
MS1b: SDM - Practical Sheet 1
Dimensionality Reduction and Clustering

In this practical we look at various exploratory data analysis (EDA), visualization, dimensionality re-
duction and clustering methods. Load the workspace PracticalObjects using something like

load(url("http://www.stats.ox.ac.uk/~teh/teaching/datamining/PracticalObjects.RData"))

This file contains functions and datasets that we will need use in these classes. Alternatively, download
from the website and open locally with load. Where packages cannot be loaded, type install.packages()
and follow the instructions to install a package.

Visualisation

The crabs data is available in the R package MASS.

1. Load the package MASS and examine the crabs dataset.

library(MASS)

crabs

Use summary() and str() to see which variables are nominal. What are the levels of each of
these variables? Identify the continuous variables in the dataset?

2. Lets look at the pairwise relationships between the continuous variables in the crabs dataset.

pairs(crabs[,4:8])

Note the command crabs[,4:8] is used to extract columns 4 through to 8 of the dataset. Are
the pairwise linear associations between the variables strong or weak?

3. It is helpful to distinguish the species and sex of each observation in the plot. Observations in the
crabs dataset can be categorised into four groups: ‘Blue male’, ‘Blue female’, ‘Orange Male’,
and ‘Orange female’. We create a vector crabs.grp to indicate the group that each observation
belongs to.

crabs.grp <- rep(1:4, each = 50)

Various graphical parameters can be modified to change the plotting symbol pch and the colour
of plotted points col.

pairs(crabs[, 4:8], col=crabs.grp, pch=crabs.grp)

To get information on any function, use the command ?pairs or help.start(). For the latter,
click on Packages and then choose the appropriate package and function.

4. The parallel coordinate plot can also be used to display the crabs data.

parcoord(crabs[,4:8], col=crabs.grp)

Is this visualisation method useful for the crabs data?

Principal Component Analysis

The function princomp() is used to perform principal components analysis and is found in MASS. We
perform PCA on the crabs data but note that PCs depend on the scaling of the original variables.



1. Continuous variables in the crabs dataset have the same measurement unit (mm) but we inspect
anyhow to what extent the scaling differs.

boxplot(crabs[,4:8])

The boxplots reveal that rescale may be necessary. A log transformation achieves this scaling the
variables to fall roughly within the interval [2, 4].

boxplot(log(crabs[,4:8]))

2. A principal component analysis is performed on the transformed data, lcrabswith princomp().
The PCA objects have methods loadings and predict that extract the loadings and principal
component score components of the object.

lcrabs <- log(crabs[, 4:8])

crabs.pca <- princomp(lcrabs)

loadings(crabs.pca)

crabs.pc <- predict(crabs.pca)

crabs.pc[c(1:5,196:200),]

The (overloaded) function summary() can be used to see what proportion of the total variation
is explained by the first principal component.

summary(crabs.pca)

3. The lcrabs dataset consists of p = 5 variables and n = 200 observations. As discussed in
lectures, the PC scores give the projection of each of the original observations onto the principal
components.

library(MASS)

eqscplot(crabs.pc[,1], crabs.pc[,2], xlab="1st principal component",

ylab="2nd principal component")

Similar to the previous section, we can use pairs() to plot more than two variables at a time. Lets
look at the first three PCs.

pairs(crabs.pc[, 1:3], col=crabs.grp)

Do the first three PCs give information about the known structure in the data?

Multidimensional Scaling

Consider the dataset vanveer.4000 which contains microarray data on breast tumour. It contains 76
patients: 44 good and 32 poor. outcome indicates the prognosis group of a patient, furthermore, the
dataset only contains the 4000 ‘best’ genes of the original 24 189 column dataset. Lets apply MDS
on this dataset on a smaller subset of this dataset, the “ best” 20 genes say (correspond to the first 21
columns of vanveer.4000).

vanv.20 <- vanveer.4000[,2:21]

vanv.progn <- vanveer.4000$outcome

1. Classical MDS
cmdscale() performs classical multidimensional scaling on vanv.20 allowing us to view this
76 × 20 dataset. dist() calculates a distance matrix D with Euclidean distance between all
pairs.

vanv.dist <- dist(vanv.20)



2. Look at ?cmdscale. Taking a distance matrix as its first argument, it calculates a set of points
z1, . . . , z76 in Rk such that the distances between the points best match the distances in vanv.dist,
the argument k specifies the dimension of the reconstructed space.

vanv.clas <- cmdscale(vanv.dist, k=2)

The object vanv.clas becomes a matrix with 2 columns whose rows give the coordinates of the
reconstructed points. By plotting an ‘empty plot’ with eqscplot() using type=‘‘n’’ and by
overlaying text with text, we get ourselves a nice plot.

