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Given training data with K classes, assume a parametric form for fk(x), where
for each class

X|Y = k ∼ (µk,Σk),

i.e. instead of assuming that every class has a different mean µk with the
same covariance matrix Σ, we now allow each class to have its own
covariance matrix.
Considering −2 log P(Y = k|X = x) as before,

−2 log P(Y = k|X = x) ∝ (x − µk)
TΣ−1

k (x − µk)− 2 log(πk) + constk
= µT

k Σ
−1
k µk − 2µT

k Σ
−1
k x + xTΣ−1

k x
−2 log(πk) + constk

= ak + bT
k x + xTckx

i.e. we find a quadratic function instead (the function constk includes the term
log(|Σk|)



Again, by considering when we choose class k over k�,

0 > ak + bT
k x + xTckx − (ak� + bT

k�x + xTck�x)
= a� + bT

�x + xTc�x

we see that the Bayes Classifier partitions {x : Ŷ(x) = k} are using quadratic
surfaces.
The Bayes Classifer under these assumptions is more commonly known as
the Quadratic Discriminant Analysis Classifier.



The exact form of the QDA classifier is given by

Ŷqda(x) = arg min
k=1,...,K

�
(x − µ̂k)

TΣ̂k
−1(x − µ̂k)− 2 log(π̂k) + log(|Σ̂k|)

�

for each point x ∈ X where the plug-in estimate µ̂k is as before and Σ̂k is (in
contrast to LDA) estimated for each class k = 1, . . . ,K separately:

Σ̂k =
1
nk

�

j:Yj=k

(Xj − µ̂k)(Xj − µ̂k)
T .



Computing and plotting the QDA (and LDA) boundaries.

##fit LDA
iris.lda <- lda(x=iris.data,grouping=ct)
iris.qda <- qda(x=iris.data,grouping=ct)

##create a grid for our plotting surface
x <- seq(-6,6,0.02)
y <- seq(-4,4,0.02)
z <- as.matrix(expand.grid(x,y),0)
m <- length(x)
n <- length(y)

iris.qdp <- predict(iris.qda,z)$class
contour(x,y,matrix(iris.qdp,m,n),

levels=c(1.5,2.5), add=TRUE, d=FALSE, lty=2)



Iris example: QDA boundaries
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LDA or QDA?

Having seen both LDA and QDA in action, it is natural to ask which is the
“better” classifier.
It is obvious that if the covariances of different classes are very distinct, QDA
will probably have an advantage over LDA.
As parametric models are only ever approximations to the real world, allowing
more flexible decision boundaries (QDA) may seem like a good idea.
However, there is a price to pay in terms of increased variance.



Regularized Discriminant Analysis

In the case where data is scarce , to fit
� LDA, need to estimate K × p + p × p parameters
� QDA, need to estimate K × p + K × p × p parameters.

Using LDA allows us to better estimate the covariance matrix Σ. Though QDA
allows more flexible decision boundaries, the estimates of the K covariance
matrices Σk are more variable.
RDA combines the strengths of both classifiers by regularizing each
covariance matrix Σk in QDA to the single one Σ in LDA

Σk(α) = αΣk + (1 − α)Σ for some α ∈ [0, 1].

This introduces a new parameter α and allows for a continuum of models
between LDA and QDA to be used. Can be selected by Cross-Validation for
example.


