Probabilistic Perspectives on Meta and Reinforcement Learning

Yee Whye Teh
Statistics @ Oxford
DeepMind

http://csml.stats.ox.ac.uk/people/teh/
Reinforcement Learning
Efficient Learning from Multiple Tasks
Transferrable Structures

● Transferrable structure in policies/solutions
 ○ Learning prior policies using KL-regularised RL:
 ○ Neural probabilistic motor primitives
 ■ [Merel, Hasenclever et al ICLR 2019]

● Transferrable structure in environments
 ○ Meta-learning with neural processes:
Markov Decision Processes

\[\pi(a_t | s_t) \]

\[r_t, s_t \]

\[p(s_{t+1} | s_t, a_t) \]

\[r_t = r(s_t, a_t) \]

\[\max \pi \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t r_t \right] \]
KL-regularised Reinforcement Learning

$$\max_{\pi} \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t \left(r(s_t, a_t) + \alpha \log \frac{\pi_0(a_t | s_t)}{\pi(a_t | s_t)} \right) \right]$$

- **expected rewards**
- **default behaviour**
- **KL divergence**
- **diverse solutions**
KL-regularised Reinforcement Learning

$$\max_\pi \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t \left(r(s_t, a_t) + \alpha \log \frac{\pi_0(a_t | s_t)}{\pi(a_t | s_t)} \right) \right]$$

- log likelihood
- prior
- KL divergence
- posterior
KL-regularised Reinforcement Learning

\[
\max_{\pi} \mathbb{E}_\pi \left[\sum_{t=1}^{\infty} \gamma^t \left(r(s_t, a_t) + \alpha \log \frac{\pi_0(a_t \mid s_t)}{\pi(a_t \mid s_t)} \right) \right]
\]

\[
\pi^*(a_t \mid s_t) \propto \pi_0(a_t \mid s_t) \exp(Q^*(a_t \mid s_t))
\]
KL-regularised Reinforcement Learning

- Distribution \(p(w) \) over tasks \(w \):

\[
\max_{\pi} \sum_w p(w) \left[\mathbb{E}_{\pi_w} \left[\sum_{t=1}^{\infty} \gamma^t \left(r_w(s_t, a_t) + \alpha \log \frac{\pi_0(a_t | s_t)}{\pi_w(a_t | s_t)} \right) \right] \right]
\]

\[
\pi_w^*(a_t | s_t) \propto \pi_0(a_t | s_t) \exp(Q_w^*(a_t | s_t))
\]

\[
\pi_0^*(a_t | s_t) = \arg \max_{\pi_0} \sum_{w} p(w) \mathbb{E}_{\pi_w} \left[\sum_t \gamma^t \log \pi_0(a_t | s_t) \right]
\]
Information asymmetry in KL-regularized RL

- Default policy trained alongside policy
- Default policy sees partial information
- “Information hiding” forces generalization

Expert policy

Baseline
- Proprio
- Proprio+Box
- Transfer Proprio
- Transfer Proprio+Box
Introducing Structure via Latent Variables

\[\pi(\tau) = \int \pi(\tau | z) dz \]

 richer action distribution

 goal conditional policy

 temporal correlations — e.g. options

Yee Whye Teh
Hierarchical Structure in Policy and Prior

\[\mathbb{E}_{\pi}(\tau)[\sum_t r_t] - \text{KL}[\pi(\tau) || \pi_0(\tau)] \geq \mathbb{E}_{\pi}(\tau)[\sum_t r_t] - \text{KL}[\pi(z) || \pi_0(z)] - \text{KL}[\pi(\tau | z) || \pi_0(\tau | z)] \]

Parameter sharing \(\pi = \pi_0 \)

