the variables over which
the best splitpoint is searched are chosen randomly. The answer will only be the
same if the number of trees is chosen very large.)

> rf <- randomForest(td[,2:14],td[,1],mtry=6)

> print(rf)

> > >

Call:

randomForest(x = td[, 2:14], y = td[, 1], mtry = 6)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 6

OOB estimate of error rate: 2.25%

Confusion matrix:

1 2 3 class.error

1 58 1 0 0.01694915

2 1 68 2 0.04225352

3 0 0 48 0.00000000

7

This search can be done more systematically but the default value is close to optimal
for this dataset.

8

