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Segmentation and recognition are important subtasks of image interpretation. The
general approach to statistical image interpretation tries to solve each separately. This
introduces various problems as segmentation and recognition are interrelated.

These problems can be avoided by solving segmentation and recognition simultane-
ously. This is achieved by viewing segmentation and recognition as subtasks of finding
the correct parse tree of the image, and viewing image interpretation as a search in the
space of parse trees.

Credibility networks are an instantiation of this idea. They are graphical models
which describe a probability distribution over all possible parse trees with the leaves
corresponding to pixels.

The parameters of a credibility network can be learned and inference can be achieved
using mean field approximations. During inference, the results of segmentation and
recognition are iteratively improved upon. Simulations showed that credibility networks
can perform interesting toy problems, for example hand-written digit classification and

segmentation.
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Chapter 1

Introduction

1.1 Image Interpretation

What does it mean to interpret an image?

Perhaps the most obvious answer is to recognize the objects present in the image.
The task of recognition has been the focus of attention of statistical pattern recognition
for the past 40 years. The paradigm problem is to classify an object from a vector of
features extracted from the image. With the advent of backpropagation [34], the choice of
features and the choice of weights to put on these features became part of a single, overall
optimization and impressive performance was obtained for restricted but important tasks
such as hand-written character identification [7].

A significant weakness of many current recognition systems is their assumption that
images contain exactly one object to be recognized. Often, further assumptions are made
that the images are normalized. Except in highly controlled situations, this is obviously
not true. To deal with this, a separate preprocessing phase is often performed where
images are segmented and normalized such that each segment contains one object in a
standard view.

There are various problems with such an image interpretation system, in which seg-
mentation is first carried out followed by recognition. Firstly since we are segmenting the
image in order to aid recognition, we have little prior knowledge as to what the objects

are, or their locations in the image. It is very hard to perform segmentation accurately
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with such scarce knowledge. Hence researchers have to rely on hand-crafted, ad hoc
heuristics which work well only in specific circumstances. Secondly, by segmenting an
image, we remove the object to be recognized from the context in which it arises. Al-
though this helps in removing the clutter present in the rest of the image, it might also
reduce the ability to recognize an object correctly because the context in which an object
arises gives a great deal of information about the nature of the object'. Thirdly, each
object can be described in terms of its parts, which can also be viewed as objects on their
own. Then the question of how fine-grained the segmentations should be arises. In the
words of David Marr : “Is a nose an object? Is a head one? ... What about a man on a
horseback?” [28].

The first problem stems from the fact that many current systems use a purely bottom-

up approach, as depicted by the flow chart below.

S i iti further I i
Image Segmentation Recognition processing Interpretation

By introducing more knowledge of what is in the image, we can improve our segmentation
process. An intuitive solution for this is to couple the segmentation and recognition

phases, as shown below.

. i iti further . i
Image Segmentation Recognition processing Interpretation

The idea is to first obtain a rough segmentation of the image, and pass the segments to
the recognition phase, obtaining a rough idea of what objects are present in the image.
Now using the partial results from the recognition phase, we can improve the initial
segmentation. This is repeated until the algorithm converges to a stable set of segments
and objects.

The second problem can be handled similarly, if we now couple the segmentation and

recognition phases to the higher level processes :

S i iti further I i
Image Segmentation Recognition processing Interpretation

Using initial results from the segmentation and recognition phases, we can obtain partial

! Allen Jepson gave this example : a strange shape located at the side of a door can still be recognized
as a door knob, even though it might be impossible to determine what it is in isolation.
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results from the higher level processes. These results can now act as the context required

to improve the performance of the recognition phase and vice versa.

We can use graphical models to actually couple the different phases of image inter-
pretation together. Graphical models have recently came into prominence in various
communities including statistics and neural networks. There are a number of reasons for
this. Graphical models describe the causal relationships between random variates in an
intuitively appealing fashion. Further, graphical models can be fitted to data and the
underlying relationships between random variates can be extracted. During inference,
graphical models exhibit a phenomenon known as ‘explaining away’ [33], which is very
important for segmentation. Perhaps most importantly for our cause, graphical models
allow for the integration of top down information and bottom up evidence in a statisti-
cally correct manner. The coupling of the different phases as described above will follow

from the algorithms for inference in graphical models (chapter 2).

A possible solution for the problem of how fine-grained segmentations should be is
an old idea from structural image analysis: the parse tree of an image. Suppose the
image is first segmented into tiny regions, each of which can be described as an edge,
a bar, a uniform region etc. Then the tiny regions are grouped together (i.e. the set
of regions is segmented). Using the descriptions of the tiny regions, the larger regions
can be recognized as longer edges, curves etc. These regions are grouped further into
larger and larger objects. As the regions are grouped recursively, we get a hierarchical,
tree structured representation of the image. In this tree structure, we can obtain the
segmentation results at every granularity level. At each level we can obtain compact
descriptions of the regions, e.g. a line, a nose, or a head. This is the parse tree of the
image.

This thesis describes work done in the investigation of a new paradigm for statisti-
cal image interpretation called credibility networks. Credibility networks are graphical
models designed to infer the parse trees of images. In the process of inference, segmen-
tation and recognition at multiple levels of abstraction are performed together using an
EM-like algorithm. As segmentation is now part of the overall optimization, the need for

hand-crafted, ad hoc segmentation heuristics can be eliminated.
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1.2 Thesis Organization

The following section, 1.3, describes popular and recent models used in statistical pattern
recognition. The models are briefly described and their advantages and drawbacks are
discussed. Then section 1.4 describes graphical models and how to learn and do infer-
ence with them, in particular, the EM algorithm is described in section 1.5. Chapter 2
discusses credibility networks in detail. Section 2.2 discusses a simple class of credibility
networks we call binary credibility networks that do not deal with instantiation param-
eters. Section 2.3 derives mean field learning and inference rules for binary credibility
networks. Then section 2.4 describes some works in relation to credibility networks. The
hierarchical mixtures of experts motivates a way to extend credibility networks to handle
instantiation parameters in section 2.4.1. Chapter 3 presents a number of toy experi-
ments on binary credibility networks. Finally chapter 4 describes some problems with
the current model and suggests various future endeavors to address the problems as well

as to extend the model.

1.3 Statistical Models

1.3.1 Sigmoid Belief Networks

A sigmoid belief network (SBN) is a graphical model consisting of a number of stochastic
binary? units connected in a directed acyclic graph [29]. The probability of a unit being

on is the sigmoid of the weighted sum of the inputs the unit receives from its parents :

P(si|pa(s;)) = sigmoid( Z Wi;S;) (1.1)

Jj€pa(s;)
where sigmoid(z) = (1 + exp(—z))~! and pa(s;) is the set of parents of unit 7. In
general, as each unit has multiple parents, it is intractable to compute the posterior
distribution over hidden variables when certain variables are observed. However, Neal

showed that Gibbs sampling can be used effectively for inference [29]. Efficient methods

2By binary units we mean the activations take on values of 0 or 1.
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of approximating the posterior distribution were introduced later [8, 16, 36, 38] and
these approaches were shown to yield good density models for binary images of hand-
written digits [11]. The problem with these models which make them inappropriate for
modeling images is that they fail to respect the ’single-parent’ constraint : in the correct
interpretation of an image of opaque objects each object-part belongs to at most one

object — images need parse trees, not parse DAGs.

1.3.2 Multiscale Models

Multiscale models [2, 4, 25] are interesting generative models for images that use a fixed
tree structure. Nodes high up in the tree control large blocks of the image while bottom
level leaves correspond to individual pixels. Because a tree structure is used, it is easy
to compute the exact posterior distribution over the latent (non-terminal) nodes given
an image. As a result the approach worked much better than Markov Random Fields
which generally involve an intractable partition function. A disadvantage is that there
are serious block boundary artifacts. Overlapping trees were proposed as solutions by
smoothing the transition from one block to another [23]. A more serious disadvantage is
that the tree cannot possibly correspond to a parse tree because it is the same for every

image.