"Reusable LL controller" / "Skills"
Hierarchical Structure in Policy and Prior

Prior
Hierarchical
Unstructured
None

Policy (Posterior)
Hierarchical Structure in Policy and Prior

- Prior
- Hierarchical
- Unstructured
- None

Low level controller trained on light box: Agent struggles to control heavy box

Separate LL

Shared LL

Yee Whye Teh
Neural Probabilistic Motor Primitives
Yee Whye Teh

\[
\begin{align*}
\log \pi_0(a_{1:T}|s_{1:T}) &= \int \pi_0(a_{1:T}|s_{1:T}, z_{1:T}) p_z(z_{1:T}) \, dz_{1:T} \\
&\geq \mathbb{E}_q \left[\sum_{t=1}^{T} \log \pi_0(a_t|s_t, z_t) + B \left(\log p_z(z_t|z_{t-1}) - \log q(z_t|z_{t-1}, x_t) \right) \right]
\end{align*}
\]
Proprio

Vision

Motor intention

Action

Yee Whye Teh
Transferrable Structures

● Transferrable structure in policies/solutions
 ○ Learning prior policies using KL-regularised RL:
 ○ Neural probabilistic motor primitives
 ■ [Merel, Hasenclever et al ICLR 2019]

● Transferrable structure in environments
 ○ Meta-learning with neural processes:
Model-based Reinforcement Learning

\[h_1 \rightarrow a_1, r_1 \]
\[h_2 \rightarrow a_2, r_2 \]
\[h_3 \rightarrow a_3, r_3 \]
\[\vdots \]
\[h_t \rightarrow a_t, r_t \]

\[\hat{p}(s' | s, a) \]
\[\hat{r}(s, a) \]

Plan

state, reward

action
Model-based Reinforcement Learning

\[h_1 \rightarrow a_1, r_1 \]
\[h_2 \rightarrow a_2, r_2 \]
\[h_3 \rightarrow a_3, r_3 \]
\[\vdots \]
\[h_t \rightarrow a_t, r_t \]

\[\hat{p}(s' \mid s, a) \]
\[\hat{r}(s, a) \]

inputs x

outputs y
Model-based Reinforcement Learning

\[h_1 \rightarrow a_1, r_1 \]
\[h_2 \rightarrow a_2, r_2 \]
\[h_3 \rightarrow a_3, r_3 \]
\[\vdots \]
\[h_t \rightarrow a_t, r_t \]

\[\hat{p}(s' | s, a) \]
\[\hat{r}(s, a) \]

\[x_i \rightarrow y_i \]

Yee Whye Teh
Specifying Stochastic Processes

- Gaussian processes are typically described via marginal distributions:

\[
\begin{pmatrix}
 f(x_1) \\
 f(x_2) \\
 \vdots \\
 f(x_t)
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
 \mu(x_1) \\
 \mu(x_2) \\
 \vdots \\
 \mu(x_t)
\end{pmatrix},
\begin{pmatrix}
 K(x_1, x_1) & K(x_1, x_2) & \cdots & K(x_1, x_t) \\
 K(x_2, x_1) & K(x_2, x_2) & \cdots & K(x_2, x_t) \\
 \vdots & \vdots & \ddots & \vdots \\
 K(x_t, x_1) & K(x_t, x_2) & \cdots & K(x_t, x_t)
\end{pmatrix}
\]
Specifying Stochastic Processes

- Gaussian processes can equivalently be described via its conditional distributions:

\[f(x_{t+1}) \mid f(x_1) = y_1, \ldots, f(x_t) = y_t \]

\[\sim \mathcal{N}(\mu(x_{t+1}) + K_{t+1,1:t} K_{1:t,1:t}^{-1} y_{1:t}, K_{t+1,t+1} - K_{t+1,1:t} K_{1:t,1:t} K_{1:t,t+1}) \]

- In general, stochastic processes can also be described using a consistent family of conditional distributions:

\[\mathbb{P}(f(x_{t+1}) = y_{t+1} \mid f(x_1) = y_1, \ldots, f(x_t) = y_t) \]

for training sets \(\{x_{1:t}, y_{1:t}\} \) and test sets \(\{x_{t+1}, y_{t+1}\} \).
Learning Neural Stochastic Processes

