MS1b: SDM - Problem Sheet 7

1. Consider a neural network with two hidden layers. Let x be an observation vector with
corresponding label y. The unit activations in first hidden layer are computed as

hj = f(W;x)

where W is a matrix of parameters, W} is the jth row, f is some non-linear differentiable
function and j runs over indices of units in first hidden layer. Similarly the second layer
activations are

S = f(U kh)
with Uy, the kth row of weight matrix U and k& runs over units in second hidden layer.
Finally the predicted output is then
y=Vs
where V' is a row vector of parameters.

Suppose we use the squared-loss (y — )%, Calculate the derivative of the loss with
respect to parameters Vj, Uy;, and WW;;, showing that these derivatives can be computed
recursively using a back-ward pass through the network.

Answer: By chain rule, the derivative wrt V, is:

2(3) - y)Sk:

the derivative wrt Uy; is:
2(9 = y)Vif'(Uxh) by

and finally the derivative wrt W; is:
25— y) > Vif (Uch) Ui /' (W)
k

Thus in the backward pass we
(a) compute 2(y — y), at which point we can get derivative wrt Vj,
(b) then compute 2(y — y) Vi f'(Uih), at which point we can get derivative wrt Uy,

(c) finally compute 2(y — y) >, Vi.f (Uxh)Uy; f'(W,x) at which point we can get
derivative wrt W;.

2. Consider selecting between multi-level attributes, in order to make a multi-way split (at
node ¢ say), using the expected decrease in the Gini index to decide the choice of attribute.
Consider a generic attribute A € {ay, as, ..., ar} with L levels, for data in two classes,
so that K = 2, and p,, k = 1,2, is the class distribution at node t. The Gini index of
impurity is 2p; (1 —p;). If we split using attribute A (and are not using dummy variables)
we will have an L-way split.



Consider data (X, Y')=(data-vector, class label) passing through the tree, and denote by
X;,Y; a generic pair reaching node ¢, so that p, = Pr(Y; = k). Denote by ¢; =
Pr(A(X;) = a;), i« = 1,2,..., L, the distribution of the attribute-level of X;. Let
pei = Pr(Y; = kJA(X;) = a;) be the distribution of class labels conditioned on the

attribute level of X;. Suppose in fact N; = n; of N = n data vectors reaching node
k k

t possess attribute-level a;, N* = n . are in class k& with

are in class k, and NF = n
attribute level a;.

(a) Explain why N;|N = n, N¥|N = n and N¥|N; = n; have respectively multino-
mial, binomial and binomial distributions, and give the parameters of these distri-
butions in terms of g;, py and py;.

Answer: Given the number of data vectors at node ¢, each data vector at node ¢ has
attribute A(z) = a; with probability ¢;. If the data vectors are independent, then the
number with level a; is multinomial with parameters ¢, ..., ¢z.. Since there are just
two classes in this problem, similar reasoning gives N*|N = n ~ Bin(n, pj) and
NEF|N; = n; ~ Bin(ng, pri)-

(b) The parameters py, g; and py; are unknown. The Gini index is computed using the
plug-in estimates p, = n*/n, ¢ = n;/n and pf = n¥ /n; respectively. Calculate
the expected change in the Gini index between node ¢ and its L child-nodes, condi-
tioned on N = n data vectors at node ?.

Answer:
L
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and we will form

We compute F (AGini) with variation over n', n}, and n;, i = 1,..., L. Identities
> np™ = p(d/dp) > p™ are handy if you cant recall the sums.
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(c) Suppose the attribute-levels are actually uninformative of class, so that py; = py.
Show that, conditioned on N = n, the expected decrease in the Gini index is equal

2p1(1 —p1)(L —1)/n.

Answer: In this case p;; = p; and
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(d) Is this attribute selection criterion biased in favor of multi-level attributes?

Answer: Yes. If we have two uninformative attributes, A with levels 1, ..., L and A’
with fewer levels 1, ..., L/, L' < L, selection on the Agjy;-criterion will be biased
towards A, as A has more attribute-levels so its Ag;y,; Will typically be larger.
3. The files wine.txt is available on the course website. You can again read it directly
with

td <- read.table(
"http://www.stats.ox.ac.uk/%$7Eteh/teaching/datamining/wine.data",

sep=",")

These data are the results of a chemical analysis of wines grown in the same region in
Italy but derived from three different cultivars. The analysis determined the quantities of
13 constituents found in each of the three types of wines.