1.3.3 TRAFFIC

Zemel, Mozer and Hinton [43] proposed a neural network model in which the activities
of neurons are used to represent the instantiation parameters of objects or their parts,
i.e. the viewpoint-dependent coordinate transformation between an object’s intrinsic
coordinate system and the image coordinate system. The weights on connections are
then used to represent the viewpoint-invariant relationship between the instantiation
parameters of the whole object and the instantiation parameters of its parts. This model
captures viewpoint invariance nicely and corresponds to the way viewpoint effects are
handled in computer graphics, but there was no good inference procedure for hierarchical

models and no systematic way of sharing modules that recognize parts of objects among
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multiple competing object models.

1.3.4 Mixtures of Factor Analyzers

Simard et al [14, 40] noted that small changes in object instantiation parameters result
in approximately linear changes in (real-valued) pixel intensities. This means that a
linear model like factor analysis can capture these small changes in object instantiation
parameters successfully. To model larger changes, many locally linear models can be
pieced together. Hinton, Dayan and Revow [17] proposed a mixture of factor analyzers
for this. Ghahramani and Hinton [13] showed that the mixture can be learned using an
exact EM algorithm. Bishop has recently shown how to make this approach much more
computationally efficient [41, 42]. To make the approach really efficient, however, it is
necessary to have multiple levels of factor analyzers and to allow an analyzer at one level
to be shared by several competing analyzers at the next level up. Deciding which subset
of the analyzers at one level should be controlled by one analyzer at the level above is
equivalent to image segmentation or the construction of part of a parse tree and the

literature contains no proposals on how to achieve this.

1.4 Graphical Models

A graphical model is a probability model represented as a graph. The nodes ¢ € I of
the graph stand for the random variables X = {;]i € I} of interest®, and the edges
represent dependencies among the variables. The edges can be directed or undirected
(both kinds can appear in the same graph). Here we shall only consider directed acyclic
graphs (DAGs), in which case the edges can be interpreted as causations. Further, given
the values of its parents, a node is conditionally independent of its other ancestors. More

formally, the probability distribution function for X is

P(X) = HP(:ci|xj for j € pa(1)) (1.2)

el

3For simplicity in description, we may refer to a node when we meant the associated random variable
and vice versa. What we meant should be clear from the context.
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Similar decompositions of the probability distribution function of X into local distribu-
tions exist for other types of graphical models. This notion of conditional independence
is a very important property of graphical models, because it captures the structure of the
underlying random process generating the variables and translates that into a concrete
mathematical form which we can work with.

Each term in (1.2) is a local probability distribution involving the variable at a node
conditioned on the values of variables at its parents. The distribution is parameterized
by some parameters 6 = {6;|i € I},

P(X|0) = HP(J:AH,-,:E]- for j € pa(i)) (1.3)
i€l

Using Bayes’ rule given observations O at some nodes, the posterior distribution over
the unobserved variables H = X \ O is

_ P(3,010)  P(X|0)
PHIO.0) = —pony = PO (1.4)

The process of computing P(H|O) is called inference, as we are inferring the values of

the unobserved variables given some observations, hence of properties of the unobserved
process giving rise to the observations. The quantity P(Q|f) is called the likelihood of
the observations . The computation of the likelihood term in graphical models is in
general NP-hard [5]. This means that exact inference is often an intractable process and
approximations are often required.

Suppose we have some data D to which we wish to fit a graphical model. We can do
this by maximizing the likelihood of generating the data P(D) with respect to # . This
process is called learning. Since log is a strictly increasing function, it is often easier to
increase the log likelihood instead.

For more in-depth information on graphical models, the reader is referred to Hecker-

man [15] and Buntine [3].

1.5 The EM Algorithm

The standard way to fit a graphical model is by the EM algorithm [10]. Suppose we have

a model with parameters # and the values O at a number of nodes I were observed.
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Let I3y = I'\ Ip be the remaining unobserved nodes and H be the values at these nodes.
The EM algorithm is an iterative algorithm which finds maximum likelihood estimates
for 6 given the observations O.

Initially, estimates are used for 4 and 6. For each iteration, the algorithm consists of
two steps : an expectation (E) step and a maximization (M) step. During the E step, the
distribution over H is inferred from the observations. That is, the posterior distribution

over the hidden variables given the observations O and 6 is computed :
Q « P(H|0O,0) (1.5)

Then, during the M step, the parameters 6 of the model are learned to fit the observations,
that is, f is re-estimated to be the maximum likelihood parameters assuming that the

distribution found in the E step is correct :
6" + arg max {EQ[log P(O, ’H,|9)]} (1.6)
9

Each iteration of the algorithm increases the true likelihood of generating the observations
unless a local maximum or a saddle point has already been attained. In fact, if instead
of performing a full M step, we update 6 such that it only improves Eg[log P(O,H|6)]
(e.g. a gradient ascent method) but not maximizes it, the procedure is still guaranteed to
increase the true likelihood. Such an M step is called a partial M step and the algorithm
is now called the generalized EM (GEM) algorithm.

A partial M step is sometimes necessary because the full M step might involve an
intractable or inefficient non-linear optimization. In such a case gradient ascent based
methods might still be feasible. Similarly calculating the posterior distribution in the E
step might be infeasible, or the posterior distribution itself might be too complex and
hence expensive to represent. There are two broad approaches to bypass this problem :

variational methods and Monte Carlo methods.

1.5.1 Variational Methods

Neal and Hinton [31] showed that the EM algorithm can be viewed as coordinate descent

in a cost function (called the variational free energy) that resembles the free energy in
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statistical physics :
F(Q,0) = Eq[—log P(H, 0|0)] — Eq[—log Q(#|0)] (1.7)

The first expectation in (1.7) is the (variational) energy of the system while the second
expectation is the (variational) entropy of the distribution (). In this formulation, the
EM algorithm just alternates between minimizing F (@, #) with respect to @) and with
respect to 6.

It is easy to verify that
KL(Q||P(H|0,0)) = log P(H|O0,0) — (-F(Q,0)) (1.8)

where KL(Q||P(H|0,0)) is the Kullback-Leibler (KL) divergence of P(H|O,6) from
Q. By the positivity of the KL divergence [6], we see that —F(Q,#) is a lower bound
on the log likelihood log P(#|O,0) with equality exactly when @) equals the posterior
distribution P(#|O, ) [24]. This shows that the EM algorithm (as well as a wide range
of its variants, including the generalized EM) would always increase the log likelihood
unless already at a local maximum or saddle point [31]. Further, it shows that even if we
choose a () that decreases F but not minimizes it, we are still increasing a lower bound
on the log likelihood.

Consider a family of tractable approximating distributions Q(#|6, &) over H param-
eterized by £&. The parameters £ are called variational parameters while @) is called a
variational approximation. Instead of working with the correct but intractable posterior
distribution P(H|O, ), we work with a feasible approximation Q(H|6,&) to it. That
is, during the E step we minimize or improve upon (e.g. using some gradient descent
method) F(Q(H|0,&),0) with respect to . This is the variational method.

The simplest variational approximation is the maximum a posteriori (MAP) approx-
imation. Here we take Q(#|6,&) to be the distribution that assigns a probability of 1
to one particular value H (&) of H. The MAP approximation is very simple to use and
can be a good approximation if the true posterior has a sharply peaked dominant mode
(although finding the sharp peak of the true posterior can be quite hard and the approx-

imation might end up at the maximum of a sub-dominant mode). However, due to it’s
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simplicity, the MAP approximation can be used as a first attempt at evaluating a new
model.

Another simple variational approximation is the mean field (MF) approximation. This
approximation assumes that the hidden variables H = {#,;}icr,, are independent given
the observations :

Q(H[0,¢) = [ [ @i(H:l6,&) (1.9)
i€ly
For real-valued hidden variables, one might use Gaussian distributions for approximation.
For binary-valued hidden variables, &; consists of just the mean of the variable H;. The
MF approximation is very good when the graph is very dense and the inter-node influence
is relatively weak [32]. The MF approximation has also been shown to be effective in
training sigmoid belief networks [36, 37].

Variational approximations introduce a bias towards models whose posterior distribu-
tions are close to the simple approximating distributions. On the one hand, this means
that the models we get after learning may not be as efficient as possible; on the other,
we can think of the variational method as introducing a regularizer that prefers more
tractable models. Variational methods are deterministic, and there is always a known
lower bound on the log likelihood which never decreases. This is advantageous because
guarantees can be made regarding the performance of the model. A disadvantage is that
inference is an optimization process which always decreases the free energy locally and
can often get stuck in local minimas. An excellent introduction to variational methods

is given by Jordan et al [24].

