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1 Introduction

Inference on general loopy graphs is a NP hard problem. Many approximate methods, like
Monte carlo sampling and variational approximations have become available over the last
decades, each with its own advantages and disadvantages. However, when the graphical
structure is a tree, there is an algorithm for doing inference that is only linear in the number
of nodes in the graph. The algorithm, called belief propagation (BP), was independently dis-
covered by [Pearl, 1988] and [Lauritzen and Spiegelhalter, 1988]. In this algorithm, messages
are sent over the edges of the network in both directions, either in parallel or sequentially. It
can be proven that if each message is sent only when all incoming messages which it requires
have been received, then BP converges when all messages have been updated exactly once.

Recently, people have found that on some graphs, BP can also perform accurate (approx-
imate) inference on graphs with cycles [Murphy et al., 1999]. Especially in the field of error-
correcting codes, it was proven that the very successful decoding algorithms for Turbo codes
and low density parity check codes can be viewed as versions of the loopy BP algorithm
[McEliece et al., 1998], [MacKay and Neal, 1995].

The fact that loopy BP works at all is remarkable, since we know that evidence will be mov-
ing around in the cycles and will be overcounted as a result. However, especially when the
cycles have a large circumference, and the interactions are not too strong, we may expect that
the evidence from a particular observed node has “died out” when it feeds back into itself. An
analysis in terms of unwrapped networks was performed by [Weiss, 2000] and revealed that
in networks with a single loop, the posterior assignment will always be correct, even though
the marginal probabilities are usually overly confident. However, the real breakthrough in our
understanding of the nature of the approximation made when computing posterior marginals
using BP on loopy graphs came with the identification of the Bethe free energy as the appro-
priate cost function which is being minimized!. This very fruitful marriage between machine
learning and physics led to a class of generalized belief propagation algorithms which act as
fixed point equations to minimize Kikuchi free energies, in which larger clusters are treated
exactly and made consistent through propagation.

A seemingly unrelated problem is that of finding a probability distribution with prescribed
marginals that is close to a prior distribution in the sense of the KL-divergence. It is well
known that this problem can be solved with the iterative proportional fitting (IPF) proce-
dure [Deming and Stephan, 1940]. The algorithm computes the conditional probability ta-
ble of all the nodes, given the node whose marginal we are going to update and multiplies
that with the desired marginal. Although, this guarantees that that particular node now
has the correct marginal, it also changes all the other marginals, possibly in the wrong di-
rection. However, if one updates the marginals one by one, the algorithm is guaranteed
to decrease the KL-divergence at every step and converge to the unique solution. General-
izations of this procedure (Generalized IPF), which can deal with more general constraints
than marginalization constraints, and which can perform parallel updates have been analysed
[Darroch and Ratcliff, 1972] (see also [Pietra et al., 1997] for the related improved iterative scal-
ing algorithm). The most important drawback of IPF is the fact that one deals with full joint
probability tables, which become computationally infeasible, even for relatively small net-
works. In that respect, great advance was made by [Jirou$ek and Pfeutil, 1995], who have
studied a “space saving implementation” of IPF, which basically uses Junction trees to repre-
sent the joint table. An IPF update is performed on the clique which contains the constrained
marginal only, after which this information is propagated through the rest of the junction tree,
before a new update is considered.

In this paper we will propose an algorithm which combines BP and IPF into one message

"More precisely, the fixed points of loopy BP are the stationary points of Bethe free energy. However, in practise
it turns out that it converges to minima



passing algorithm on a tree. The new set of messages reduces to BP messages on the internal
nodes of the tree. However, when a messages reaches a constrained marginal (other than a
“hard evidence” node), it will be “bounced back”, while being changed in the process. When
the constrained marginal is a delta function (hard observation), the returned message is inde-
pendent of the incoming message in the usual way. The algorithm requires a scheduling of
messages such that the information from a bounced message has reached the node where the
next bounce takes place. Unlike BP on a tree (but like IPF on a tree), the combined algorithm
does not converge within a finite number of iterations.

We will argue that it is natural to view the problem being solved by this IPF-BP algorithm
as one of generalized inference, where certain marginals can be constrained to marginal ta-
bles with values other than zeros and ones. Generalized inference is defined as finding the
minimum divergence distribution relative to a prior distribution, when certain constraints are
imposed on the marginals. When these constraints come in the form of hard evidence, this
objective reduces to finding the posterior distribution. Since BP itself can be understood as
minimizing divergences between marginals (and pairwise marginals) with their prior coun-
terparts under the constraints that they have to be consistent and normalized, it may come as
no surprise that one set of message updates can solve the combined problem.

Generalized inference on loopy graphs is intractible, even for a modest amount of nodes
on the graph. However, also for this case we can define an extended Bethe free energy as an
objective function. To minimize this objective we can run loopy BP internally until (approx-
imate) convergence after which we perform an IPF update (a bounce) at a softly constrained
node. This procedure is however not guaranteed to converge, since loopy BP is not. We
therefore propose to segment the loopy graph into a set of overlapping trees, while clamp-
ing the boundaries to their current estimated marginals (or observed marginals). We can now
run IPF-BP on each tree and cycle through them until convergence. If every hidden node
is unclamped at least once in every cycle we can proof that the algorithm decreases the ob-
jective at every step, and moreover only terminates at a stationary point. As a special case,
this induces a stable alternative for loopy BP on graphs containing only hard evidence (and
hidden nodes). In previous work we have called this kind of algorithm belief optimization
[Welling and Teh, 2001].