windows() ## use command X11() on Linux/Unix/Mac and quartz() on a Mac

eqscplot(vanv.clas, type="n", main=" Metric Scaling: 20 best genes")

text(vanv.clas, labels=as.character(vanv.progn),

col=1+as.numeric(vanv.progn), cex=0.8)

3. Lets compute the stress for this MDS representation, dist() helps us compute the distance
matrix of the reconstructed points vanv.clas.

vanv.clas.dist <- dist(vanv.clas)

classical.stress <- sum( (vanv.dist - vanv.clas.dist)^2 )/sum((vanv.dist)^2)

4. Sammon’s non-linear mapping
We can examine the data with different stress functions. The function sammon() takes a distance
object its the first argument and finds a two-dimensional configuration to minimise the Sammon
stress function returning an object with two components: a vector of the fitted configuration
points and the final stress achieved (stress).

vanv.sam <- sammon(vanv.dist)

names(vanv.sam)

vanv.sam$points

vanv.sam$stress

We plot the representation found to compare it to that found with classical MDS stress.

windows() ## use command X11() on Linux/Unix/Mac and quartz() on a Mac

eqscplot(vanv.sam$points, type="n", main="Sammon Mapping: 20 best genes")

text(vanv.sam$points, labels=as.character(vanv.progn),

col=1+as.numeric(vanv.progn), cex=0.8)

5. Kruskal’s non-metric multidimensional scaling
And finally, we implement Kruskal’s non-metric multidimensional scaling with isoMDS().

vanv.iso <- isoMDS(vanv.dist)

vanv.iso$stress

windows() ## use command X11() on Linux/Unix/Mac and quartz() on a Mac

eqscplot(vanv.iso$points, type="n", main="Kruskal’s MDS: 20 best genes")

text(vanv.iso$points, labels=as.character(vanv.progn),

col=1+as.numeric(vanv.progn), cex=0.8)

How do the three configurations obtained above differ? The plots obtained using classical MDS
and Kruskal’s non-metric MDS are rather similar. It seems like there is a reasonable amount of
overlap between the good and poor prognosis groups.



K-means

Lets look at K-means clustering. Remembering that K (the number of clusters) must be pre-specified,
clusters are chosen to minimise the within-class sums of squares from cluster centres. As K-means is
based on Euclidean distances, scaling of variables is important, scale achieves this.

ft.stand <- scale(ft[,1:21])

1. kmeans() performs K-means clustering and has argument centers which allows us to either
specify the number of clusters (or to initialise cluster centres, they are random if not specified).
The function returns a matrix storing the cluster centres and a vector indicating the class label
of the corresponding observations in the data matrix. The dataset ft contains a league table
comparing the performance of several UK universities.

ft.km <- kmeans(ft.stand,4)

ft.km$centers

ft.km$cluster

2. As the dataset contains 22 variables, we’ll need to reduce the dimensionality of the data to view
the results of K-means clustering. We’ll plot the data onto its first two PC.

library(MASS)

ft.label <- dimnames(ft.stand)[[1]]

ft.pca <- princomp(ft.stand)

ft.pc <- predict(ft.pca)

eqscplot(ft.pc[,1:2], type="n", xlab="first principal component",

ylab="second principal component")

text(ft.pc[,1:2], labels=ft.label)

dimnames() is used to retrieve rows names in the dataset which are needed to add informative
label to the plot. How accurate is the above two-dimensional presentation of the dataset?

Adjusting the plot, we indicate the cluster/group of the observations.

ft.centers <- predict(ft.pca, ft.km$centers)

eqscplot(ft.pc[,1:2], type="n", xlab="first principal component",

ylab="second principal component")

text(ft.pc[,1:2], col=ft.km$cluster, labels=ft.label)

points(ft.centers[,1:2], pch=3, cex=2)

Here we first predict the cluster centres ft.km$centers onto the first two PC, points() then
added crosses to the plot to indicate the centres. It’s also possible to create a similar plot where
names of the observations are only made available by clicking observation on the graph using
the function identify().

eqscplot(ft.pc[,1:2], type="n", xlab="first principal component",

ylab="second principal component")

points(ft.pc[,1:2], col=ft.km$cluster)

points(ft.centers[,1:2], pch=3, cex=2)

identify(ft.pc[,1:2], cex=0.4, labels=ft.label)

3. visu.kmeans() allows us to visualise each iteration of the K-means algorithm. This function
requires the package deldir to run. We start off by simulating a dataset containing data points
from four multivariate distributions with rmvnorm() from the package mvtnrom.

library(mvtnorm)

data.1 <- rmvnorm(25,c(-1,2), matrix(c(0.5,0.1,0.,0.5),nrow=2))

data.2 <- rmvnorm(25,c(0.5,1),matrix(c(0.5,0.15,0.15,0.5),nrow=2))



data.3 <- rmvnorm(25,c(0,-1.2),matrix(c(0.5,-0.12,-0.12,0.5),nrow=2))

data.4 <- rmvnorm(25,c(-2,0),matrix(c(0.5,0,0,0.5),nrow=2))

simu.data <- rbind(data.1, data.2, data.3, data.4)

Though these are unclassified data, we know the distribution from which they came. We store
these in simu.labels for later reference.

simu.labels <- rep(1:4,each=25)

plot(simu.data,pch=simu.labels)

library(deldir)

simu.stand <- scale(simu.data)

visu.kmeans(simu.data,k=4, iter.max=20)

Repeat the above K-means algorithm a few times and compare the resulting clustering.