1.5.2 Monte Carlo Methods

Instead of trying to approximate the posterior distribution using some predefined param-
eterized subset of distributions, we can try to sample from the true posterior distribution.
Suppose in the E step we get n independent samples {#;,... ,H,} from the posterior
distribution. In the M step, we can approximate the expectation in (1.6) with

Ellog P(H, 0|8)] ~ %Xn:logP(Hi, 0|9) (1.10)

1=1
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and update # by improving the approximation (1.10) instead. This is the Monte Carlo
(MC) method. As the samples are from the posterior distribution, for large enough n, we
are guaranteed that the approximation is accurate. Unfortunately many samples may be
required. It is also often unclear how many independent samples are sufficient. A survey
of existing Monte Carlo methods is given by MacKay [26].

However it is often hard to obtain samples from the posterior distribution directly.
Sometimes it is possible to construct an ergodic Markov process whose invariant distribu-
tion is the posterior P(#H|O,0). In this case, one can run the Markov process, obtaining
a sequence of states {H(,H®™ ... }. It can be shown that H(™ is a sample from a
distribution P(™ that converges to P(H|O, ) in the KL divergence sense as n — oo [30].
We can then take %™ to be a sample from the posterior once P™ is close enough to
P(#|0O, ). This method of obtaining samples from the posterior is called the Markov
chain Monte Carlo (MCMC) method.

A problem for MCMC methods is the time required for P(™ to converge to the
posterior distribution. In many cases it is either not known or the time to convergence
is too long. Further, as consecutive states are not independent, potentially many states
have to be visited in between samples, or we have to run the Markov process multiple
times to make sure the samples we take are independent. Details of Markov chain Monte
Carlo methods are provided by Neal [30], including ways to improve the convergence
times of MCMC methods.

A popular MCMC method is Gibbs sampling [12]. In Gibbs sampling, to generate the
current state H®) = {’Hgt)}ie 1,, from the previous state H(¢ ) = {”Hgt_l)}ie 1, €ach hidden
unit ¢ is visited according to some order < on I, and HZ@ is sampled from the marginal
distribution P(H\" |0, #\"Vj < i,H{" " Vi < k,8). The transition distribution is

THOHED) = T PP 10,1 V) < i, 1™V Vi < k,6) (1.11)

icly
Due to the conditional independence of the nodes of the graphical model, the marginal
distribution is only dependent on the values of the Markov blanket of ¢*. This means that

Gibbs sampling can be achieved by an algorithm that only uses local information. Thus

4These are the parents of i, children of i, and those nodes that share a child with .
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a neural or hardware implementation of Gibbs sampling is possible. Gibbs sampling is
popular because in many circumstances, even though the posterior distribution can be

quite complicated, the marginal distribution is very simple and easy to sample from.



Chapter 2

Credibility Networks

2.1 A New Approach to Image Interpretation

In this chapter we develop a class of graphical models called credibility networks. In
credibility networks the possible interpretations of an image are parse trees, with nodes
representing object-parts and containing instantiation parameters. The possible parse
trees of an image are constrained to be the spanning subtrees of an underlying directed
acyclic graph (DAG), with the leaves being the pixels of an image. To describe the
connectivity of the parse tree each node in the DAG has an associated parenthood node

which describes the parent of the node in the tree.

We assume there is a “grandparent” unit in the DAG that is a parent of every other
unit in the DAG. This serves to make sure the parse tree is connected. It also acts as a

default parent for units which do not have any other parents (section 2.2).

To avoid confusion, from now onwards we shall refer to the parent of a node in the
parse tree as the “parent” of the node, and the parents of the node in the DAG as its
“potential parents” (since these are the possible parents of the node in the tree). Figure

2.1 shows one such tree spanning a DAG that is a multilayered graph.

13
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Figure 2.1: A parse tree embedded in a DAG. The top unit is the “grandparent” unit.
Dashed edges are edges of the DAG while edges of the parse tree are in bold. To avoid

clutter we did not draw the edges connecting the top unit to units in the lower layers.

2.2 Binary Credibility Networks

In this section, we describe in full detail a simplified class of credibility networks in which
instantiation parameters of objects are not dealt with. In fact each node in our DAG
is binary and represents only the presence or absence of the corresponding object. We
shall called these binary credibility networks. The extension to include instantiation
parameters will be described in section 2.4.1, although for experimental purposes only
the binary credibility networks will be used.

To encode the structure of the parse trees, each node 7 in the DAG is associated with
a parenthood node 7*. In addition to the connections already present in the DAG, there
are connections from the potential parents pa(i) of ¢ to i*, and a connection from * to i.
This is shown in figure 2.2.

The random variable associated with node 7 is s; and is defined as

1 if object 7 is present,
S; =

0 if object 7 is absent.

The random variable associated with node ¢* is A; = {Ai;}jepa(i)- This is a multinomial
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Figure 2.2: A unit in a binary credibility network. Each unit 7 and its parenthood unit
i* accept connections from its potential parents j € pa(i), and sends connections to its

children and their parenthood units.

random variate representing the unique parent of 4 in the parse tree of the image :

1 if parent of 7 is j,
)\ij =
0 if parent of 7 is not j.
Let S={s;:ie€l}and A={)\:i€1}.
In line with the notion of the conditional independence of the variables at each node
of a graphical model, we have
P(A,S)=]]P(X|s;Vi€pa(i) P (si|Ni,s; Vi € pa(i)) (2.1)
iel
Consider m;; = P(\;; = 1|5,V j € pa(i)). Let the connections from the parents j of i to

+* have positive weights c;;. Define

Gij% (2.2)

(0 A ——
ZkEpa(i) CikSk

This says that only objects which are present can be parents of 7. This makes sense as

we do not want parts belonging to absent objects appearing in the generated images. On
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the other hand, it makes sense for parts of objects to be absent. For example, if a cup is
absent from the image, we should expect all parts of it to be absent. If a cup handle is
present, it does not belong to the absent cup. On the other hand, a cup could be present

while the handle is missing (it could be on the occluded side of the cup).

The credibility parameter c;; is an unnormalized prior probability that j is the parent
of 7. The credibilities are scale invariant, that is, multiplying all incoming credibilities
cij for j € pa(i) by a fixed constant will not affect the values of the parenthood proba-
bilities 7;;. Further the denominator in (2.2) can potentially be 0, when all s, = 0. To
rectify both of these problems, we assume there is a “grandparent” unit, 1 € I, which
is a potential parent of every other unit in the DAG. Unit 1’s activation is fixed at 1.
Further, the outgoing credibilities of unit 1 are also set at 1 to fix the scales of the other
credibilities. Unit 1 can be viewed as a default parent for a unit ¢ € I when no other
unit is available to be i’s parent.

Suppose we have now chosen the parent k of 7. To determine s;, all we need is a
probability p;. that 7 is on, given the parent of 7 is k. Note s; should not depend on the

presence of units in pa(i) which are not the parent of ¢ in the parse tree. This gives

P(si| Xi,s; V3 € pali)) = H (v (1 _pz’j)l_sj)/\ij

j€pal(i)
=pi(L—pi)' ™ where A\ = (2.3)
The parameters c;; and p;; are given at relevant edges in figure 2.2. Let 0 = {c;;, pi; :

i€1I,j€pa(i)} be the set of parameters. Now the joint distribution becomes

P, 510 =T] I ( W pr(1— py)' ) (2.4)

CikS
iel ]Epa ZkEpa z) ikok

Note that A can be integrated out of (2.4) giving

B > jepai) CiSiPi (1 — pij) %

il Zkepa(z’) CikSk

P(S0) = (2.5)

Suppose observations O C S were made at some subset of units Ip C I. Let H =S5\ O
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be the unobserved or hidden variables and Iy = I \ Ip. The likelihood of generating O
P(O]8) = /P(H, 010) dH
1—s;

a(i) CiiSiPiz (1 = Dij
_ /H jepa(i) 777 J( i) dH (2.6)

icl Zkepa(z) CikSk

cannot be efficiently computed. Hence exact inference is not tractable and approximate

inference is required.

