
Outline

Administrivia and Introduction
Course Structure
Syllabus
Introduction to Data Mining

Dimensionality Reduction
Introduction
Principal Components Analysis
Singular Value Decomposition
Multidimensional Scaling
Isomap

Clustering
Introduction
Hierarchical Clustering
K-means
Vector Quantisation
Probabilistic Methods

Vector Quantisation

� Originally developed by the signal processing community for data
compression (audio, image and video compression), the VQ idea has
been picked up the statistics community and extended to tackle a variety
of tasks (including clustering and classification).

� VQ is a simple idea for summarising data by use of codewords.
� The algorithm is very closely related to the K-means algorithm, yet works

sequentially through the data when updating cluster centers.

Vector Quantisation

� Given p-dimensional data, a finite set of vectors Y = {y1, . . . , yK} of the
same dimensionality must be found. Vectors yk are called codewords and
Y the codebook.

� All n observations are mapped to the indices of the code book using the
following rule,

xi → yk ⇔ |xi − yk| ≤ |xi − yk� | ∀k�.

� Such a mapping induces a partition of Rp into Voronoi regions defined as

Vk = {x ∈ R
p : |x − yk| ≤ |x − yk� |∀k�}

where ∪K
k=1Vk = R

p and Vk’s are disjoint except for boundaries.

Voronoi Regions

Finding a Useful Codebook

� As with K-means, a predefined number of K codewords must be found.
They should be chosen to give the greatest compression in the data with
minimal loss in data quality.

� Where we have more codewords than clusters, it is easy to see that we
should simply place codewords at the center of areas of high density, i.e.
good codebooks find cluster centers.

Vector Quantisation

The following iterative algorithm finds a good approximate solutions to this
problem.

1. Randomly choose K observations to initialise the codebook.
2. Sample an observation x and let Vc be the Voronoi region where it falls.
3. Update the codebook

yc = yc + α(t) [x − yc]

yk = yk ∀k �= c.

α(t) quantifies the amount by which yc moves towards of the x and
decays over time to 0.

4. Repeat 2-3 until there is no change.
5. Return the codebook Y = {y1, . . . , yK}

Compression

� For compression purposes, any observation x ∈ R
p is now just mapped to

the set {1, . . . ,K} of codewords, according to which Voronoi region the
observation falls into.

� If a large number of observations x1, . . . , xn needs to be transferred,
alternatively the vector of corresponding codewords in {1, . . . ,K}n can be
transferred to achieve a compression (with a certain loss of information).
Some audio and video codecs use this method.

� As with K-means, K must be specified. Increasing K ‘improves the quality
of the compressed image’ but worsens the ‘data compression rate’, so
there is a clear tradeoff. (For clustering, the choice of K is harder and
does not have an entirely satisfactory answer).

Example: Image Compression

3 × 3 block VQ: View each block of 3 × 3 pixels as single observation

Example: Image Compression

Original image (24 bits/pixel, uncompressed size 1,402 kB)

Example: Image Compression

Codebook length 1024 (1.11 bits/pixel, total size 88kB)

Example: Image Compression

Codebook length 128 (0.78 bits/pixel, total size 50kB)

Example: Image Compression

Codebook length 16 (0.44 bits/pixel, total size 27kB)