The first column contains the class label (1, 2 or 3), which is denoting the grower the
wine came from. The goal is to predict the grower (the class 1, 2 or 3) given, some
predictor variables. These are, in columns 2-14,

2) Alcohol



3) Malic acid

4) Ash

5) Alcalinity of ash

6) Magnesium

7) Total phenols

8) Flavanoids

9) Nonflavanoid phenols
10) Proanthocyanins

11) Color intensity

12) Hue

13) OD280/0OD315 of diluted wines
14) Proline.

(a) Make abiplot using the scale=0 option, and then use the x1abs=as.numeric (td$Type)
option in biplot () to label points by their $Type. The output should look like:
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Answer:

library (rpart)

library (MASS)

td <- read.table ("http://www.stats.ox.ac.uk/%7Eteh/teaching/datam
names (td) [1] <= "Type"

td[,1] <- as.factor(td[,1])

td.pc <- princomp (td[,2:14],scale=0,cor=T)
biplot ((td.pc),xlabs=as.numeric (td$Type))

(b) Now make a classification tree analysis, and relate the decision rules discovered
there to the projections of the original variable axes displayed in the biplot.



(c)

Answer:

td.tree <- rpart (Type .,td,parms=list (split="gini’),
control = rpart.control (xval=10),method="class")
plot (td.tree)
text (td.tree,use.n=TRUE,digits=4,pretty=0);
plotcp (td.tree)
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The tree was pruned at CP=0.04 (reading from the graph, and choosing the smallest
tree withing 1 sd of the minimum). The relative cross validation error rate was 0.23
relative to an apparent/training root error rate of 0.6.

Referring to the biplot, variable V14 increases towards the 1’s. The tree routes
TRUE to the left. Splitting on large V14 we capture all the 1’s and also a few
3’s from small values of the 2nd principal component (PC). Variable V8 is aligned
with the 1st PC (or rather, it’s -ve), so splitting on large values of V8 (-ve 1st PC)
removes these residual 3’s. Variable 13 has a component in the direction of positive
2nd PC, which splits the 2’s and 3’s routed to the right at the first split. Note that
this is really just a consistency check - we cannot trust that the points at the end of a
particular variable vector in a biplot will have a large value of that component (since
there are more than two variable vectors in the biplot, they are linearly dependent).

Now produce a Random Forest fit, calculating the out-of-bag estimation error and
compare with the tree analysis. You could start like:

library (randomForest)
rf <- randomForest (td[,2:14],td[,1], importance=TRUE)
print (rf)

Experiment with the parameter mt ry, the random number of variables the best
splitpoint is searched over. Use varImpPlot to determine what are the most



important variables.

Answer: The out-of-bag estimation error is lower than for a single tree, as the
following output shows

> print (rf)

Call:
randomForest (x = td[, 2:14], y = td[, 1], importance = TRUE)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 3
OOB estimate of error rate: 1.69%
Confusion matrix:

1 2 3 class.error

159 0 0 0.00000000
2 1 68 2 0.04225352
3 0 0 48 0.00000000

The variable importance plot is obtained by
> varImpPlot (rf)

Two measures of importance are computed, which give a way of interpreting the
forest (which is harder than for a single tree). The left panel shows the decrease
in accuracy if permuting variable x. A larger decrease in accuracy means a higher

“importance”.
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one obtains in all cases better values than with a single tree, even though the choice
matters. If searching over 9 variables, we get

> rf <- randomForest (td[,2:14],td[,1],mtry=9)
> print (rf)
> > >
Call:
randomForest (x = td[, 2:14], yv = td[, 1], mtry = 9)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 9

OOB estimate of error rate: 2.25%
Confusion matrix:
1 2 3 class.error
158 1 0 0.01694915
2 1 68 2 0.04225352
3 0 0 48 0.00000000

rf <- randomForest (td[,2:14],td[,1],mtry=6)
print (rf)

while searching over 3 variables (the default) gives a similar answer as the initial
Random Forests (Remember that the trees are random as the variables over which
the best splitpoint is searched are chosen randomly. The answer will only be the
same if the number of trees is chosen very large.)

> rf <- randomForest (td[,2:14],td[,1],mtry=6)
> print (rf)
> > >
Call:
randomForest (x = td[, 2:14], y = td[, 1], mtry = 6)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 6

OOB estimate of error rate: 2.25%
Confusion matrix:
1 2 3 class.error
158 1 0 0.01694915
2 1 68 2 0.04225352
3 0 0 48 0.00000000



This search can be done more systematically but the default value is close to optimal
for this dataset.