2.3 Mean Field Approximations

Consider a naive mean field approximation over H and A, in which the variables are
assumed to be completely factorized :
8 =T - TI I (27)
i€l i€l jepa(i)
where o; can be viewed as the mean of s; and p;; can be viewed as the mean of \;; under

the posterior distribution P(#,A|O, #). The variational energy is

e=[ [ (1] 11 (L".pml—pw—&) QUL A INdH  (28)

~ CikS
i€l jepa(i) ZkEpa(z) ik 2k

Suppose there is an 7 and a j' such that o; <1, j' € pa(i'), and pyy > 0. Pushing the
log operator through the multiplications and divisions, consider the log of the ¢;;s; term

corresponding to i’ and j'. This is

//log (CZ'I]'ISJ )\11]1 0', (]_ — 1)1 SJ’/_],ZJJ d/\z] dS]
:,u’i’j’ log Ci’j’ —|— //(AZI]I ]Og 8].,) 0-;}7' (]_ — Uj’)l_sj’ /\zljl d/\z ' de/ (29)

The double integral above involves a term (log0)(1 — o)y ;7 = —00, so the variational
energy in (2.8) is £ = oo.

The energy is infinite because we assigned to a state (#,A) a non-zero probability
under () when (#, A) has zero probability of being generated by the model. In this case,
when s;; = 0, the probability under @) of i’ choosing j' as it’s parent is y;; > 0, but it is

impossible to have j' as i"’s parent because j' is off.
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There are two ways around this problem. One way is to simplify by first integrating
out A. Another way is to make p;; be dependent on H such that j;;(#) = 0 whenever
s; = 0. Then the probability of an impossible state under ) would still be zero and

hence the variational energy would not be infinite.

2.3.1 Integrating Out A

Working from (2.5), and using a factored distribution for A :

=[[or@-o)t (2.10)

ZEIH

the variational free energy is

—F1(Q1,0) = Z <EQ1[10g Z cijsipg (1 — pij)' =% — log Z Cz‘ijD -

iel jEpa(d) Jjé€pa(i)

> (m logo; + (1 —o;)log (1 — ai)) (2.11)

iely
As the grandparent unit 1 is a potential parent of every other unit, and ¢;; = 1 for all 7,
the summations in (2.11) are always positive, hence the variational free energy is never
infinite.

Let ch(i) be the potential children of 7 (i.e. the children of ¢ in the DAG) and
rij = cijpi(1 — pi;)' %, While ¢;; is the unnormalized prior probability of j being the
parent of 7, r;; can be viewed as the unnormalized posterior probability of j being the
parent of ¢ given S. It is the product of the prior probability ¢;; and the likelihood
pii(1 — pi;)* % of generating s;. The inference rules are

[log Z cijS;pij — log Z cijsi(1 p”]

Jj€pa(i Jé€pa(i

+ Z EQl[log Z 715585 — log Z cl]sj]ai(l)

lech(i) j€pa(l) j€pa(l) i

o; = sigmoid (2.12)

Updating o; with (2.12) will always increase —F;.
Let D be the training set and Q¢ be the mean field approximation to the posterior

distribution over A given the training data (observation) d € D. Normalizing r;;, let
Ti;8;

_ 2.13
> kepati) TikSk (2.13)

Wi =
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While 7;; is the (normalized) prior probability that j is i’s parent, w;; is the normalized

posterior probability that j is ¢’s parent. The learning rules are

8log Cij ( Zj:l ) - ZEQQI [wij — 7] (2.14)

deD
Ea W;iS;
s = 2aep Foglwysi] (2.15)
> dep EQ‘} [cwi;]

Updating c¢;; and p;; with the learning rules will also always increase —F;.

2.3.2 A More Complex ()

The naive mean field approximation (2.7) gave rise to an infinite expected energy of the
system due to the fact that j;; was independent of s;. Suppose we use a similar form for

(@, but making x;; be dependent on s; :

=[5 @=o)" [] T m(®). (2.16)

i€l 1€l jepa(i)
We require that u;;(H) > 0, 30 c i) (%) = 1 and most importantly, p;;(H) = 0 if
s; = 0. One possibility for this is
VijS4

g 217
ZkEpa(i) VikSk ( )

i (M) =

where v;; are new variational parameters which determine 4;;(#) hence the distribution
of \;; given the activations of the potential parents. Note the similarity in form of (2.17)
o (2.2) and (2.13). We made p;;(#) be dependent only on the potential parents of .
This is consistent with the conditional dependencies of \;;.

The variational free energy is

CiiS; s .
— F2(Q2,0) = Eq, [Z Z wii (1) log 4pij i(1 _pij)(l z)i| _

. . C.S
i€l jepa(i) Z]Epa(z) 1]

Z (0;logo; + (1 — ;) log (1 — 03)) Z Z Eo, [/,L” log,uij(’H)} (2.18)

1€l 1€l jepa(i)
Notice that now the expectations only range over s;’s, as A is again automatically inte-

grated out.
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Differentiating J, with respect to u;; we obtain the mean field equations
vij o¢ Cigpy™ (1 — pig) '~ (2.19)
As with ¢;;’s, the v;;’s are scale-invariant. If ¢;; is the unnormalized prior probability
that j is ¢’s parent, v;; is the unnormalized posterior probability that j is i’s parent, and
is obtained by multiplying c;; by the likelihood of generating s;, that is, p;i(1 — pij)
Further, p;; is the normalized posterior probability that j is i’s parent.
To determine the inference rules, assume that v;; for j € pa(i) are always updated
just before o;, so that when we update o;, v;; o ¢;;p;i;* (1 —p;;)' %, Differentiating (2.18)

with respect to o;, we get

Dij
Z EQ2 |:l%yi| log 1 _J +

= Dij
o; = sigmoid Jepald - (2.20)
Z EQz[log Z v;5; — log Z cljs]} bco
lech(i) jepa(l Jjé€pa(l)

The learning rules are

0 d
Opi; (_ ZB( ” 9))

Dij

O; 1—o0;
> By [um} (17 -1 ) (2.21)
deD E

deD
P = 2ien Paglislo: (2.22)
Y ZdeD EQg [Nz‘j]
810gcw ( ZFQ Q2, ) = dEZDEQg[/J,U - 7Tz'j] (223)

where Q4 is the approximate posterior given observations d € D.

For inference we need to compute the v;; and o; for i € I,j € pa(i) such that Qo
minimizes the free energy ;. This is achieved iteratively using the mean field equations
(2.19) to update v;; and (2.20) to update o;. Since v;;’s determine p;;, which describes
the distribution of A, we can view updating v;; using (2.19) as a segmentation step. Since
o; determines the probability that a certain object corresponding to node ¢ is present,
update o; using (2.20) can be viewed as a recognition step. Since v;; and o; are updated
one after another iteratively, the segmentation and recognition steps are intertwined. A
similar argument holds for the mean field approximation of section 2.3.1. In that case,
computing r;; and w;; is the segmentation step, while updating o; using (2.12) is the

recognition step.
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2.3.3 Approximations

For an efficient implementation of credibility networks using variational approximations,
we still need to evaluate terms of the form El[logz] and E[1/z] where z is a weighted sum
of binary random variates. The simplest approximation would be to bring the expectation

inside the logarithm and inverse, i.e.,
Ellog z] ~ log E|x] E[1/z] ~ 1/E[x] (2.24)

In the case of the logarithm, the approximation always over-estimates by Jensen’s In-
equality. In the case of the inverse, the approximation always under-estimates due to the
convexity of 1/z. Although biased, these approximations work well enough in general.
In fact the simulation results in chapter 3 were obtained using an implementation based
on these approximations. However using these approximations, there is a bias towards
the extreme values of 0 and 1 when solving for the means o;, since the energy terms in
the mean field equations of o; will always be exaggerated.

We can obtain a better approximation by using the Taylor expansion of a function.
Suppose we want to approximate E[f(z)]. Expanding f(z) about the mean z, = E|x],

we have

®) (4 ®) (g
@) =B Y T, a= Y B, a2

k=0..00 k=0..00

where E|[(z, — z)*] is the kth central moment of z about x,. Using just the constant
term in the Taylor expansion to approximate the expectation, we get E[f(z)] ~ f(E[z]),
obtaining the simple approximations (2.24). A better approximation can be had if we
use the first 3 terms of the Taylor expansion : E[f(z)] = f(E[z]) + 3 fP(E[z])Var(z),

where Var(z) is the variance of z.

