MS1b Statistical Data Mining
 Part 3: Supervised Learning Nonparametric Methods

Yee Whye Teh
Department of Statistics
Oxford
http://www.stats.ox.ac.uk/~teh/datamining.html

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks
Lasso

Outline

Supervised Learning: Nonparametric Methods
Nearest Neighbours and Prototype Methods
Learning Vector Quantization
Classification and Regression Trees
Determining Model Size and Parameters
Neural Networks
Lasso

k-Nearest Neighbours

- Nearest neighbours are simple and essentially model-free methods for classification.
- These methods are not very useful for understanding relationships between attributes and class predictions.
- Makes weaker modelling assumptions than e.g. LDA, Naïve Bayes and logistic regression.
- As black box classification methods however, they are often reasonable performers on real life problems (at least in lower-dimensional data) and provide a good benchmark as they are trivial to set up.

Example: Spam dataset in 2 dimensions. Using first 2 principal components of the predictor variables X for illustration. Plotted are 50 emails (red: spam, black: no spam).
Task: predict category spam/no-spam for 3 new emails at the green crosses.

True categories.

Suppose again that the training data are $\left(X_{i}, Y_{i}\right)$ for $i=1, \ldots, n$, where as usual $X_{i} \in \mathbb{R}^{p}$ and $Y_{i} \in\{1, \ldots, K\}$.
Assuming $\mathcal{X} \in \mathbb{R}^{p}$, Euclidean distance is often used to measure distance $d\left(X, X^{\prime}\right)=\left\|X-X^{\prime}\right\|_{2}$. The nearest neighbours of a point X is the set $n e_{k}(X) \subset\{1, \ldots, n\}$ such that

$$
\max _{j \in n e_{k}(X)} d\left(X, X_{j}\right) \leq \min _{i \in\{1, \ldots, n\} \backslash n e_{k}(X)} d\left(X, X_{i}\right)
$$

Given a new X, we find the k observations in the training data 'closest' to X and then classify using a majority vote amongst the k neighbours (ties are broken at random - choose k odd preferably).

$$
\hat{Y}(X)=\operatorname{argmax}_{l}\left|\left\{j \in n e_{k}(X): Y_{j}=l\right\}\right| .
$$

Application to Handwritten Character Recognition

 Objective: recognizing isolated (i.e., non-overlapping) digits, as in ZIP or postal codes.

Training and Test Data: The MNIST15 dataset contains 60,000 training images and 10,000 test images of the digits 0 to 9 , as written by various people.
Details: Images are 28×28 and have grayscale values in the range 0:255.

Application to Handwritten Character Recognition

Results: 1-NN obtains a misclassification rate of only 3.09% on the test data using the Hamming distance!
This problem might look easy to you but remember that we do not use any spatial information. The K-NN classifier would obtain exactly the same results if the training and test data were permuted as it is invariant to the order of the features.

true class $=4$
true class $=1$

Asymptotic Performance of 1 NN

Let $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ be some training data where $X_{i} \in \mathbb{R}^{p}$ and $Y_{i} \in\{1,2, \ldots, K\}$. We define

$$
\widehat{y}_{\text {Bayes }}(x)=\underset{l \in\{1, \ldots, K\}}{\arg \max } \pi_{l} f_{l}(x)
$$

and

$$
\left.\widehat{y}_{1 \mathrm{NN}}(x)=y \text { (nearest neigbour of } x\right) .
$$

Define

$$
\begin{aligned}
R_{\text {Bayes }} & =\mathbb{E}\left[\mathbb{I}\left(y \neq \hat{y}_{\text {Bayes }}(x)\right)\right], \\
R_{1 \mathrm{NN}} & =\mathbb{E}\left[\mathbb{I}\left(y \neq \hat{y}_{1 \mathrm{NN}}(x)\right)\right],
\end{aligned}
$$

then, as $n \rightarrow \infty$, we have the following powerful result

$$
R_{\text {Bayes }} \leq R_{1 \mathrm{NN}} \leq 2 R_{\text {Bayes }}-\frac{K}{K-1} R_{\text {Bayes }}^{2}
$$

- Despite its simplicity, k-NN is often a very good classifiers to use in a wide range of classification problems. At the very least, it is a good 'baseline' against which classifiers can be compared.
- This method allows for extremely flexible (nonparametric) decision boundaries.
- Due to the importance of distance to k-NN, it is important to standardise the data before use and find a suitable metric.
- It is also important to determine an appropriate k.

Influence of k on Decision Boundaries

- k determines the complexity of the decision boundary.
- For $k=1$, we have no training error but are exposed to overfitting.
- Increasing k yields smoother predictions, since we average over more data.
- For $k=n$, we predict the same output whatever being X.

Figure: Training data (left), 1-NN (center) and 5-NN (right)

Using the SPAM dataset properly (without PC). Writing the code from scratch.

```
X <- scale(X)
knn <- 3
predicted <- numeric(length(test))
for (k in 1:length(test)) {
    DIFF <- X[train,] -
        outer(rep(1, length(train)),X[test[k],],FUN="*")
    distance <- apply(DIFF^2,1,mean)
    nearestneighbors <- order(distance) [1:knn]
    predicted[k] <- mean(Y[train[nearestneighbors]])
}
```

Predict on the test set.

```
predicted_knn <- as.numeric(predicted > 0.5)
> table(predicted_knn, Y[test])
    actual 0 1
    predicted rrra
```

Using $k=9$ nearest neighbours.

```
predicted_knn <- as.numeric(predicted > 0.5)
```

> table(predicted_knn, Y[test])

	actual 0	1	
predicted	1349	156	
	1	104	793

Misclassification rate is thus about 10.8% for $k=9$.

Compute misclassification rate as a function of k.

K-means clustering

- A disadvantage of k-nn is the high memory requirement as each new observations has to be matched against all observations to find the nearest neighbour(s).
- As discussed before, K-means is a method for finding clusters and cluster centres in a set of unlabeled data. Considering each class in isolation, we can apply the K-means algorithm (each with R clusters) to characterise observations from each class.
- These $K \times R$ labeled prototypes can be used to summarise the distribution of class data over \mathcal{X}. For a new observations X, we predict to the class with the nearest prototype. An advantage over k-NN is thus that much fewer observations/prototypes have to be kept in memory.

Plot Spam data in the space of the first 4 Principal Components.

```
library(kernlab)
data(spam)
n <- nrow(spam)
p <- ncol(spam)-1
Y <- as.numeric(spam[, p+1])-1
X <- predict(princomp(spam[,-(p+1)] ,cor=TRUE)) [,1:4]
pairs(X,col=Y+1, cex=1.5,pch=20)
```

Red: spam
Black: not spam.

Now replace each class by 30 cluster centers.

```
nk <- 30
KMX <- kmeans(X[Y==0,], nk)
KMY <- kmeans (X[Y==1,], nk)
```

pairs(rbind(KMX\$centers,KMY\$centers),

$$
\operatorname{col}=\operatorname{rep}(1: 2, \text { each }=n k), \quad c e x=1.5, \quad \mathrm{pch}=20)
$$

And then use these as prototypes for k-NN classification.

