Outline

Administrivia and Introduction
Course Structure
Syllabus
Introduction to Data Mining
Dimensionality Reduction
Introduction
Principal Components Analysis
Singular Value Decomposition
Multidimensional Scaling
Isomap
Clustering
Introduction
Hierarchical Clustering
K-means
Vector Quantisation
Probabilistic Methods

Isomap

Isomap is useful for non-linear dimension reduction

1. Calculate distances $d_{i j}$ for $i, j=1, \ldots, n$ between all data points, using the Euclidean distance.
2. Form a graph G with the n samples as nodes, and edges between the respective K nearest neighbors (in Euclidean metric).
3. Replace distances $d_{i j}$ by 'shortest-path' distance $d_{i j}^{G}{ }^{2}$ and perform classical MDS, using these distances.

A

B

c

Examples from Tenenbaum et al. (2000)

[^0]Embedding Handwritten Characters

Embedding Faces

[^0]: ${ }^{2}$ The path-distance in the graph is, for a given path $i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{m}$ between two nodes i_{1} and i_{m} that follows the edges of the graph, the sum of the original distances $\sum_{k=1}^{m-1} d_{i_{k} i_{k+1}}$. The shortest path distance between two points i and j is the minimal path distance along all paths starting in i and ending in j.