2.4 Relation to Some Models

2.4.1 Hierarchical Community of Experts

The hierarchical community of experts model [20, 35] is a generative model made up

of pairs units consisting of a binary unit and a linear unit with Gaussian noise. Each
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binary unit gates the output of the corresponding linear unit. One view of the model is
that the binary units form a sigmoid belief network (SBN) which dynamically synthesizes
a network of linear Gaussian units by gating out those linear units whose binary unit
partners are off. This is similar to credibility networks where the parenthood units
synthesize a tree structure for the presence units.

This view can aid in designing credibility networks which deal with instantiation
parameters. We can consider a network of triples of units consisting of a parenthood
unit 7%, a presence unit 7, and an instantiation parameters unit 7. The parenthood and
presence units together form a binary credibility network which synthesizes the parse
tree, which is a tree structured network of instantiation parameters units s*. Then the
values of instantiation parameters of the objects in the parse tree are generated from the
instantiation parameters of the respective parents. Let the instantiation parameters at
i™ be denoted by the (multivariate) random variate ; and let T' = {7;}ic;. The joint

distribution is
P(A,S,T|0) = P(A,S|9)P(T|A,S,6)
= P(A,SI0) [ P(vilv; where Aj; =1) (2.26)

el
The P(A, S|#) term is just the joint distribution of the binary credibility network (2.4).
Each factor P(v;|y; where A;; = 1) in the product is parameterized by the weight «;;
from the parent node j* to ™.

As an example, suppose the instantiation parameters are multivariate Gaussians.
Suppose A;; = 1. Let ; have mean f;;(7;) = Aijy; + bi; and variance 3;; where A;; is a
matrix, b;; is a vector and A;j, b;; and X;; comprise «;; :

Py where Xy = 1) = (2n) % 5yl exp (=30 = )75 = ()

(2.27)
Note that each connection between a parent and a unit in the parse tree is now a factor
analyzer and the parse tree now consists of a hierarchy of factor analyzers. When inferring
the parse tree, the analyzers at each layer compete for the control of the analyzers at

the layer below. This is the hierarchical mixtures of factor analyzers we sought after in

section 1.3.4.
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2.4.2 Cooperation Versus Competition

One dimension along which we can differentiate and analyze models is the degree of
cooperation or competition among the units of the network. Cooperative networks tend to
produce representations of data that are distributed across the network, while competitive
networks tend to produce sparse representations. For example, in factor analysis, all
hidden units cooperate in influencing the activation of the visible units (by a linear
combination of their activations). On the other hand, in mixtures of Gaussians, only one
unit is responsible for the activations of the visible units, and there is competition among
the hidden units for this responsibility. It is important to balance these two factors to
produce representations that are both sparse and distributed [1, 18].

When designing networks of binary units, a design choice that has to be made is the
combination function (called the mixing function in [39]). The combination function is
analogous to the condensation rule of latent response models (LRMs) [27]. They describe
how multiple factors combine in affecting the output of a response variable (or a unit
below). The standard combination function is a weighted sum followed by a sigmoid

squashing function :

x; = sigmoid( Z wijxj) (2.28)

jepa(i)
where z; is the output of unit ¢ and wj; is the weight from j to 7. This combination
function permits errors made by some units to be corrected by other units without
penalty. Hence there is little global pressure for each unit to produce a correct prediction.
Hence such a combination function makes the units too cooperative and results in an
obscured representation of the data.
Saund [39] proposed a new combination function, the noisy-OR that is more compet-
itive :
z=1- [ (0 -cyz;) (2.29)
jepa(i)
where z; can be interpreted as the mean of an associated binary variable s; and the

weight c;; can be interpreted as the probability that s; = 1 given that s; = 1, assuming
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that the s;’s are independent. However, Dayan and Zemel [9] showed that the noisy-OR
is still too cooperative because it allows multiple features to cooperate in causing the
activation of a unit in a layer below. For example, if 7 has two parents, and both are on,
and c¢;; = .5 for both parents, then z; = .75, although each parent individually predicted
a value of x; = .5. Now if the desired value of x; is indeed .75, then both parents are not
penalized even though both gave wrong predictions.

Dayan and Zemel’s solution is for exactly one feature to cause the activation of a unit
at a time (but multiple features could be affecting the activities of the layer below). For
each unit, it first chooses one cause from among the potential causes (its parents). Then
the activation of the unit is set according to which parent it has chosen. The combination
function for a write white-black model (as in this thesis) they proposed is :

v — tei + D jepati) DigTilis
1+ iepati) bis®i

(2.30)

where b;;’s describe the distribution from which the unit chooses its cause and t;; is the
activation of the unit if it chose cause j. It is easy to see that the b;;’s are essentially
credibilities and the ¢;;’s are essentially the probability weights. If we assume that the
credibility of the “grandparent” unit is 1 and its outgoing probability to unit i is t,;, (2.30)
is essentially (2.5). The difference is that while Dayan and Zemel’s is a feedforward model,
ours is a graphical model. While their model came about as a result of trying to increase
competition among units, ours arised as a solution to the problems of segmentation and
recognition.

This means that an advantage of our model is that there is more competition among
the units than standard models. As Dayan and Zemel showed, this extra competition will
produce internal representations that are more sparse, and yet still maintain a distributed

nature, where multiple causes affect the activities of the layer below simultaneously.



Chapter 3

Experimental Data

3.1 The Bars Problem

The binary bars problem was proposed as a benchmark toy problem to test multilayer
generative models, as well as to serve as a simple example of the necessity for multilayer
models. The images are of size 6x6 and contain either horizontal bars or vertical bars, the
chances for each orientation being the same. For each orientation, there are 6 possible
bars each present independently half the time. Figure 3.1 shows a sample of images.
The optimal solution to the problem requires 2 hidden layers. The top layer contains
one unit, which determines whether the bars are horizontal or vertical depending on
whether it is on or off. Then the middle layer requires 12 units, 6 of which encode the

6 horizontal bars, the other 6 encoding the vertical bars. The fact that the vertical

==
0™
==

= | |
= |l_
==

Figure 3.1: Sample images from the bars problem.
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and horizontal bars are mutually exclusive means that a second layer of hidden units is
required. The only way around this is to encode every possible combination of bars in
the first layer, but this is not a more compact representation than storing the images

themselves.

A 36-16-4 binary credibility network is trained on the set of all 128 images for 60
iterations. This takes around 50 seconds on an SGI R10000. After training, the network
manages to use 12 of the middle layer units to encode each of the 12 bars and 1 top layer
unit to encode the orientation. The unused units either are permanently off or have low
credibilities and hence do not affect the rest of the units. The weights of the 16 middle
layer units are shown in figure 3.2'. The top row shows (p —.5) where p are the outgoing
probabilities; the bottom row shows log ¢ where ¢ are the outgoing credibilities; and the
middle row shows values of ¢(p—.5). The middle row gives a nice summary of the feature
encoded by each unit. Since the probabilities are mostly 0 or 1, the sign of each weight
in the row describes whether the probability is 0 or 1, while the magnitude describes
the credibility. Notice that the features are all localized. That is, each unit have high

outgoing credibilities only for those pixels forming the corresponding bar.

The weights connecting the grandparent unit (1) and the used top layer units (v and
h) to a horizontal bar unit (h') and a vertical bar unit (v') in the middle layer are shown

in figure 3.3. Both 1 and v are permanently on, while A is on when the image contains

! To save ink, all Hinton diagrams in this thesis are printed in reverse video — black pixels means large
values and white pixels means small values.
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grandparent vertical horizontal
unit bars bars
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Figure 3.3: Encoding mutual exclusion between horizontal bars and vertical bars.

horizontal bars. Notice that when A is off, i.e. s, = 0, the probability that A’ is on is

Chw1Ph1S1 F ChoProSy  0.0+0.0

= =0.0
Ch181 + ChiySy 1.0+1.9
while the probability that v’ is on is
Cy'1Pv'151 F Cy'yPurv Sy _ 0.0+ 1.2 ~ 0.55 ~ 0.5

Cy'151 + CyySy C1.041.2

So when h is off all horizontal bars are turned off, while vertical bars are each inde-
pendently present about half the time. Note that when v’ is on its parent is v with
probability 1, while when v’ is off its parent is 1. Similarly when A is on, the horizontal
bars are present about half the time, while the vertical bars are turned off due to the
high credibilities and low probabilities ~A has for the vertical bar units.

