
MS1b: SDM - Practical Sheet 3
Logistic and nonparametric methods

In this practical, we will examine several R functions that allow us to implement logistic and non-parametric
classification methods. Load the workspace PracticalObjects using something like

load(url("http://www.stats.ox.ac.uk/%7Eteh/teaching/datamining/PracticalObjects.RData"))

This file contains functions and datasets that we will need use in these classes. Alternatively, download from the
website and open locally with load. Where packages cannot be loaded, type install.packages() and follow
the instructions to install a package.

Logistic Regression

In this section we first look at the South African heart disease dataset, SA.heart, which is located in the
workspace PracticalObjects. More information about the dataset is available at
http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/SAheart.info.
The data has been taken from a larger dataset, described in Rousseauw et al, 1983, South African Medical Jour-
nal, and include 160 samples (chd=1) and 302 controls (chd=0). The explanatory variables that will be used to
fit a logistic regression model include sbp (systolic blood pressure), tobacco (cumulative tobacco in kg), ldl
(low density lipoprotein cholesterol), famhist (family history of heart disease, present or absent), obesity,
alcohol (current alcohol consumption), and age (age at onset). The response variable is chd (coronary heart
disease). We select these variables from the original dataset:

SA.hrt <- SA.heart[,c(2:4,6,8:11)]

1. We use the function glm() to fit the logistic regression model. First we specify the data structure to the
function. The response variable is specified on the left hand side of the ∼, and explanatory variables
included in the model are specified on the right hand side. The . indicates that all variables in the dataset,
specified by the argument data, except the response should be used as explanatory variables. The argument
family="binomial" is used to indicate that the logit link function should be used. SA.glm <- glm(

chd . , data=SA.hrt, family="binomial")

The function summary() can be used to produce a summary of the results of the model fitting.

summary(SA.glm)

The Z-ratio of the coefficients are computed using the formula in Section 6.2.5 of the lecture notes. The
coefficients of Intercept, tobacco, ldl, famhist, and age are significantly different from zero at a 5%
level.

2. It appears that a subset of the variables might be sufficient to explain the variation in the response variable.
The function step() is used to find such a subset: it drops the least significant coefficient and refits the
model. The coefficients are dropped repeatedly, until no further terms can be dropped.

SA.step <- step(SA.glm)

summary(SA.step, direction="backward")

The simplified model includes only the variables tobacco, ldl,famhist, and age as explanatory vari-
ables. Note from the summary results give estimates of the coefficients corresponding to these explanatory
variables. The coefficient for tobacco is 0.081. Tobacco is measured in kilograms of total lifetime usage.
How will an increase in 1kg life-time tobacco usage influence the odds of coronary heart disease? The
odds of coronary heart disease is estimated to increase by exp(0.0807)=1.0840 as the life-time tobacco us-
age increase by 1kg. If ldl increases by one unit, with other variables kept constant, the odds of coronary
heart disease increases by exp(0.167584)= 1.182445.

3. We can explore the relationship between tobacco, ldl and the presence of coronary heart disease graph-
ically. First, we create a plot of tobacco against ldl, and then we indicate the points that correspond to
patients with and without heart disease separately.

plot(SA.hrt$ldl, SA.hrt$tobacco, type="n", xlab="ldl", ylab="tobacco")

T.vec <- SA.hrt$chd==1 ##vector that indicates for which observations chd=1



points(SA.hrt$ldl[T.vec], SA.hrt$tobacco[T.vec], pch=2, col=1)

T.vec <- (SA.hrt$chd==0) ##vector that indicates for which observations chd=0

points(SA.hrt$ldl[T.vec], SA.hrt$tobacco[T.vec], pch=3, col=2)

legend(11, 28, c("chd=1","chd=0"), pch=c(2,3), col=c(1,2))

The function legend() is used to add a legend to the plot. The first two arguments specify the position of
the legend, the third argument is a vector of text values to appear in the legend. Examining the scatterplot
reveals that the heart disease samples are associated with higher levels of both tobacco and ldl.

4. The fitted glm() object returns the fitted mean values, fitted.values, θ̂1, . . . , θ̂n.

SA.glm$fitted.values

A sample in the dataset is classified as “chd=1” (heart disease) if the fitted mean response for that sample
is greater than 0.5. If the fitted mean response for a sample is 0.5 or less than 0.5 the sample is classified
as “chd=0” (no heart disease). The function ifelse is used to create a vector with the predicted classes of
the observations (look at ?ifelse).

class.vec <- ifelse(SA.glm$fitted.values>0.5, 1, 0)

SA.glm$fitted.values[1:10]

class.vec[1:10]

A comparison of the first 10 values in SA.glm$fitted.values and class.vec will make the transition
of the vector SA.glm$fitted.values to the vector class.vec clearer.

