
MS1b Statistical Data Mining – Practice Questions TT 2013

MS1b Statistical Data Mining has not had a written exam for the last few years. In addition
to the questions on the TT 2013 Specimen Paper, the questions below are those that are most
relevant for this year’s version of MS1b. Many of these are MSc questions on the course from
recent years.
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[MS1 2006 Q6, part (I)]

1. (I) Suppose X is a p-dimensional vector of independent Bernoulli variables, X =
(X1, X2, ..., Xp). Let Xj = 1 with probability pkj when X belongs to class C = k,
k = 1, ...,K. Show that the Bayes-optimal classification rule leads to a linear discrim-
ination function between pairs of classes.

(II) [. . . ]
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[MS1 2006 Q8, parts (iii), (iv)]

2. Consider an n× n matrix ∆ of dissimilarity measurements. Entry ∆i,j gives some measure
of dissimilarity between objects corresponding to rows i and j. We wish to find n data
vectors x1, x2, ..., xn with the property that ∆i,j = |xi − xj | for each i, j = 1, 2, ..., n. The
data vectors are row vectors xi ∈ Rp i = 1, 2, ..., n for some p to be determined.

(i) [. . . ]

(ii) [. . . ]

(iii) What is a biplot? Explain how the plotted points, and the plotted vectors, are com-
puted from the data.

(iv) How do we interpret inner products between projections of the original variable axes
(of the data) into the axes of the biplot? Justify the interpretation in terms of the
singular value decomposition of X.
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[MS1 2007 Q6, parts (i)(a), (ii)(a), (ii)(b)]

3. (i) Consider a partition of n data vectors into K clusters. Let yij denote the jth data
vector in the ith cluster (so, yij is a 1× p data vector and yTij is a column vector). For

i = 1, 2, . . . ,K, let yi = 1
ni

∑ni
j=1 yij and y = 1

n

∑K
i=1

∑ni
j=1 yij . Denote by

W =
K∑
i=1

ni∑
j=1

(yij − yi)T (yij − yi)

the within-cluster variation and by

B =
K∑
i=1

(yi − y)T (yi − y)

the between cluster variation.

(a) Define the K-means clustering algorithm, give its objective function show that it
stops, and show that it may stop at a clustering which is not globally optimal.

(b) [. . . ]

(c) [. . . ]

(ii) (a) Suppose C ∈ {1, 2} with distribution π = (π1, π2) and X|C = c ∼ N(µc,Σ)
with µc the known p-component mean for class c data, and Σ the known common
covariance matrix. Show that the classification rule minimizing the total risk for
the 0–1 loss rule has a linear discriminant function.

(b) Suppose this classifier is used to classify subsequent draws (X,C) from the joint
distribution of measurements and class. Calculate the probability of misclassifi-
cation (giving your answer in terms of the CDF of a standard normal random
variable and the discriminant function).
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[MSc 2007 Q8]

4. (a) Suppose we observe T = {xk,i, . . . , xk,nk
: k ∈ {1, 2}} where each xk,i ∈ R. Assuming

pk(x) ∼ N(µ, σ) with class prior πk for each class, find an expression for the Bayes
Classifier ĉ(x) under 0–1 loss.

(b) Comparing classes k = 1 and k = 2, show that the resulting decision boundaries of
this classifier are linear.

(c) Find the plug-in estimators µ̂k and σ̂k by maximum-likelihood estimation and give
details of the calculation.

(d) Suppose we generate 2-dimensional data from pk(x) ∼ N(µk,Σ) for k ∈ {1, 2} with
x = (x(1), x(2)) ∈ R2 and suppose the plug-in esimators are

µ̂1 = (1, 1)T , µ̂2 = (−1,−1)T and Σ̂ =

(
1 0
0 1

)
.

(i) Find the decision boundary as a function for π1 = π2 = 1/2 and for π1/π2 =
exp(−1). Would you classify a new observation at x = (0, 1/3) as class k = 1 or
class k = 2 if indeed π1/π2 = exp(−1)? For which values of π1 = 1 − π2 would
you classify the observation x = (1, 1) as belonging to class 2?