Note that the probabilities p;; from the top layer units to the middle layer units in
figure 3.3 are either 0 or 1, and values in between (for example, 0.5 as in the bars problem)
are obtained by mixing appropriate portions of the probabilities with ¢;;’s serving as
the mixing proportions. This shows that units in a credibility network are not totally
competitive — the parents of a unit ¢ can still cooperate to determine the activation of .
However, this cooperation is limited in the sense that the probability of 7+ being on must

always be a weighted sum of the incoming probabilities p;; for j € pa(7).
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c=10 c=20 Cj'i =10i all j c=10(n-1) c=10n

Figure 3.4: Encoding mutual exclusion between n units.

The above shows how the trained credibility network manages to encode the mutual
exclusion between two features — the horizontal and vertical bars. This can be generalized
to encode more than 2 mutually exclusive features. Figure 3.4 gives the general idea of
how this can be done. There are n units in both the top and bottom layers. The top
layer units are labeled 1,...,n, while the bottom layer units are labeled 1’,... ,n'. The
outgoing credibilities are c;; = 107 for all j' and the probabilities are p;; = 1 if j' = ¢
and pj; = 0 otherwise. If s, = 1, because the outgoing credibilities ¢;,, = 10n are so
high, it dominates the other units and the outgoing probabilities make sure that n’ is on
while the rest are off. If s, =0 and s,_; = 1 then unit n — 1 dominates the other units,
and only (n — 1)" is on. For the network to work properly, the credibilities have to be
very large. If we train a network instead of setting the weights manually, the network
will not learn such exotic weight settings. This is because coding n mutually exclusive
equiprobable features requires log, n bits while coding n independent features each with
probability = requires logy n + (n — 1) log, " bits — we need to code the fact that one
of the features is present, while the other n — 1 are absent. Bounding logx < x — 1, the

number of extra bits required is

n 1 n 1
—1)log, —— < —1 -1)=
(n )Oan—l - log2(n )<n—1 ) log 2

So at most 1/log2 = 1.44 extra bits are required. For large n this is negligible.
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Figure 3.5: a) Sample images of digits used to train and test the ML classifier. b) Sample
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images generated by the trained models.

3.2 Classifying Hand-written Digits

We also tested credibility networks on a more realistic problem. We constructed a maxi-
mum likelihood classifier for 16 by 16 binary hand-written images. The data was obtained
from the CEDAR CDROM 1 database [22], and was preprocessed to give a set of 11000
16 by 16 binary images by Michael Revow. There are 1100 images of single digits in each
of ten [0-9] digit classes. The pixels forming the digits have value 1 while the pixels for
the background have value 0. Example images are shown in figure 3.5a). For each digit
class, 700 randomly chosen images were used to train a 256-24-8 network until conver-
gence, taking 50 iterations. Batch learning with a learning rate of 0.1 for the credibilities
was used. MAP training is employed, with the priors on the probability weights being
Beta-(1+e73,1+ e73) distributions?, while the log credibilities have a decay rate of 0.01.

A grandparent unit with outgoing probabilities of 0 was used. This is both to encourage

2 A Beta-(a, b) distribution is a distribution over [0, 1] where the probability of z € [0, 1] is proportional
to 2271(1 — z)*~1. Both a,b has to be positive.
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1 2 3 4 ) 6 7 8 9 0
1396 1 0 1 1 0 0 1 0 0
2 2 383 1 3 0 3 2 ) 1 0
3 0 5 378 0 8 0 1 6 2 0
4 0 0 0 390 0 1 0 3 6 0
) 1 0 19 0 365 2 0 7 1 )
6 ) 1 0 4 5 384 0 0 0 1
7 2 0 2 3 0 0 378 4 11 0
8 ) 1 12 3 6 0 0 363 8 2
9 0 2 0 3 1 0 11 5 376 0
0 3 1 0 1 0 1 0 2 0 392

Table 3.1: Confusion matrix of ML classifier. The i entry is the number of times an

image of digit ¢ was classified as digit j.

sparse coding and to code the value of the pixels in the background of the images. Sample
images generated from the trained models are shown in figure 3.5b).

After training, the 400 unused images from each digit class was used for testing. Each
test image was classified using the model which assigned the lowest variational free energy
to it. Table 3.1 shows the confusion matrix. The error rate is 4.9%. As comparison, the
error rate of the 1-nearest neighbor algorithm on the same training and testing data has
an error rate of 5.3%. This shows that on this task credibility networks are at least
competitive with other models, although it is clearly not excellent (compared with Saul
and Jordan’s work with variational methods for SBNs [37, 38| and from the poor quality
of generated images in figure 3.5b)).
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Figure 3.6: Sample images from the test set. The classes of digits of the images in a row

are given to the left.

3.3 Segmenting Hand-written Digits

Hinton and Revow [19] used a mixture of factor analyzers model to segment and estimate
the pose of digit strings. Images of size 7x16 containing 3 digits from the classes 2,3,4
and 5 are used. Each digit is roughly of size 5x5. When the digits do not overlap, the
model was able to identify the digits present and segment the image easily. The hard
cases are those in which two or more digits overlap significantly. To assess the ability of
credibility networks at segmenting hand-written digits, we used superpositions (ORs) of
digits at exactly the same location. This problem is much harder than segmenting digit
strings which may or may not overlap, but also easier to implement. Example images of
the superposition of each combination of two digits are given in figure 3.6.

We trained a single credibility network with images from digit classes 2,3,4 and 5.
Then images of one or two digits from distinct classes were shown to the network for

classification.

The data used is the set of 16 by 16 images of single digits from the previous section.
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2 3 4 5 3 4 5 3 4 5
20392 3 3 2 21095 080 0.85 210.80 0.90 0.70

a)| 3| 12 3712 1 15|b)|3 0.65 0.95|c)|3 0.80 0.95
41 5 0 394 1 4 0.50 4 0.70
50/ 3 40 3 354

Table 3.2: a) Confusion matrix for single digit classification. The i entry is the number
of times an image of digit 7 was classified as digit j. b) Percentage of cases inferred
correctly by the trained network for each combination of two digits. ¢) Similarly for the

author.

The training set consists of 700 images of single digits for each digit class 2, 3, 4 and 5.
The size of the credibility network is 256-64-4. The 64 middle layer units are meant to
encode low level features, while each of the 4 top level units are meant to encode a digit
class. Without supervision, the network was not able to discriminate among the different
digit classes in the top level units. To aid the network, we clamped at 1 the activation
of the top layer unit corresponding to the class of the digit in the current image while
fixing the rest at 0 when showing the network each image for training.

After training, the network is tested on images of single digits not in the training set
and it achieved an error rate of 5.5%. The predicted class of each image was taken to be
the class corresponding to the top layer unit with the highest activation. The confusion
matrix is given in table 3.2a). To test the ability to segment, we showed the network
images of 2 overlapping digits from distinct classes. The predicted classes of the two
digits are chosen to be the corresponding classes of the 2 top layer units with the highest
activation. The test set consists of 120 images, 20 images per combination of two classes.
Figure 3.6 gives a number of tests. Table 3.2b) gives the percentage of tests inferred
correctly for each two digit class combination. A human subject (namely the author)
was tested on the same test set and his performance is shown in table 3.2c). The network
achieved an error rate of 21.7% while the author erred on 19.2% of the images.

We can in fact obtain more than just the classes of digits present in each image. We

can produce a segmentation of the image into an image for each class present. Recall that
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Figure 3.7: Segmentations of pairs of digits. In each group, the top two images are the
original images. The middle two images are both superpositions of the top two images.