- Use a neural network to parameterise the conditional distributions.
Learning Neural Stochastic Processes

\[
\begin{align*}
 x_1^1 &\rightarrow y_1^1 \\
 x_t^1 &\rightarrow y_t^1 \\
 x_{t+1}^1 &\rightarrow y_{t+1}^1 \\
 x_{t+s}^1 &\rightarrow y_{t+s}^1 \\
 x_1^2 &\rightarrow y_1^2 \\
 x_t^2 &\rightarrow y_t^2 \\
 x_{t+1}^2 &\rightarrow y_{t+1}^2 \\
 x_{t+s}^2 &\rightarrow y_{t+s}^2 \\
 x_1^3 &\rightarrow y_1^3 \\
 x_t^3 &\rightarrow y_t^3 \\
 x_{t+1}^3 &\rightarrow y_{t+1}^3 \\
 x_{t+s}^3 &\rightarrow y_{t+s}^3 \\
 x_1^4 &\rightarrow y_1^4 \\
 x_t^4 &\rightarrow y_t^4 \\
 x_{t+1}^4 &\rightarrow y_{t+1}^4 \\
 x_{t+s}^4 &\rightarrow y_{t+s}^4
\end{align*}
\]

\[
\begin{align*}
 x_1^w &\rightarrow y_1^w \\
 x_t^w &\rightarrow y_t^w \\
 x_{t+1}^w &\rightarrow y_{t+1}^w \\
 x_{t+s}^w &\rightarrow y_{t+s}^w
\end{align*}
\]

\[
\begin{align*}
 y_1^w &\rightarrow y_{t+1}^w \\
 y_2^w &\rightarrow y_{t+2}^w \\
 y_3^w &\rightarrow y_{t+3}^w \\
 \end{align*}
\]

\[
\max_{\eta} \sum_w p(w) \sum_{j=1}^{s} \log p_{\eta}(y_{t+j}^w \mid x_{t+j}^w, \{x_i^w, y_i^w\}_{i=1}^{t})
\]

- A probabilistic perspective on meta-learning.
Few Shot Image Classification

Training
- terrier
- beagle
- labrador
- cat
- poodle

Test
- ?
- ?
- ?
- ?
- ?

Credit: Andrei Rusu, ImageNet
Few Shot Image Classification via Meta-Learning

Training
- sloth
- lipstick
- hot dog
- barrette
- tank

Meta-training
- sloth
- lipstick
- hot dog
- barrette
- tank

Test
- hot dog
- sloth
- tank
- barrette
- lipstick

Credit: Andrei Rusu, miniImageNet
Optimization Perspective on Meta-Learning

Meta-parameter η

Training Data $\{(x_i, y_i)\}$

Learning Algorithm $A_\eta: \text{train } \Rightarrow \theta$

Predictor $f_{\eta,\theta}(x)$

Test Data

Test Loss

20%

0%

20%
Optimization Perspective on Meta-Learning

Meta-parameter η

Training Data
$\{(x_i, y_i)\}$

Learning Algorithm
$\text{train} \Rightarrow \theta$

Predictor
$f_{\eta, \theta}(x)$

Test Data

Test Loss

20%

0%

20%
Optimization Perspective on Meta-Learning

- Task w

Training Data → Learnt model Parameter θ → Evaluate

Meta-Parameter η

Test Data

Generative Process

Learning Process

Yee Whye Teh
Probabilistic Perspective on Meta-Learning

- Task \(w \)

Training Data
- Meta-Parameter \(\eta \)

Test Data
- Generative Process
- Learning Process

\[P(w|\text{train}) \]

Yee Whye Teh
Variational Auto-Encoders

- Prior $p(Z)$
- Latent representation
- Encoder $q(Z|X)$
- Decoder $p(X|Z)$
- "Amortized inference"
- Generative model

Data X flows through the encoder to the latent representation Z, which is then used by the decoder to reconstruct the original data X. This process allows for effective dimensionality reduction and generation of new data points.
Probabilistic Model for Meta-Learning

Encoder q(Z|Training)
“Amortized learning”

Task representation

Decoder p(Test|Z)
Generative model

Training Data

Test Data

η
meta-parameter

Images of tank, sloth, lipstick, hot dog, barrette
Neural Processes

\[\sum \]

encoding

\[r_1 \]
\[r_2 \]
\[r_3 \]

outputs

inputs

Training data

Test data

inputs

outputs

meta-parameter

parameter

\[Z \]

\[\eta \]
Neural Processes

Task = Function on 1D space.