What percentage of the observations is misclassified?

SA.error <- sum(class.vec!=SA.hrt$chd)/nrow(SA.hrt)

5. We fit a logistic regression model for the Cushing’s dataset. The data matrix cush can be created again, as
in practical 3.

library(MASS)

data(Cushings)

cush <- Cushings[Cushings$Type!="u",]

cush[,3] <- factor(cush[,3],levels=c("a","b","c"))

cush[,1] <- log(cush[,1])

cush[,2] <- log(cush[,2])

Remember that each observation in the dataset cush is classified to belong to one of three classes. There-
fore, we need to use the function multin() in the library nnet to fit a logistic regression model.

library(nnet)

cush.multin <- multinom(cush[,3]~cush[,1]+cush[,2], data=cush, maxit=250)

summary(cush.multin)

cush.pred <- predict(cush.multin)

table(cush[,3], cush.pred)

Are the estimated coefficients significantly different from zero? What is the misclassification rate?

Non-parametric Classification: Cushing’s Data

To visualise the decision boundaries for non-parametric classification methods we use a dataset with two con-
tinuous variables and one classification factor. The Cushing’s syndrome dataset, cush, is used as an example
here.



1. k-Nearest Neighbours
The function knn in the package class performs a k-nearest neighbour classification. First, we create a
training set and a test data set for the Cushing’s data: we place roughly 30% of the observations in the test
set and the remaining observations in the training set. Make sure you understand each of the following
steps.

library(MASS)

cush <- Cushings[Cushings$Type!=’u’,]

cush[,3] <- factor(cush[,3],levels=c(’a’,’b’,’c’))

cush.type <- cush[,3]

cush[,1] <- log(cush[,1])

cush[,2] <- log(cush[,2])

library(class)

number.obs <- nrow(cush)

train.vec <- runif(number.obs)>0.3

test.vec <- !train.vec

cush.train <- cush[train.vec,]

cush.test <- cush[test.vec,]

We need to specify the training set, test set, the vector containing the true classifications of the training set,
and the number of neighbours for the function knn.

cush.knn <- knn(train=cush.train[,1:2], test=cush.test[,1:2],

cl=cush.train[,3], k=1)

The function knn returns a factor vector containing the classifications of the test set. Compare the predicted
classes of the test set with the true classes.

cush.knn

cush.test[,3]

How many observations are accurately classified?

To visualise the k-nn decision boundaries (for a two dimensional dataset) we use the function visualise.knn
and specify the number of neighbours. This function is available in the workspace PracticalObjects.

visualise.knn(cush,k=1)

visualise.knn(cush,k=3)

Change the number of neighbours, k, and see how it influences the decision boundaries.

2. Learning Vector Quantisation
The function lvqdemo, in the workspace PracticalObjects, illustrates the iterations of the LVQ algo-
rithm. The algorithm is given in the lecture notes.

We have to load the package deldir to use this function. The argument num.codes specifies the number
of prototypes per class and decrease gives the rate at which the learning rate α should be decreased to
zero. We specify 2 prototypes per class, and a decrease of 0.99.

library(deldir)

lvqdemo(cush, num.codes=2, decrease=0.99)

Note that the points are coloured according to the class that they belong to. The prototypes for each class
are indicated by the larger filled points. The data is presented one point at a time, and the arrow show
how the prototype closest to the data point is updated. When running the algorithm the user is prompted
to specify the number of iterations. Start by specifying 10 iterations, but increase it to 50 or 100 if the
algorithm converges slowly.



We can adjust the parameters num.codes and decrease. Examine the influence of smaller values for
decrease on the rate of convergence of the algorithm.

lvqdemo(cush, num.codes=2, decrease=0.90)

Non-parametric Classification: Singh Data

The dataset singh contains the expression profiles on 52 prostate tumour samples, and 50 normal samples. The
Singh data consists of a training set, singh.train, and a test set, singh.test, used for fitting and performance
assessment, respectively. The training set contains about 70% of the samples in the original dataset.

1. k-Nearest Neighbours
We start with the k-nearest neighbours method again, and compute the test error rate for k = 1 and k = 3
neighbours. The first argument for the function knn is the training set, without the factor that contains the
true class labels. The notation singh.train[,-1] is used to extract all the variables (columns) of the
dataset singh.train except the first variable.

singh.knn.1 <- knn(singh.train[,-1], singh.test[,-1],

singh.train[,1], k=1)

misclass <- sum(singh.test$outcome != singh.knn.1)

test.error.knn.1 <- misclass/nrow(singh.test)

test.error.knn.1

singh.knn.3 <- knn(singh.train[,-1], singh.test[,-1],

singh.train[,1], k=3)

misclass <- sum(singh.test$outcome != singh.knn.3)

test.error.knn.3 <- misclass/nrow(singh.test)

test.error.knn.3

Compare the error rates for different numbers of neighbours.