The bottom two images are the segmented images produced by the credibility network.

given the values of S the posterior probability of unit j being unit ¢’s parent is y;;. Then
the posterior probability of pixel ¢ belonging to digit class k is proportional to > ; HijHjk-
Integrating over the approximate posterior distribution (), the probability that pixel 2
belongs to digit class k is Y, Eq[uijpjx]. We can approximate this using E[1/z] ~ 1/ E[z],
so that the probability above is approximately proportional to ) | ; VijOiVikOk- This gives a
simple way to determine how much each hidden unit contributes to the image. Figure 3.7
shows a number of segmentations. Note that for each pixel, the sum of the probabilities
of the pixel belonging to each digit class is 1. To make the picture clearer, a white pixel
means a probability of < .1 of belonging to a class, while black means > .6 probability,
and the intensity of a grey pixel describes the size of the probability if it is between .1
and .6. Figures 3.7a) to 3.7f) shows successful segmentations, while figures 3.7g) to 3.71)
shows unsuccessful segmentations. On further inspection, it turns out that the cases of
unsuccessful segmentations are those where the top level unit activations are uncertain,
or those where only one top level unit has any activity. Notice in figure 3.7k) that the
model believes only digit class 3 is present, but it believes there are two instances of the

digit 3.
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Figure 3.8: Some images from the faces problem.

3.4 The Faces Problem

We tested a three layer credibility network on a toy problem in which there was clear
hierarchical structure. The image set consists of 243 11x11 binary bitmap images in
which pixels are arranged in such a manner as to resemble faces. Figure 3.8 shows a
subset of the images.

Each image shows a face. Each face consists of 3 features — a pair of eyes, a nose and
a mouth. The z position of the eyes relative to the nose is perturbed randomly either to
the left by one pixel, to the right by one pixel or unchanged, each with probability 1/3.
Similarly, the y position of the eyes and mouth are perturbed up, down or unchanged
equiprobably. Finally, the whole face is translated left, right or unchanged and up, down
or unchanged. This creates 9 possible face locations given by the nose positions, each
with 27 possible faces, all equiprobably. The images in figure 3.8 are the 27 possible faces
with the noses at the center.

The faces problem is quite hard for credibility networks. There are many position-
specific features and complex interactions between the features. There are 25 eye features,
9 nose features and 15 mouth features, a total of 49 low level position dependent features.
Conditioned on a nose position, the eyes and mouth positions are independent. This
allows a simple way to code the interactions if we have one high level unit corresponding
to each nose position. However, conditioned on the eye positions, the nose and mouth

positions are not independent. Given only the images, it is not trivial for top level units
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Figure 3.9: Image reconstructions of SBN. The left image in each group is the prediction
made by the SBN, while the right image is the actual training image. The area of each
pixel is the probability that the pixel is on.

to discover that conditioning on the nose positions gives the most efficient coding.

We first tried training a SBN on the faces image set. The network structure used is
121-50-10. We trained the network using Gibbs sampling for 10,000 passes through the
training set in batch mode. This took over 24 hours of computation time. After training,
the network used approximately 9000 bits to encode the images, with approximately 8000
bits used to encode the hidden unit activations. Of course these coding costs did not
take into account the “bits-back” recovered through determining the random bits that
led to the particular choice of hidden unit activations from the posterior distribution
[21]. Determining the optimal amount of bits-back requires knowing the exact posterior
distribution of the SBN, which is too expensive in our case. Instead we used a mean
field approximation to the posterior distribution. The coding cost for the images using
the mean field approximation is approximately 3500 bits with approximately 2950 bits
allocated to coding the hidden unit activations. Only around 550 bits, or 2.3 bits per
image, are used to code the images given the hidden unit activations, This says that the
network was able to learn most low level features accurately. A direct way to verify this
is to see the reconstructions of images made by the network given the activities of the

hidden units. This is given in figure 3.9. The reconstructions match the actual images
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Figure 3.10: Images generated by SBN trained on the faces problem. The large diagrams

are averages over the randomly generated images, with a large black pixel meaning that
the pixel is on for almost all of the images generated. The eight small diagrams below

each large diagram are samples from the randomly generated images.

quite accurately. However since the optimal coding cost is around 2000 bits?, the network
failed to encode the distribution over features efficiently. Analyzing the weights from the
top layer units to the second layer units, we see that there are only three top layer units
with at least one outgoing weight with magnitude greater than 1. Further, only the
weights of these three units have a mean magnitude of at least 0.1. This means that the
other top layer units have essentially been “turned off” and do not contribute to coding

the images.

One way to have an idea of what redundancies have been captured by each active top
layer unit is to look at images generated from the trained model. This is given in figure
3.10. As a control, we generated images from the model without any restrictions on the

top layer units. This is shown in the rightmost set of diagrams in figure 3.10. First we

3243 log, 243 ~ 1925.7.
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Figure 3.11: Predictions of the credibility network (left) and the actual images (right).

look at images generated when the activity of one of the active top layer units is fixed at
1 (the activities of other hidden units are sampled from the posterior given the activity
of that top layer unit). This is shown in the leftmost set of diagrams in figure 3.10. Note
that the mouth features all have the same y-coordinate. This shows up prominently in
the averaged image, where the pixels are much larger than the corresponding pixels in the
averaged image of the control. Further, mouth features in other locations are inhibited
by the top layer unit and are almost absent from the images. The pixels in the averaged
image corresponding to the mouth features at other locations are much smaller than the
corresponding pixels in the control. The same effect is observed when we fix the activity
of the second top layer unit at 1. This time, the top layer unit coded an eye location
instead, and eye features at other locations are inhibited. The effects of the third top
layer unit is not as obvious as the first two. From the averaged images, we see that eye
features at the bottom left corner are slightly more likely to occur when the third top
layer unit is on than when it is off. Note that the generated images have only a slight
resemblance to the actual training data. One reason for this is that the features are not

mutually exclusive.

We trained a similarly structured 121-50-10 credibility network on the image set using
a mean field approximation. To encourage sparse coding we initialized the probability

weights and mean field activations in the hidden layers at random values in the range
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[0,.2]. The logarithms of the credibilities are randomly chosen from a zero mean unit
variance Gaussian distribution. The learning rate for the log credibilities between the
input layer and the first hidden layer is 20/D where D is 243, the number of training
images. The learning rate for the weights between the first and second hidden layers is
0.1/D. The learning rate for the weights for the second hidden layer does not matter,
since these units have only one parent. No weight decay was used for the log credibilities,
and a uniform prior for the probability weights was used. The network was trained for
2000 iterations. This took approximately 10 hours. After training, the network took
approximately 3300 bits to code the images, with 300 bits used in reconstructing the
images at the visible nodes. Note that the smaller coding cost does not mean that
the credibility network is better than the SBN at encoding the images, because the
computation of the coding costs involve approximations. The reconstructions of the
credibility network on a a few images are shown in figure 3.11. The reconstructions of
the credibility network are quite accurate, agreeing with the low coding costs for the
image pixels.

To see what redundancies between features the top layer units have coded, we again
analyze the images generated by the model. Five top layer units are either permanently
on or off, so they do not code anything. The average activations of the other five units
are approximately 0.42,0.93,0.73,0.16 and 0.70. Since the first and fourth of these units
are off more often than on, we looked at images when these two units are on. The
other units are more often on than off, so images generated when they are off will be
more informative. The images are given in figure 3.12. Unit 4 codes faces with eyes in
a particular location, although the effect is less pronounced than the effects of the top
layer units in the SBN (figure 3.10). Unit 8 codes faces where the mouth and nose are
in a particular location. Again the effect is less obvious. The other top layer units have

weaker effects.

For both SBN trained using Gibbs sampling and credibility network trained using
mean field approximation, the coding cost for the images is around 3300 bits, while
the optimal coding cost is only around 2000 bits. One explanation for this is the lack of

mutual exclusion between the units encoding features, which can be seen from the images
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Figure 3.12: Images generated by credibility network trained on the faces problem. The
large diagrams are averages over the randomly generated images, with a large black pixel
meaning that the pixel is on for almost all of the images generated. The eight small

diagrams below each large diagram are samples from the randomly generated images.

generated in figures 3.10 and 3.12. Consider the following generative model : faces in
each of the 9 locations are present independently é of the time. If a face is present,
the corresponding nose is present, and eyes in each of the 9 locations are present again
independently é of the time. Similarly mouths in each of the 3 locations are present
independently a third of the time. This model can be said to have captured the structure
of the faces problem, except for the mutual exclusion among the features. If credibility
network and SBN used in this section cannot capture mutual exclusion among features,
this will be the best they could do. Now recall that coding one of n mutually exclusive

equiprobable features under a model which assumes the features are independent requires

n

—- bits. So under this model the coding cost for each image is

logyn + (n — 1) log,

9
log, 9 + 8log, 3

- 7

9
+ log, 9 + 8log, 3

7

3
+log, 3 + 2log, 3 ~ 11.81 bits

v
face locations

v
eyes

-~

mouths

and the total coding cost for all the images is 243 x 11.81 = 2871 bits. This is only
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Figure 3.14: An example of how low level units interact in a complicated way.

roughly 450 bits less than the 3300 bits required by the trained credibility network to
code the images, i.e. the credibility network used less than 2 bits more per image than

the optimal.

