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Neural Networks

The term Neural Network has evolved to encompass a large class of models
and learning methods. We describe the most widely used neural network
called the single hidden layer back-propagation network.
Initially motivated by biological processes, NN are simply another nonlinear
method which can be used to find good predictions for classification and
regression problems.



Each node of the network receives input from other nodes.

will pass a a signal along itself to other nodes in the network. For some
so-called activation function f ,

total inputs to node j: xj =
�

i→j

wijyi

output from node j: yj = f (xi).



Many activation functions f are possible.
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The ‘activation unit’ is not differentiable rendering it difficult to use for
modelling. The linear unit is uninteresting in a network.



Neural networks combine many layers of nodes to allow for a very flexible
model, a single hidden layer neural network in particular consists of 3 layers of
nodes, below is an example of one.

A bias term is also incorporated at each neuron which provides a constant
output of 1, so at node j

xj =
�

i→j

wijyi = w0 +
�

i→j,i �=0

wijyi.







There is nothing to stop us from adding more hidden layers.
It can be shown that single hidden layer neural networks can model arbitrarily
complex surfaces (if the number of nodes in the hidden layer is large enough).
But more layers (“deep” networks) can sometimes model complex surfaces
more easily.
When using linear activation units, the neural network collapses to a linear
model. Logistic activation units are preferred as they are nonlinear and
differentiable.



For inputs xj, the output of the node l in the final layer can be expressed
explicitly as

yl = f
��

k→l

wkl f (
�

j→k

wjkxj)
�

=: yl(x,w)

for a neural network with a single hidden layer.
The statistical part is to find good weights w, given some training data.



Neural Networks can be used for both regression and classification. In the
regression framework of Rumelhart and McClelland, for observations (Xi, Yi),
i = 1, . . . , n, we train neural networks with a single output node y1 by seeking
weights w to minimize

E(w) =
n�

i=1

|Yi − y1(Xi,w)|2.

A generic drawback of Neural Networks is that E(w) is a non-convex function
and can have multiple minima. It is thus not easy to find a good solution.



In a classification setting, we now have K output nodes y1, . . . , yK , each
representing one of the classes. Let Yi,k := 1{Yi = k} for k = 1, . . . ,K.
By augmenting the final outputs, it is straightforward to enforce that each
output node returns probability predictions pi,k := P(Y = k|Xi) via the softmax
transformation

pi,k =
exp yk(Xi)�K
l=1 exp yl(Xi)

.

A measure of fit is via likelihoods, using

L(w) ∝
n�

i=1

�

outputs k

(pi,k)
Yi,k .

We can seek weights to maximise the log-likelihood

�(w) ∝
n�

i=1

�

k

Yi,k log pi,k.



As the log-likelihood attains a maximum at
�

i

�

k

Yi,k log Yi,k,

it is conventional to consider finding weights to minimize the cross-entropy

E(w) =
�

p

�

k

Yi,k log
Yi,k

pi,k
=

�

p

�

k

Yi,k log Yi,k −
�

p

�

k

Yi,k log pi,k,

so E(w) ≥ 0 with equality iff we can find w so that pi,k = Yi,k, i.e. a perfect fit
(on the training data).
For both criteria, E can be minimised via gradient descent with update rule

wij ← wij − η
∂E
∂wij

.

Corresponding algorithm called back-propagation.



� Due to the modular nature of the nodes, partial derivatives are easily
calculated via the chain rule, which leads to an algorithm called
back-propagation.

� In back-propagation, predictions are made in a “forward-pass” through
the network, while derivatives are computed in a “backward-pass”
propagating error information towards earlier layers of network.

� As the high-dimensional likelihood surface need not be convex, we often
find suboptimal maxima.

� With large numbers of nodes in the network, we have to be careful not to
overfit. Regularisation is obtained bys a combination of

� not fitting until convergence
� Using weight decay, a regularization penalty on the weights w.
� Choosing a simple but suitable network structure.



Neural Networks
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Neural Networks
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Cushings data (load with data(Cushings) in package MASS).

> ?Cushings
Cushings package:MASS R Documentation

Diagnostic Tests on Patients with Cushing’s Syndrome

Description:
Cushing’s syndrome is a hypertensive disorder associated with
over-secretion of cortisol by the adrenal gland. The observations
are urinary excretion rates of two steroid metabolites.

Format:
The ’Cushings’ data frame has 27 rows and 3 columns:

’Tetrahydrocortisone’ urinary excretion rate (mg/24hr) of
Tetrahydrocortisone.

’Pregnanetriol’ urinary excretion rate (mg/24hr) of
Pregnanetriol.

’Type’ underlying type of syndrome, coded ’a’ (adenoma) , ’b’
(bilateral hyperplasia), ’c’ (carcinoma) or ’u’ for unknown.



## we will not deal with the untyped data here
cush <- Cushings[Cushings$Type!="u",]
cush[,1:2] <- log(cush[,1:2])

## plot
pairs(cush)

## fit neural network with 5 nodes in the hidden layer
cush.nnet <- nnet(Type ~ . , data=cush, size=5)



Tetrahydrocortisone
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Display the decision boundaries.

## take a lattice of points
## 100 by 100 lattice
m <- 100
x <- seq(0,4,length.out=m)
y <- seq(-3,2.5,length.out=m)
z <- data.frame(expand.grid(

Tetrahydrocortisone=x,
Pregnanetriol=y))

cush.nnp <- predict(cush.nnet,z)

## plot the data and decision boundaries
## classes are a,b,c =1,2,3 so set contours at 1.5 and 2.5
plot(cush[,1:2], pch=as.character(cush$Type))
contour(x, y, matrix(max.col(cush.nnp),m,m), levels=c(1.5,2.5),

add=TRUE, d=FALSE, lty=1, col=2)
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