
MS1b: SDM - Problem Sheet 3
1. (Expectation-Maximization) Assume you are interested in clustering n binary images.

Each binary image x corresponds to a vector of p binary random variables; p being the
number of pixels. We adopt a probabilistic approach and model the probability mass
function of x using a finite mixture model

f(x|θ) =
K∑
k=1

πkf(x|φk)

where f(x|φk) is a product of p Bernoulli distributions of parameters φk = (φ1
k, ..., φ

p
k) ∈

[0, 1]p and π1, . . . , πK satisfy πk ≥ 0 ∀k and
∑K

k=1 πk = 1. We want to estimate the un-
known parameters θ = {πk, φk}Kk=1 given x1:n by maximizing the associated likelihood
function using the EM algorithm. Establish explicitly the EM update; i.e. the expression
of the estimate θ(t) at iteration t as a function of θ(t−1).

2. (Decision Theory) Consider two univariate normal distributions N(µ, σ2) with known
parameters µA = 10 and σA = 5 for class A and µB = 20 and σB = 5 for class B.
Suppose class A represents the random score X of a medical test of normal patients and
class B represents the score of patients with a certain disease. A priori there are 100 times
more healthy patients than patients carrying the disease.

(a) Find the optimal decision rule in terms of misclassification error (0-1 loss) for allo-
cating a new observation x to either class A or B.

(b) Repeat (a) if the cost of a false negative (allocating a sick patient to group A) is
θ > 1 times that of a false positive (allocating a healthy person to group B). Describe
how the rule changes as θ increases. For which value of θ are 84.1% of all patients
with disease correctly classified?

3. (Decision Theory) Suppose there are three equally likely groups of Poisson data, with
mean parameters λ1 = 10, λ2 = 15 and λ3 = 20. Show that the optimal rule under
0-1 loss is to allocate to class 1 if X ≤ 12, to class 2 if 13 ≤ X ≤ 17 and to class 3
if X ≥ 18. Find the class-wise success rates (or probabilities of correct classification)
P (allocate to i|Y = i) for each class i=1,2,3.

4. (Decision Theory) For a given loss function L, the risk R of a learner is given by the
expected loss

R(Ŷ ) = E(L(Y, Ŷ )),

where Ŷ = Ŷ (X) is a function of the random predictor variableX . Consider a regression
problem and the squared error loss

L(Y, Ŷ ) = (Y − Ŷ )2.

Derive the expression of Ŷ = Ŷ (X) minimizing the associated risk.
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