2. Learning Vector Quantisation
Next we look at LVQ classification. An initial codebook for LVQ methods is constructed by the func-

tion lvqinit. Its first argument is a matrix or data frame of training examples, and the second is the
classifications for the training examples. The argument size is used to specify the size of the codebook.

singh.code <- lvqinit(singh.train[,-1],singh.train[,1],size=10)

The function olvq1 is then used to move examples in the initial codebook to represent the training set
better. The argument codebk is used to specify the initial codebook. This function returns a codebook,
represented as a list with components x and cl giving the examples and classes, respectively.

singh.olvq <- olvq1(singh.train[,-1], singh.train[,1],

codebk=singh.code)

singh.olvq$cl

Let us determine the error rate for the training dataset. We use the function lvqtest to assess the LVQ
classification of data points. The first argument of the function is the codebook returned by the function
olvq1, and the second argument test is used to specify the matrix of samples for which we want to
predict the outcome. The function returns the predicted class for each of these samples.

train.class <- lvqtest(singh.olvq, test=singh.train[,-1])

train.class

The training error is calculated by dividing the number of misclassifications by the total number of samples
in the training set. The test error rate is calculated similarly.

LVQ.train.error <- sum(train.class!=singh.train[,1])/

nrow(singh.train)



test.class <- lvqtest(singh.olvq, test=singh.test[,-1])

LVQ.test.error <- sum(test.class!=singh.test[,1])/

nrow(singh.test)

Why do we expect the test error rate to be higher than the training error? Is this the case here?

Exercises

Logistic Regression: Birdkeeping
Ramsey and Shafer (2002) describe data from a study that investigate birdkeeping as a risk factor for developing
lung cancer. The study is based on a case-control study of patients in 1985 at four hospitals in The Hague,
Netherlands. They identified 49 cases of lung cancer among patients who were registered with a general practice,
who were age 65 or younger, and who had resided in the city since 1965. They also selected 98 controls from a
population of residents having the same general age structure. Data were gathered on the following variables for
each subject:

FM = Sex (FEMALE,MALE)

AG = Age, in years

SS = Sosioeconomic status (HIGH,Low), based on wages

of the principal wage earner in the household

YR = Years of smoking prior to diagnosis or examination

CD = Average rate of smoking, in cigarettes per day

BK = Indicator of birdkeeping (caged birds in the home for more than

6 consecutive months from 5 to 14 years before diagnosis

or examination)

It is known that smoking and age are both associated with lung cancer incidence. The research question of
interest is the following: after age, socioeconomic status and smoking have been controlled for, is an additional
risk associated with birdkeeping?

We use this example as a fairly detailed illustration of how to approach a logistic regression problem in R.

1. The data found on the teaching webpage can be read into an R data frame using the function read.table().
Suppose that we have saved the data in the Windows directory c:\temp, then we can read and display the
data as follows:

birds <- read.table(file="c:\\temp\\birds.txt",sep=’\t’,header=TRUE)

attach(birds)

birds

The above command specifies that the data is in tab-delimted format and that the first line contains “head-
ers” for the columns of the table. Study the different variables in the dataset. What does the attach

function do?

2. A useful first step in any analysis is to perform a graphical exploration of the raw data. A plot of the
binary response variable versus an explanatory variable is not worthwhile, since there are only two distinct
values for the response variable. An useful alternative is to examine a scatterplot of one of the explanatory
variables versus another, with codes to indicate whether the response is 0 or 1. We can construct a coded
scatterplot of years of smoking versus age of subject.

# set up plot without plotting the data

plot(x=AG,y=YR,ylab="Years of Smoking",xlab="Age(Years)",

main="", cex=1.4,,type="n")

# identify birdkeepers with cancer

g1 <- BK=="BIRD"&LC=="LUNGCANCER"

# plot birdkeepers with cancer with filled triangles

points(x=birds[g1,5],y=birds[g1,6],cex=1.5,pch=17)

# identify birdkeepers without cancer

g2 <- BK=="BIRD"&LC=="NOCANCER"

# plot birdkeepers without cancer with empty triangles

points(x=birds[g2,5],y=birds[g2,6],cex=1.5,pch=2)

# identify non-birdkeepers with cancer

g3 <- BK=="NOBIRD"&LC=="LUNGCANCER"

# plot non-birdkeeper with cancer with filled circles



points(x=birds[g3,5],y=birds[g3,6],cex=1.5,pch=16)

# identify non-birdkeeper without cancer

g4 <- BK=="NOBIRD"&LC=="NOCANCER"

# plot non-birdkeeper with cancer with filled circles

points(x=birds[g4,5],y=birds[g4,6],cex=1.5,pch=1)

# add a legend to the plot

legend(list(x=37,y=49),legend=c("birdkeeper,cancer",

"birdkeeper,no cancer","non-birdkeeper,cancer",

"non-birdkeeper, no cancer"),pch=c(17,2,16,1))

What can we derive from this plot?