(ii) What is the decision boundary under the assumption π1 = π2 if the plug-in
estimators µ̂k are as above for k = 1, 2 but the covariance matrix is

Σ̂ =

(
1 0
0 σ2

)
,

for some value of σ2 > 0. Find the asymptotic limit of the decision boundary for
σ2 →∞.
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[MSc 2009 Q8, parts (a), (b), (c)]

5. Suppose we observe data (X,Y ), where X = (X(1), X(2)) is a 2-dimensional predictor vari-
able and Y ∈ {−1, 1} is a binary class variable. Conditional on Y = 1, the predictor variable
X has a N (µ1,Σ) distribution. Conditional on Y = −1, X has a N (µ−1,Σ) distribution.
Assume that the a priori probabilities are equal, i.e. P (Y = 1) = P (Y = −1) = 0.5, and Σ
is known,

Σ =

(
1 ρ
ρ 1

)
.

Upon observing data (Xi, Yi) for i = 1, . . . , n, the empirical mean of all observations of class
Y = 1 is µ̂1 = (0, 0), whereas the empirical mean of all observations of class Y = −1 is
µ̂−1 = (1, 0).

(a) What is the classification Ŷ (X) of Linear Discriminant Analysis (LDA) for ρ = 0, as a
function of the predictor variable X = (X(1), X(2))?

(b) Find the decision boundary and classification Ŷ (X) for LDA for general ρ ∈ [0, 1].

(c) What is the misclassification error rate for observations of class Y = 1 under the optimal
LDA classification if ρ = 1, i.e. what is P (Ŷ (X) = −1|Y = 1) in this setting? (Hint:
think about what values X can take in the 2-dimensional plane for Y = −1 and for
Y = 1.)

(d) [. . . ]
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[MSc 2009 Q9]

6. Write brief and concise answers to the following questions (a few sentences in each case).

(a) Explain the difference between single-linkage, average-linkage and complete-linkage for
bottom-up hierarchical clustering of p variables. What impact has the choice of the
linkage on the choice of the first pair of variables that are grouped?

(b) Suppose a logistic regression is fitted to n observations (Xi, Yi), where X is a p-
dimensional predictor variable and Y a binary response variable in {−1, 1}. Consider
the conditional probabilities P (Y = 1|X) and P (Y = −1|X). Which function of these
conditional probabilities is modelled as a linear function of X? Name another classi-
fication method that leads to a linear dependence on X for the same function of the
posterior probabilities?

(c) Briefly explain leave-one-out cross-validation for regression trees, given data samples
(X1, Y1),
. . . , (Xn, Yn) with squared error loss and give the corresponding estimate for predic-
tion error. What is a disadvantage of leave-one-out cross-validation compared to 5-fold
cross validation?

(d) Explain briefly bagging for a general estimator predictor Ŷ of a response variable Y ,
in the context of regression trees. What is the typical effect of bagging on the variance
and bias of a regression tree or classification tree? Do you expect more improvements
through bagging when working with classification trees or when working with Linear
Discriminant Analysis?

(e) Suppose training data (Xi, Yi), i = 1, . . . , n, are available, where Y is a binary response
variable and X = (X(1), . . . , X(p)) a p-dimensional predictor variable. Logistic regres-
sion is fitted. Then, logistic regression is fitted again to the same observations, where
the predictor variable is now

(X(1), . . . , X(p), X(p+1)),

that is an additional predictor variable X(p+1) has been added. How do the first and
second logistic regression compare in terms of the training and test error?
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[MSc 2010 Q8]

7. Write brief and concise answers to the following questions (a few sentences in each case).

(a) What is the difference between K-means clustering and online vector quantization?

(b) Explain briefly the aim of metric multi-dimensional scaling (MDS) for n samples by
writing down the stress function that MDS is trying to minimize.

(c) Explain the different settings in which vector quantization and learning vector quan-
tization are used. What is one advantage of learning vector quantization over nearest
neighbour classification?

(d) What is an ROC curve in the context of binary classification with classes 0 and 1?

(e) The n given samples are (Xi, Yi) for i = 1, ..., n, where each Xi is a p-dimensional
predictor variable and Yi ∈ {0, 1} a binary response variable, indicating the class of
the i-th observation. Explain leave-one-out cross validation of misclassification error
for a classification tree. Compare leave-one-out with 5-fold cross-validation. What is a
drawback of leave-one-out cross-validation in practice?
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[MSc 2010 Q9]

8. (a) Suppose X = (X(1), X(2)) is a two-dimensional predictor variable with both X(1) ∈
{−2, 2} and X(2) ∈ {−2, 2}. Suppose that Y ∈ {0, 1} is a binary response variable and
that, conditional on Y , X(1) and X(2) are independent. Assume that

P (X(1) = 2|Y = 1) = 0.1

P (X(2) = 2|Y = 1) = 0.9

P (X(1) = 2|Y = 0) = 0.7

P (X(2) = 2|Y = 0) = 0.3

and the probabilities for X(1) = −2 and X(2) = −2, conditional on Y = 1 and Y = 0,
are the corresponding complements.