The trained credibility network was actually able to deal with some of the mutual
exclusion between the low level features. This is achieved by low level units which not only
assert that certain pixels are on, they also assert strongly that certain other pixels are off.
The outgoing weights of some example low level units are given in figure 3.13. The top
row shows the probabilities p, the bottom row shows the logarithm of the credibilities
log ¢ and the middle row shows c¢(p — .5). When these low level units are active, not
only are the corresponding features present, because they assert that some neighboring
pixels are off, features corresponding to those pixels are forced to be absent. There is a
downside in dealing with mutual exclusion this way. When one feature is present, many

units could be activated. The effects of many of these active units cancel each other out
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Figure 3.15: Sample images.

leaving only the feature that is present. This makes the response of the low level units
given an image very complicated, and it makes it harder for the higher level units to
capture the redundancies among the activations of the low level units. An example to
show this is given in figure 3.14. The image to the left is the training image. The right
shows the outgoing weights of the four low level units contributing to the reconstruction
of the image. Note that the nose feature encoded by the first low level unit to the left
is absent from the image. The effect of this unit is canceled out by the third and fourth
units, while extraneous effects of the fourth unit are canceled by the second and fourth

units.

3.5 Correcting The Faces Problem

The last experiment is designed as a simplification of the faces problem in section 3.4.
In that section, two reasons why credibility networks failed to model the faces problem
was given : the mutual exclusion among low level features, and the complicated effects
of the low level units, which were caused by the network trying to capture some mutual
exclusion among the low level features. This experiment shows that once these two
reasons are removed credibility networks are able to perform well.

The images are 3 by 19 in size, and is made up of 9 regions as shown below.

First one of regions A, B, C and D is chosen and turned on. Then each region to the



CHAPTER 3. EXPERIMENTAL DATA 42

Top unit 1 Top unit 4

-l =

Top unit 2 Top unit5

N =B

Top unit 3 Top unit4 and 5

Figure 3.16: Each image is the average of 1000 images generated from the model when

only the top level units given above each image are on.

Figure 3.17: Hidden to output weights for all low level units.

left and right of the chosen region is split into 3 subregions as in the figure above. Each
subregion is independently turned on half the time. Sample images are shown in figure
3.15. There are 256 possible images. Note that there still is mutual exclusion among the

four groups of “bars” centered around regions A, B, C and D.

We trained a 39x30x6 network on the 256 images for 200 iterations. This took 13
minutes. After training, the network manages to correctly learn the generation process
of the images except for the mutual exclusion among the four groups. Three high level
units encoded three of the groups, one high level unit was unused and two were used to

encode one of the groups. To see this we again analyze the images generated from the
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model. The averages of the generated images are shown in figure 3.16. Note that top
level unit 4 is used when the subregion in the top left corner is on, while top level unit
5 is used when the subregion in the top left corner is off. The low level units were used
to encode the low level features, namely the bars. Figure 3.17 shows ¢(p — .5) where ¢
are the credibilities from the hidden units to the visible units and p are the probabilities.
The units have been reordered for easier viewing. The coding cost was approximately
2540 bits, while the optimal coding cost was roughly 2370 bits (assuming a model which
cannot handle the mutual exclusion among the four groups). The model used less than

1 bit more than the optimal to encode each image.



Chapter 4

Conclusions

Segmentation and recognition are important subtasks of image interpretation. The gen-
eral approach to statistical image interpretation tries to solve each subtask separately.
This introduces various problems as the subtasks are interrelated.

These problems can be avoided by solving both segmentation and recognition simul-
taneously. This can be achieved by viewing segmentation and recognition as subtasks of
finding the correct parse tree of the image, and inferring the parse tree directly.

The credibility network is an instantiation of this idea. It is a graphical model which
describes a probability distribution over all possible parse trees with the leaves forming
the image pixels.

The parameters of a credibility network can be learned and inference can be achieved
using variational approximations. During inference, the results of segmentation and

recognition are iteratively improved.

4.1 Discussion

Using parse trees as the internal representations of images, credibility networks avoid the

usual problems associated with a bottom-up approach to image interpretation.
Segmentation can be carried out in a statistically sound manner, removing the need

for hand crafted ad hoc methods. Further, as segmentation and recognition results are

improved iteratively, partial information about the objects present in the image can aid

44
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in improving the current segmentation. Of course the other way of partial segmentation
results improving the current recognition holds true too. This is demonstrated in the
experiment of segmenting hand-written digits.

The granularity problem for segmentation is also resolved using parse trees. The
parse trees describe the segmentations of the image at every level of granularity, from
individual pixels to the whole image.

Credibility networks also have an advantage from a representational standpoint. In
credibility networks, groups of units cooperate to form an image while competing for
responsibility over each pixel. The cooperative nature of the units over the image means
that the representations used are distributed in nature. While the competition over
individual units below means that the representations are also sparse.

The feature encoded by a unit is localized to those units below which the unit has
high credibility for. If two units are from different locales, the features represented are
orthogonal to each other. However, if two units share the same locale, they compete for
the locale.

Probabilistic features are possible. Consider a feature which requires a unit to be on
with a probability of .5. In SBN, this is encoded by the active parents having weights
which sum to 0. This also means that the parents are uncertain of the prediction of .5.
If any parent unit misbehaves, then the probability of the unit deviates from .5. This
means that the feature becomes non-localized — all parents are responsible for the unit.
On the other hand, credibility networks can easily encode the credibility of predictions
independently of the predictions themselves.

Credibility networks also have disadvantages. First of all, mean field learning and
inference rules cannot be exactly computed, and we have to resort to approximations.
Another problem is that the choice of parents of each unit is independent from the choice
of parents of other units. This is normally not the case in images — for example, pixels
near each other have a higher probability of having the same parent object than if they
are far apart. This fact is not built into the system. This independence of parenthood
choices also means that credibility networks cannot encode features that are mutually

exclusive easily. As the faces problem shows, this is a very serious problem with credibility
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networks.

At the meta level, while we think of parse trees from the top down (a scene is de-
composed into objects, each object into its parts, each part into subparts), credibility
networks construct parse trees from the bottom up, since it is the children which choose
the parents. Since the children do not know their parents before they actually choose

them, this shows up as mutual exclusion problems.

4.2 Future Work

One possible line of future research is to extend the current model in various directions.
One direction is to incorporate instantiation parameters into the model as described in
section 2.4.1. Many quantities of interest in image interpretation are continuous, for
example, intensities, positions and orientations. The ability to extract these quantities
from images is important in its own right. Further, encoding them can also help reduce
the representational burden of the network by reducing redundancies. This is true even
for binary images. For example, images of digits are translation-invariant. However, to
encode a set of digits at various locations would require reproducing the same network
structure over every location. If we can encode the position of the digits separately, then
only one copy of the network is required.

Another possible extension would be in the time domain. The current model assumes
that the images are identically and independently drawn from the same distribution.
Given a single image, the network has to figure out the entire parse tree of the image.
Consider instead using a sequence of images that change slowly over time. When a new
image is presented to the network, it only has to figure out what changes occurred to the
parse tree from the changes in the image. This is usually a much easier task because a
sequence of images provides a lot more data and redundancies for the model to use.

But perhaps a more important line of research would be in addressing the shortcom-
ings of credibility networks.

One problem is the approximations used in making the mean field learning and infer-

ence rules in section 2.3 tractable. These are quite gross approximations, and they are
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not guaranteed to increase a lower bound on the log likelihood. Better approximations
are needed. Better approximations described in section 2.3.3 can be implemented and
compared with the current approximations. Markov Chain Monte Carlo methods like
Gibbs sampling, which do not need any approximations, should be investigated.
Another problem is the independent parenthood choices of the units. This manifests
itself as an inability to encode mutually exclusive features. A simple way to handle this
might be to use lateral connections among units to force the mutual exclusion. A more
useful solution is to have a more flexible distribution over parse trees while not making

learning and inference even more intractable.
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