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Clustering

Probabilistic Methods



Probabilistic Methods

» So far, we have found clusters in high-dimensional data by posing
sensible partition based problems and hierarchical clustering problems
which were tackled with heuristic approaches.

» Probabilistic methods attempt to find clusters in high-dimensional data
using a model based approach by fitting mixture models to data.

» Though well founded in probabilistic arguments, such an approach
comes at the expense of greater computation.

» Such methods can work well if good models are proposed (or if the
distribution of the data is close to the proposed model in a suitable
sense).

» We again need to specify/estimate the number of clusters K.



Mixture Models

» Probabilistic methods for clustering work by seeking to model the
distribution of points in R” using mixture models. In doing so, areas of
high density (i.e. clusters) can be accurately described.

» Mixture models have densities of the form
f(x0) = me x| %)
for some densities f;(x|¢,) and priors over these densities ny, ...,k

which satisfy m, > 0 Vkand >°r_, m = 1.
» We want to estimate the unknown parameters 6 = {m, gbk}szl given x;.,.



Mixture Models

» To make things easier, let f(x|6x) = f (x|, Xk) ~ N,(py, i) Where

1 1 Ty —1(g
F (5l ) = V(ZW)p'Ekexp{gxuk) =k )}

» Posing a Gaussian Mixture Model corresponds to assuming that each of
the K clusters that we intend to model...

» is Gaussian with different means p, and covariance structures 3.
» and each observation x comes from cluster k£ with probability 7.

» Allowing each cluster to have its own mean and covariance structure
allows greater flexibility in the model.



Different covariances
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Identical covariances
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Gaussian Mixture Models: Examples

Different, but diagonal covariances
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Fitting Gaussian Mixture Models
» To fit such a model, we need to estimate the parameters
0 = {7Tk7 1252 Ek}f:l

from the data.
» We can do this by maximum likelihood choosing # to maximise
L(0) = ]]._,f(xi|0) or equivalently £(0) = >, logf(x;|0) where

00) = log (mify,m (%) + - .. + Tz (X)) -
i=1

» Differentiating to maximise such a log-likelihood analytically or even
numerically is difficult as there are too many unknowns to handle

simultaneously.

» The Expectation-Maximisation (EM) Algorithm is a very popular method
to help find maximum likelihood estimates in the presence of unobserved

variables.



Likelihood Surface for a Simple Example
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(left) n = 200 data points from a mixture of two 1D Gaussians with
m =m = 0.5, 01 =0, =5and u; = —u, = 10. (right) Log-Likelihood surface
¢ (uy, pa), all the other parameters being assumed known.



The EM Algorithm

» EM is a very popular approach to maximize ¢ () in this missing data
context.

» The key idea is to introduce explicitly the unobserved cluster labels z;
which indicate from which cluster data x; is coming from.

» |f the cluster labels where known then we would estimate 6 by
maximizing the so-called complete likelihood

le(0) = D log p(xi,zi0)
i=1



Maximization of Complete Likelihood

» We have

(Sj lOg 7-‘-Zif(xi¢zz’)>

i:7;=k

M= T[]

i log () + Z log f (xi|ox)

1 i:7;=k

>~
I

where n, = ) .. _, 1 is the number of observations assigned to cluster .

» We would obtain the MLE for the complete likelihood
g
T ——,
n

qgk —arg max Z log f (x;|ox)

Px i=1:z;,=k



Finite Mixture of Scalar Gaussians

» In this case, ¢ = (u,0?)

1 (x—p)’
f(X‘(b) — WGXP <_ 202 )

and 0 = {7Tk, Lk, az}szl.
» The resulting MLE estimate of the complete likelihood is

~ N
Tk —
n
n
- 1
He —  — E Xi,
ng .
i=1:z;=k
n
O = — (X; — 1ix)
ng .
i=1:z;,=k

» Problem: We don’t have access to the cluster labels!