Hierarchical Clustering Methods

We turn our attention to hierarchical clustering methods.

1. The hierarchical clustering methods discussed in the lectures depend on measures of similarity or
dissimilarity so data should be standardised first. We use the scaled ft.stand data from before

2. To implement agglomerative hierarchical clustering, the function agnes() in the package cluster
is used (you can alternatively use function hclust. The argument method specifies the linkage
method used allowing "average" (group average method), "single" (single link) or "complete"
(complete link).

library(cluster)

agn.ave <- agnes(ft.stand,method="average")

plot(agn.ave)

agn.sin <- agnes(ft.stand,method="single")

plot(agn.sin)

agn.com <- agnes(ft.stand,method="complete")

plot(agn.com)

The dendrograms indicate a small number of universities that are highly dissimilar to the others.
It is worthwhile investigating the difference between these universities with respect to the others.
Note that the height axis allows us to assess dissimilarity between two branches by reading off
the height value at the level where two branches join.

3. The function diana in the cluster package can be used to implement divisive hierarchical clus-
tering. Here looking at data about research activities and other charactersitic features of several
UK universities.

ft.dia <- diana(ft.stand)

plot(ft.dia)

Compare the dendrogram with those resulting from agglomerative clustering.

Exercises

1. PCA
We consider the gene expression data discussed in lectures. The dataset Cho.dat contains 384
observations (genes) where for each gene, measurements are taken at 17 time points. The vector
Chodat.phases contains the phases corresponding to each observation. We normalise the data



to have zero mean and unit variance using the function scale() and verify whether gene.dat
has been normalised appropriately.

gene.dat <- Cho.dat

gene.norm <- scale(gene.dat)

apply(gene.norm,2,mean)

diag(var(gene.norm))

Note that if we set the argument cor of the function princomp() to TRUE, we do not need to
normalise the data in advance.

Perform PCA on the gene.norm dataset and plot the first two principal components against each
other using different symbols for each of the classes found in Chodat.phases. Use a scatterplot
matrix to visualise relationships between the first four principal components. Which PCs are able
to separate the classes reasonably?

What proportion of the total variation is explained by the first two principal components? Com-
pare this proportion to the proportion of the variation explained for the crabs dataset.

2. PCA
The Virus dataset contains the measurements on 39 Tobamoviruses which we want to investi-
gate. We are interested in whether subgroups among the viruses can be distinguished. As virus 7
and 20 have identical scores, we remove the virus 7.

virus.unq <- rbind(Virus[1:6,],Virus[8:39,])

The function rbind() takes two separate parts of the Virus dataset and combines them by rows.
To get an idea of the distributions of the variables, a boxplot can be constructed for each variable.
Should we scale the data before further analysis?

boxplot(virus.unq[,1:18])

virus.norm <- scale(virus.unq[,1:18])

Perform PCA on the normalised data and the original data to examine the structure of the dataset.
Use the scatterplot matrix of the first few principal components to see whether we can detect
structure in the dataset.

3. MDS
We consider the breast tumour dataset vanveer.4000 again. Lets create datasets that contain
the set of 50 and 100 ‘best’ genes,

vanv.50 <- vanveer.4000[,2:51]

vanv.100 <- vanveer.4000[,2:101]

vanv.progn <- vanveer.4000$outcome

Use classical MDS, Sammon’s non-linear mapping and Kruskal’s MDS to create two dimen-
sional presentations of the data and record the stress for each of these methods. Compare graph-
ical presentations for the data containing the subset of 50 best genes and the subset of 100 best
genes.

4. K-means
The choice of starting values (initial cluster centres) for K-means significantly influence the
clustering results. Lets verify this on the ft dataset by randomly choosing four observations
from the dataset as starting values.

random.ind1 <- sample(1:nrow(ft.stand), 4)

random.start1 <- ft.stand[random.ind1,]

ft.km <- kmeans(ft.stand,centers=random.start1)



Create a plot to indicate the clustering of the observations as well as the positions of the cluster
centres using PCA. Using different starting values, create the corresponding plots that indicates
the clustering of the data. Do different starting values lead to substantially different clustering
results?


