
MS1b: SDM - Practical Sheet 4
Decision trees and ensembles

The purpose of this example is to introduce you to classification and regression trees (in a practical sense), to
see the role V-fold classification plays in model-selection and get a feeling for Bagging, Random Forests, and
out-of-bag error estimation.

We begin by using the first 100 data samples of the Boston Housing data set

library(rpart)

library(MASS)

data(Boston)

price <- Boston[1:100,14] ## response variable

X <- Boston[1:100,-14] ## predictor variables

Recall that splits are based on some measure of impurity R(T ). For regression, this would measure the residual
variance in the leaf nodes of the tree T . Pruning is based Rα(T ) = R(T ) + α size(T ) say. The CP parameter of
rpart is α/R(T ) where T is the tree we are pruning. In other words, a node is only splitting if the loss R(T ) is
reduced by at least a factor CP.

Use the rpart() function to fit a regression tree (using method="anova" instead of method="class"). Since
the data set is small splits of leaves with 5 or more data vectors in each non-empty class (minsplit=5) are
allowed. Note we can prune back if we have grown the tree too large. The rpart function does V -fold cross
validation, as part of its analysis, so we specify V (xval=10).

We use the Boston Housign dataset of the lectures.

boston.tree <- rpart(price ~ ., data=X,

control = rpart.control(minsplit=2,xval=10),

method="anova")

There are some useful visualization tools

plot(boston.tree, margin=0.1)

text(boston.tree)

Examine the output from the following and ask for help interpreting it

summary(boston.tree)

Now the pruning. Prune at the smallest tree with xerror within 1 std. dev. of CP value giving minimum xerror

we achieved.

(boston.cpt <- printcp(boston.tree))

plotcp(boston.tree)

prunedtree <- prune(boston.tree,cp=0.051)

plot(prunedtree); text(prunedtree)

Prices can be predicted on the training data by

predictedvalues <- predict(prunedtree)

You could look at the fit on the training data by i.e.

plot(predictedvalues,price)

Now you can also predict the data on the left-out samples, the test set, by

predicttest <- predict(prunedtree,newdata=Boston[101:500,1:13])

and compute the mean squared error

print( mean( (Boston[101:500,14] - predicttest)^2 ))

The training error goes to zero as the tree is grown larger (and we are forcing splits even for leaves with relatively
few data vectors). However the cross-validated (x-val) error identifies the overfit. To grow the tree very large
initially, first repeat the tree fit with a low cp value.



boston.tree <- rpart(price ~ ., data=X,

control = rpart.control( minsplit=2, xval=10,cp=0.001),method="anova")

boston.cpt <- printcp(boston.tree)

plotcp(boston.tree)

par(xaxt="n")

plot(1:nrow(boston.cpt),boston.cpt[,3],type=’l’,xlab="CP",ylab="error,xerror")

par(xaxt="s")

points(1:nrow(boston.cpt),boston.cpt[,4],type=’b’)

axis(1, at = 1:nrow(boston.cpt), labels = formatC(boston.cpt[,1], format="fg"))

axis(3, at = 1:nrow(boston.cpt), labels = formatC(boston.cpt[,2]+1, format="fg"))

The last two lines print the CP values on the x-axis and the number of leaf nodes on the top axis.

Repeat the analysis for the entire Boston Housing dataset.

price <- Boston[,14]

X <- Boston[,-14]

What is the cross-validated estimate of the error rate?

Now, fit a Random Forest classifier to the same dataset.

library(randomForest)

rf <- randomForest(X,price,ntree=200,nodesize=5,mtry=5)

Plot the out-of-bag estimates and compute the out-of-bag error rate.

plot(predict(rf), price)

abline(c(0,1))

print( mean( (predict(rf)-price)^2 ) )

Repeat for various values of nodesize (minimal nodesize) and mtry (number of randomly chosen variables over
which to chose the best split). How does the error rate depend on mtry and nodesize? Make a plot of variable
importance using the varImpPlot function.

New observations can be predicted as for trees by

predictrf <- predict(rf,newdata= Xnew)

where Xnew would be a data frame containing the same column names as the original data set X.

Lastly, bagging with out-of-bag prediction. First, create a matrix OOB which specifies if the sample is in or out of
the bootstrap sample for each bootstrap iteration and another matrix OOBpredict which records the prediction
for each bootstrap iteration. Use the value of cp found to be optimal under cross-validation.

nboot <- 100

n <- nrow(X)

OOB <- matrix(0,nrow=nboot,ncol=n)

OOBpredict <- matrix(0,nrow=nboot,ncol=n)

for (boot in 1:nboot){

subsample <- sample(1:n,n,replace=TRUE)

boston.treeboot <- rpart(price[subsample] ~ .,data=X[subsample,],cp=0.051,

control = rpart.control(minsplit=2,xval=10),

method="anova")

OOB[boot, ! (1:n)%in%subsample] <- 1

OOBpredict[boot,] <- predict(boston.treeboot,newdata=X)

}

Look at the matrices for example by using function image.plot in library fields,

image.plot(OOB)

image.plot(OOBpredict)

Compute the bagged estimator and find the out-of-bag estimation of the test error

OOBresult <- numeric(n)

for (i in 1:n){



whichoob <- which(OOB[,i]==1)

OOBresult[i] <- mean( OOBpredict[ whichoob ,i])

}

print( mean((OOBresult-price)^2) )

Compare with the out-of-bag estimation of the test error when using Random Forests.