Expectation-Maximization
EM is an iterative algorithm which generates a sequence of estimates {6 }

such that
0 (9@) >/ (9<f—1>) |

At iteration r, we compute
F (0,001

- [zc (9)|X1:n,9(t_1)}

— Z P (len|X1:n7‘9(t_l)) <Z 1Og P (Xiazil 9))
i=1

lenE{l,Z ..... K}n
K

=3 > p (@ =Kx,00 ) 1og p(xi,z = k|6)

i=1 k=1

and set

0\") = argmax F (9,«9“_1))
0



Expectation-Maximization

We have
n K
F (9, 9<f—1>> =) > »p (Zi = k| XiW(H)) log p (xi,z = k| 0)
i=1 k=1
n K
:Z Zp (z,- = k| xi,9<f—1>) {log m + logf (xi|ox)}
i=1 k=1
K n
= " p (z,- — k| x;, H“”)) {log m + log f (xi|éx)}
k=1 i=1
We obtain
) 2= P (z =K Xive(t_l))
T, = ’
n
1(:) = argmax Zp (Zi = k| Xi,9(t_1)> logf (xi|ox)



Finite mixture of scalar Gaussians

In this case, the EM algorithm iterates

) e P (2 = k|xi, 04 D)
7Tk — n

() _ i Xip (ai = k| xi, 007Y)
M = Z?:lp (Zi — k‘ Xi’@(t—l)) )

2
a0 Zi:lp (Zi — k| X;, 9(1—1)) (Xi - M}(J))

Tk S b (2= K %3, 06D)
with

if (Xi| Pr)

p(z = k|x;,0) = >, mof (Xi| de)




Proof of Convergence for EM Algorithm

Proposition: ¢ (0UTD) > ¢ (90) for 0U+D) = argmax F (0,601).
0

Proof. We have

P (Xi:n:21:n | 6) P (Xi::21:0 )

p(len|97X1:n) — <:>P(X1:n‘9) —

p(X12n|9) p(Z1:n|97X1:n)

thus
?(0) =logp (X1, 0) =logp (X1.4,21:0| 0) — logp (21| €, X1:0)
and for any value 6

/ ((9) = Zp (Zl:n| H(t)axl:n> lng (Xlznazltn‘ 9)

Zl:n
g _
~"

=F(0,01)

— ZP (len’ 8<t)7xlzn) IOgP (len| (97 Xl:n) .

Zl:n




Proof of Convergence for EM Algorithm

We want to show that ¢ (1) > ¢ (6\)) for the EM, so if we prove that

ZP (len| e(t)axlzn) IOgP (lenl Q(H_l)axlzn)

Zl:n

< Zp (Zl:n| H(t)axlzn) IOgP (len| H(I)axlzn)

Zl:n

then we are done. We have

00D x. )
a0 < )1 P <Z1.n| » X1:n
ZP (Zl.n| 0\, X1., ) log D <Z1:n| H(t),xl:n)

Zl:n

a 00D xy,)
1 ( . (t)’ .n)p(ZI.n| » X1:n
og ZP 21| 0V, X1, P (21 00 x10) (Jensen)

VA

Zl:n

log 1 =0.



Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Example: Mixture of 3 Gaussians
After 1st E and M step.
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Example: Mixture of 3 Gaussians
After 2nd E and M step.
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Example: Mixture of 3 Gaussians
After 3rd E and M step.

Iteration 3
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Example: Mixture of 3 Gaussians
After 4th E and M step.
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Example: Mixture of 3 Gaussians
After 5th E and M step.

Ilteration 5
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Pros and Cons of the EM Algorithm

Some good things about EM
» no learning rate (step-size) parameter
» automatically enforces parameter constraints
» very fast for low dimensions
» each iteration guaranteed to improve likelihood
Some bad things about EM
» can get stuck in local minima so multiple starts are recommended
» can be slower than conjugate gradient (especially near convergence)
> requires expensive inference step