(i) Derive the Bayes classifier Ŷ = Ŷ (x(1), x(2)) for an observation (x(1), x(2)) = (2, 2)
under P (Y = 1) = P (Y = 0) = 0.5.

(ii) At what value of P (Y = 1), if any, is it optimal to classify as Ŷ (x(1), x(2)) = 0 for
all possible predictor variables (x(1), x(2))?

(b) Explain bagging in a few sentences. What is in general the qualitative effect of bagging
on the variance of a regression estimator? Would you expect greater improvements in
prediction accuracy when bagging regression trees with few or with many leaf nodes?

(c) Suppose k-nearest neighbour classification with k = 1 is applied to n = 4 data samples
(xi, yi), i = 1, . . . , n:

(1, 1), (2, 0), (3, 1), (4, 1)

where, for i = 1, . . . , n, xi ∈ R is a real-valued predictor variable and yi ∈ {0, 1} is the
binary response variable with the class information.

(i) Let Ŷ be the nearest-neighbour prediction for a new observation with predictor
variable x. Give Ŷ (x).

(ii) Let Ŷbagged(x) be the prediction if bagging is applied to the nearest neighbour
regression and the majority vote is taking over all nearest neighbour classifications
that are obtained under bootstrapping. What is the probability that the training
sample (2, 0) will not be contained in a given bootstrap sample? Using this result,
what is the bagged nearest neighbour classification for an observation at x = 2?
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[MSc 2011 Q4]

9. (a) Describe in a sentence or two the main differences between supervised and unsupervised
learning.

(b) Name two different techniques for dimension reduction, and for each technique describe
the criterion that is being used to define the “best” lower-dimensional representation.

(c) Data are available for 201 countries on five demographic and economic characteristics:
the rate of population growth (popgrwth), GDP per capita in US dollars (gdpcap),
births per 1000 persons/year (birthrate), proportion of workforce employed in agri-
culture (agriculture) and the rate of literacy (literacy). A Principal Component
Analysis will be carried out to look for interesting structure in this data.

Why is it a good idea to first scale the data?

The figure below is a scatter plot of the first two principal components of the scaled
data.
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(i) Do you think there is correlation between the first and second principal compo-
nents? Justify your answer.

(ii) Describe the interesting features of the figure.
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(iii) Use the R output below to interpret the structures or features identified in (ii).

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

popgrwth 0.364 0.744 0.385 0.301 -0.275

gdpcap -0.402 0.523 -0.702 0.226 0.146

birthrate 0.520 0.128 -0.104 0.836

agriculture 0.452 -0.385 -0.351 0.706 -0.161

literacy -0.481 0.481 0.591 0.423

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.788 0.916 0.689 0.566 0.408

Proportion of Variance 0.639 0.167 0.095 0.064 0.033

Cumulative Proportion 0.639 0.807 0.902 0.966 1.000

(iv) Do you think the point labelled country X in the figure is more likely to correspond
to The United States of America or to Ethiopia? Explain your reasoning.

(v) Suppose that a biplot of these data were to be produced by adding the projections
of the variable axes. Show with a sketch the direction of the vectors which would
correspond to popgrwth and birthrate.
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[MSc 2012 Q7 (a “half-question”)]

10. In binary classification, the loss function we usually want to minimize is the risk associated
with the 0/1 loss:

L (y, ŷ (x)) = I (ŷ (x) 6= y)

where ŷ (x) , y ∈ {0, 1}. In this problem we will consider the effect of using an asymmetric
loss function

Lα,β (y, ŷ (x)) = αI (y = 0, ŷ (x) = 1) + βI (y = 1, ŷ (x) = 0)

where α, β > 0.

(a) Determine the Bayes optimal classifier, i.e. the classifier that achieves the minimum
risk for the loss function Lα,β.

(b) Suppose P (Y = 0) is very small. This means that the classifier ŷ (x) = 1 for all x will
have a small risk under the 0/1 loss function. We may try to put the two classes on
even footing by considering the risk

R = P ( ŷ (X) = 1|Y = 0) + P ( ŷ (X) = 0|Y = 1)

Show that this risk can be rewritten as the expected loss function Lα,β for certain values
of α, β.
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