Given training points, use neural processes to predict mean and std of function values at other locations.
Cart Pole
Image Super-resolution

Task = Image = Function on 2D space.
Image Super-resolution

context

target prediction at different resolutions x 3

context

target prediction

Interpolation baselines

4 x 4

8 x 8

16 x 16

32 x 32

8 x 8

16 x 16

32 x 32

256 x 256
Adversarial testing of RL agents

\[M, p_s, p_g \]

\[r(M, p_s, p_g | A) \]

Powerful RL Agent
Adversarial testing of RL agents

\[M, p_s, p_g \]

\[r(M, p_s, p_g | A) \]

Bayesian Optimization

\[\min_{M, p_s, p_g} r(M, p_s, p_g | A) \]

\[(M, p_s, p_g, A) \sim p(\mathcal{T}) \] - training & holdout samples (agents, mazes, positions)

Yee Whye Teh
Bayesian Optimization performance

![Graph showing performance of different optimization methods over iterations. The x-axis represents iterations, and the y-axis represents the normalized minimum. The graph compares Alpha-Div, Random Search, BBB, DKL, Neural Process, and GP.]
Examples of performance decrease
Summary

- Prior knowledge/inductive biases are necessary for fast learning.
 - Knowledge about what is in the environment
 - Knowledge about how to solve tasks
- Sources of prior knowledge:
 - Features, losses, architectures
 - Data augmentation
 - Data from other modalities
 - Related tasks
Thank You!

Recommender systems

Objective:

For given user \(u \), approximate its rating function \(f_u : \mathcal{I} \rightarrow \mathbb{R} \) given the observed context \(\mathcal{I}_u \subset I \)
Recommender systems

Objective:

For given user u, approximate its rating function $f_u : \mathcal{I} \rightarrow \mathbb{R}$ given the observed context $\mathcal{I}_u \subset \mathcal{I}$

$$(\mathcal{I}_u, \mathcal{R}_u) \sim p(\mathcal{T})$$ - training & holdout samples

$\mathcal{IG}(\mathcal{I}_i) := \mathcal{H}(p(r_{\setminus i}|\mathcal{C})) - \mathbb{E}_{p(r_{\setminus i}|\mathcal{C})}[\mathcal{H}(p(r_{\setminus i}|\mathcal{C}'))] \quad \mathcal{C}' = \mathcal{C} \cup \{\mathcal{I}_i, \hat{r}_i\}$

Bootstrapping from the model’s predictions
Results on MovieLens: RMSE

<table>
<thead>
<tr>
<th>Model</th>
<th>MovieLens 100k</th>
<th>20% of user data</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD++</td>
<td>1.0517</td>
<td>–</td>
<td>1.0217</td>
<td>–</td>
</tr>
<tr>
<td>Multitask MLP</td>
<td>0.9831</td>
<td>–</td>
<td>0.9679</td>
<td>–</td>
</tr>
<tr>
<td>MAML</td>
<td>0.9593</td>
<td>–</td>
<td>0.9441</td>
<td>–</td>
</tr>
<tr>
<td>NP (random)</td>
<td>0.9359</td>
<td>–</td>
<td>0.9215</td>
<td>–</td>
</tr>
<tr>
<td>NP (Info gain)</td>
<td>0.9288</td>
<td>–</td>
<td>0.8829</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>MovieLens 20m</th>
<th>20%</th>
<th>50%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVD++</td>
<td>0.9454</td>
<td>–</td>
<td>0.9454</td>
<td>–</td>
</tr>
<tr>
<td>Multitask MLP</td>
<td>0.8570</td>
<td>–</td>
<td>0.8401</td>
<td>–</td>
</tr>
<tr>
<td>MAML</td>
<td>0.8142</td>
<td>–</td>
<td>0.7852</td>
<td>–</td>
</tr>
<tr>
<td>NP (random)</td>
<td>0.7982</td>
<td>–</td>
<td>0.7684</td>
<td>–</td>
</tr>
<tr>
<td>NP (Info gain)</td>
<td>0.7932</td>
<td>–</td>
<td>0.7366</td>
<td>–</td>
</tr>
</tbody>
</table>