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Learning Vector Quantization

� Though K-means clustering helps to significantly reduce the memory load
of k-NN, the most obvious shortcoming of this method is that prototypes
from different classes have no say about each other’s positioning.

� Recalling the VQ learning algorithm from clustering techniques for
unsupervised learning, it is easy to extend it to tackle supervised learning
problems.

� Recall that VQ seeks to find areas of high density in high dimensional
data by strategically placing codewords (in an online or batch approach).



Consider the online version of LVQ.
1. For each of the K classes, initialise R prototypes (representative points)

to model each class distribution.
2. Sample an observation X and let Vc be the Voronoi region where it falls

with cluster center µc.
3. If the prototype is of the same class as X, move µc towards X

muc ← µc + α(t) [X − µc]

and if µc is of a different class, move it away from X

µc ← µc − α(t) [X − µc]

Repeat 2-3 many times and return the codebook.



Nearest Neighbours in High Dimensions

We have seen various ways to find nearest neighbors and the corresponding
classification is intuitive in 2, 3 and general low-dimensional problems.
The concept of a nearest neighbour is questionable, however, in high
dimensions. First, look at multi-variate normal data in p dimensions,

X ∼ N (µ,Σ).

What is the distribution of the Euclidean distance D between a random
observation X and the ‘cluster center’ µ if Σ = 1p? It is

D =
p�

k=1

(X(k)
− µ(k))2.

And D has thus a χ2
p-distribution with p degrees of freedom.



Density of distance D of observation from cluster center in p dimensions.
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kNN in High Dimensional Spaces
Assume you have {Xi}

n
i=1 in Rp where Xi

i.i.d.
∼ f .

Proposition. If we have

lim
p→∞

Vf [d (X, x)]
Ef [d (X, x)]2

= 0

then for any ε > 0

lim
p→∞

Pf⊗n

����� max
1≤i≤n

d (Xi, x)− min
1≤i≤n

d (Xi, x)
���� ≥ ε

�
= 0.

Loosely speaking, in high dimensional spaces, all the points are at the same
distance from the query point x so kNN is useless.
Example: Assume d (X, x) =

�p
l=1

�
Xl − xl

�2 where xl = (µ, ..., µ) and

f (x) =
p�

l=1
N

�
xl; 0, 1

�
then d (X, x) follows a non-central chi-squared of

variance 2p
�
1 + 2µ2

�
and mean p (1 + µ) so that lim

p→∞
Vf [d(X,x)]
Ef [d(X,x)]2 = 0..



Density of distance D̃ between two random observations in p dimensions.
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There are no real ‘nearest neighbours’ in high dimensions. All points are
about the same distance from each other and are sitting on the shell of the
high-dimensional sphere.



Now suppose there are two groups µ1 and µ2, where for the two classes the
distributions of X = (X(1), . . . ,X(p)) are, respectively,

N (µ1,Σ) and N (µ2,Σ),

with
µ1 = (2, 0, 0, 0, . . . , 0)T and µ2 = (0, 0, 0, 0, . . . , 0)T ,

and Σ = 1p. The two groups distinguish themselves thus just in the first
component X(1).
Suppose we have n observations X1, . . . ,X2n, of which n are in class 1 and n in
class 2. What is the probability P(correct classification) that a randomly
chosen X from class 1 will have a nearest neighbor in {i : Yi = 1} rather than
in {i : Yi = 2}?

P(correct classification) = P( min
i:Yi=1

�X − Xi�2 ≤ min
i:Yi=2

�X − Xi�2).

Answer easiest by simulation...



pvec <- pmax(1,unique(round((1/5)*exp(seq(0,log(1000),length=50)))*5))
nsim <- 1000
n <- 100
probability <- rep(0,length(pvec))
for (pc in 1:length(pvec)){
p <- pvec[pc]
for (sim in 1:nsim){

X1 <- matrix(rnorm(n*p),nrow=n)
X2 <- matrix(rnorm(n*p),nrow=n)
X2[,1] <- X2[,1] + 2
X <- rnorm(p)

distance1 <- numeric(n)
distance2 <- numeric(n)
for (k in 1:n){
distance1[k] <- mean( (X-X1[k,])^2 )
distance2[k] <- mean( (X-X2[k,])^2 )

}
winningclass1 <- min(distance1)<min(distance2)
if(winningclass1) probability[pc] <- probability[pc] + 1/nsim

}
plot(pvec,probability,
xlab="DIMENSION P",ylab="P(correct classification)",type="b")

}



Probability of correct classification with nearest neighbours as a function of
dimension p. Misclassification probability of 0.5 can be achieved by random
guessing (dotted line).
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Nearest neighbor potentially performs poorly in high dimensions.


