MS1b: SDM - Problem Sheet 3

1. (Expectation-Maximization) Assume you are interested in clustering n binary images. Each binary image \mathbf{x} corresponds to a vector of p binary random variables; p being the number of pixels. We adopt a probabilistic approach and model the probability mass function of x using a finite mixture model

$$
f(\mathbf{x} \mid \theta)=\sum_{k=1}^{K} \pi_{k} f\left(\mathbf{x} \mid \phi_{k}\right)
$$

where $f\left(\mathbf{x} \mid \phi_{k}\right)$ is a product of p Bernoulli distributions of parameters $\phi_{k}=\left(\phi_{k}^{1}, \ldots, \phi_{k}^{p}\right) \in$ $[0,1]^{p}$ and π_{1}, \ldots, π_{K} satisfy $\pi_{k} \geq 0 \forall k$ and $\sum_{k=1}^{K} \pi_{k}=1$. We want to estimate the unknown parameters $\theta=\left\{\pi_{k}, \phi_{k}\right\}_{k=1}^{K}$ given $\mathrm{x}_{1: n}$ by maximizing the associated likelihood function using the EM algorithm. Establish explicitly the EM update; i.e. the expression of the estimate $\theta^{(t)}$ at iteration t as a function of $\theta^{(t-1)}$.
2. (Decision Theory) Consider two univariate normal distributions $N\left(\mu, \sigma^{2}\right)$ with known parameters $\mu_{A}=10$ and $\sigma_{A}=5$ for class A and $\mu_{B}=20$ and $\sigma_{B}=5$ for class B. Suppose class A represents the random score X of a medical test of normal patients and class B represents the score of patients with a certain disease. A priori there are 100 times more healthy patients than patients carrying the disease.
(a) Find the optimal decision rule in terms of misclassification error ($0-1$ loss) for allocating a new observation x to either class A or B.
(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is $\theta>1$ times that of a false positive (allocating a healthy person to group B). Describe how the rule changes as θ increases. For which value of θ are 84.1% of all patients with disease correctly classified?
3. (Decision Theory) Suppose there are three equally likely groups of Poisson data, with mean parameters $\lambda_{1}=10, \lambda_{2}=15$ and $\lambda_{3}=20$. Show that the optimal rule under $0-1$ loss is to allocate to class 1 if $X \leq 12$, to class 2 if $13 \leq X \leq 17$ and to class 3 if $X \geq 18$. Find the class-wise success rates (or probabilities of correct classification) P (allocate to $i \mid Y=i$) for each class $\mathrm{i}=1,2,3$.
4. (Decision Theory) For a given loss function L, the risk R of a learner is given by the expected loss

$$
R(\hat{Y})=E(L(Y, \hat{Y}))
$$

where $\hat{Y}=\hat{Y}(X)$ is a function of the random predictor variable X. Consider a regression problem and the squared error loss

$$
L(Y, \hat{Y})=(Y-\hat{Y})^{2}
$$

Derive the expression of $\hat{Y}=\hat{Y}(X)$ minimizing the associated risk.