3. Let us proceed to fit an initial model. It is usually a good idea to start with a fairly rich model. What does
this mean?

options(contrasts=c("contr.treatment","contr.poly"))

birds.glm <- glm(LC~SEX+SS+AG+YR+CD+BK+I(YR^2)+I(CD^2)+YR*CD,

family=binomial,data=birds)

Can you write down the model that we are fitting above?

4. We can extract a summary of the above model as follows:

summary(birds.glm,cor=FALSE)

What do you learn from the summary output?

5. We can perform an automatic stepwise model selection based on AIC as follows:

library(MASS)

# perform stepwise model selection based on AIC

birds.step <- stepAIC(birds.glm,trace=FALSE)

# display the results of stepwise selection

birds.step$anova

# display details of the final model

summary(birds.step,cor=F)$coef

6. Does the final model make sense intuitively?

7. How do we interpret this model?

8. We can and should perform some model checking for this model. Below we plot the predicted values for
the probability of not developing lung cancer for our model for different years of smoking. We can also
distinguish between birdkeepers and non-birdkeepers.

# set up axes for plot

plot(c(0,50), c(0,1), type = "n", xlab = "Years smoking",

ylab = "Prob of No LC")

# create vector with values of YR we want to predict for

yr <- seq(0,50,by=5)

# plot pred values for birdkeepers for 0-50 years smoking

lines(yr,predict(birds.step,data.frame(YR=yr,

BK=factor(rep("BIRD",length(yr)),levels=BK)),

type="response"),lty=1)

# plot pred values for non-birdkeepers for 0-50 years smoking

lines(yr,predict(birds.step,data.frame(YR=yr,

BK=factor(rep("NOBIRD",length(yr)),levels=BK)),

type="response"),lty=3)

# add legend

legend(0,1,lty=c(1,3),legend=c("BIRD","NOBIRD"))

Interpret the plot.

9. We should plot the observed proportions in the above plot as well to judge how well our model is fitting.
How can we do this?

# compute observed prop of LC for Birdkeepers in age intevals

# 0,[1,20],[21,30],[31,40],[41,50] for years smoked



prop.0 <- sum(LC[YR==0&BK=="BIRD"]=="NOCANCER")/sum(YR==0&BK=="BIRD")

prop.1to20 <- sum(LC[YR>0&YR<=20&BK=="BIRD"]=="NOCANCER")/

sum(YR>0&YR<=20&BK=="BIRD")

prop.21to30 <- sum(LC[YR>20&YR<=30&BK=="BIRD"]=="NOCANCER")/

sum(YR>20&YR<=30&BK=="BIRD")

prop.31to40 <- sum(LC[YR>30&YR<=40&BK=="BIRD"]=="NOCANCER")/

sum(YR>30&YR<=40&BK=="BIRD")

prop.41to50 <- sum(LC[YR>40&YR<=50&BK=="BIRD"]=="NOCANCER")/

sum(YR>40&YR<=50&BK=="BIRD")

# Plot observed proportions for birdkeepers with "Y"

points(c(0,10.5,25.5,35.5,45.5),c(prop.0,prop.1to20,

prop.21to30,prop.31to40,prop.41to50),pch="Y",cex=0.9)

# Repeat above for Non-birdkeepers

prop.0 <- sum(LC[YR==0&BK=="NOBIRD"]==1)/

sum(YR==0&BK=="NOBIRD")

prop.1to20 <- sum(LC[YR>0&YR<=20&BK=="NOBIRD"]=="NOCANCER")/

sum(YR>0&YR<=20&BK=="NOBIRD")

prop.21to30 <- sum(LC[YR>20&YR<=30&BK=="NOBIRD"]=="NOCANCER")/

sum(YR>20&YR<=30&BK=="NOBIRD")

prop.31to40 <- sum(LC[YR>30&YR<=40&BK=="NOBIRD"]=="NOCANCER")/

sum(YR>30&YR<=40&BK=="NOBIRD")

prop.41to50 <- sum(LC[YR>40&YR<=50&BK=="NOBIRD"]=="NOCANCER")/

sum(YR>40&YR<=50&BK=="NOBIRD")

# Plot observed proportions for non-birdkeepers with "N"

points(c(0,10.5,25.5,35.5,45.5),c(prop.0,prop.1to20,

prop.21to30,prop.31to40,prop.41to50),pch="N",cex=0.9)

Comment on the fit.
Why should we treat the curve with caution beyond Y R = 50?