2 Iterative Proportional Fitting as Belief Propagation

Consider a discrete, undirected, tree-structured graphical model 7" with pairwise potentials.
Let i, j, k denote vertices, and (ij) denote an edge connecting nodes 7 and j. Each node i is
associated with a discrete variable X;, and let z;, 2} be some states of X;. If S is a subset of
nodes, or a subgraph of T', let X5 = { X }ics and zs = {z;}ics. Let X = X7 and z = zr. Each
node ¢ has a marginal potential ¥;(z;) and each edge has a pairwise potential ¥;;(z;,z;). The
distribution over X is defined by

P(X = .’17) X H \Ifz'j(.’lii, .Tj) H \Il,(xz) (1)
(%) i

2.1 Belief propagation

Suppose observations X; = Z; were made at evidence nodes i € V. Belief propagation (BP)
is the standard procedure for inferring the posterior distribution over the unobserved nodes
H given the observations [Pearl, 1988]. The posterior distribution is fully described by the
marginal and pairwise marginal distributions over nodes in H. BP is an iterative procedure
where at each iteration a message is passed from one node to a neighboring node based on the
incoming messages to the first node.

Leti € H be an unobserved node, and j € N (i) be a neighbor of i (j can be either observed
or unobserved). Then the BP message M;;(z;) from i to j is

Mij(zj) o Y Wi(miy ) Ui(ws) [ Mua(i) ()

keN(i)\j

where N (i)\j are all neighbors of 7 except j. If i € V is an observed node, then the outgoing
message of i to j € N (i) is held fixed at the boundary conditions of M;;(x;) ox W;;(Z;, z;)¥;(Z;).
For numerical stability, the messages are often normalized after each update. After BP has con-
verged, the marginals and pairwise marginals are computed from the messages using

P(;) = bi(ws) oc Ui(;) [ [ Mii(z:) ©)
kEN (i)
P(xi,3:) = bij (@i, ) o< Wi (i, ) ()05 (a5) [ [ Mia(i) [ [ Mij(5) (4)
keN()\J leEN()\i

BP messages can be updated in series or in parallel. The parallel BP scheme is not practical
on a normal computer, but is useful when one has a large graph and highly parallel hardware
with one processor per node sending and receiving messages from its neighbors. Consider one
such computer for node i. The computation of message M;; from i to j requires the product
of all incoming messages except M;;. We can make BP more efficient by first computing the
product of all incoming messages, and then dividing out M; to compute M;; for each j € N (3).
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Figure 1: Two nodes and the messages between them.

That is, rewrite the BP update rule (2) as a sequence of three updates? :

bi(wi) o« Wilws) [[ M) (5)
KEN(i)

Aji(zi) = —\If,(mlzz)(j\gll]), @) (6)

M;j(zj) = Z Wi (w5, 25) Wi (i) Aji () (7)

The updates (5) are used only for unobserved nodes i € H. However if for each observed
node ¢ € V we clamp b;(z;) = dg, 4, to have probability 1 on the observation X; = &;, then the
updates (6,7) can be defined for the observed nodes i too, and reduces to holding M;;(z;)
\Ifij (Lfiz, .’I?j)\I’i (.%Z) fixed.

The beliefs and messages relating nodes ¢ and j are depicted in figure 1. The arrows for A j;
and M;; depict the direction of information flow. By a filled circle, we will mean a node whose
marginals are clamped to some fixed values, while an unfilled circle means an unclamped
node.

2.2 A minimum divergence problem

We shall show that the same BP update rules (5,6,7) can be used to solve a minimum diver-
gence problem which can be understood as a generalization of the inference problem in the
previous section.

Let i € V be an observed node. Suppose instead of a “hard” observation where X; = %;,
we have a “soft” observation where we observe X; = xz; with probability Bi (z;). Then our
minimum divergence problem is to find the distribution Q(z) minimizing K L(Q||P) while
satisfying the constraints Q(z;) = b;(z;). The following theorem shows that when we have
hard evidence, i.e. lA)z (xi) = 64,2, the minimum divergence problem reduces to inference.

Theorem 1 Suppose we observed X; = &; at nodes i € V. The distribution Q(x) which mini-
mizes K L(Q||P) and satisfies the constraints Q(x;) = 04, 4, for each i € V is given by Q(x) =
P(zuldv) [Licy 0w o

Proof. As Q(z) has to satisfy the constraints, we have Q(zv) = [[;cy 0z;,4; hence Q(z) has to

?In practice, for more efficiency, we can use the following updates instead of (6,7) :

bi(x;)

Aji(@i) = M () Mij(z;) = i (i, 25)Aji ()

We used (6,7) because the Aj;(z;)’s are exponentials of Lagrange multipliers which we shall introduce in the next
section.



have the form Q(z) = Q(zg|2v) [L;cy 0z;,2;- Now

L(Q|P) = ZQ (log Q(z) — log P(x))

= Z Z Q(zm,zv) <log Q(zu|ty) + Z log d, z;, — log P(w))

TH TV S%

= Q(zuliv) (log Q(zn|dv) — log P(zr|zv)) — log P(iv) ®)

and now minimizing (8) gives Q(zu|Zv) = P(zx|Zy). O

Q(x) = P(zu|tv) ey bi(z;) is a trivial extension of the posterior distribution P(z |2y )
to z7. This justifies the minimum divergence problem as an extension of inference. We shall
refer to the minimum divergence problem as generalized inference, and to the minimum di-
vergence Q(z) as the generalized posterior distribution.

Our minimum divergence problem is quite similar in flavor to using soft evidence. In soft
evidence, instead of observing X;, we observe another random variable Z; = 2; where Z; is
related to X; via a directed observation model P(Z;|X;). With observations of Z;, we then
infer the posterior distribution over X. Soft evidence is similar to our minimum divergence
problem in that the evidence on X; in both are soft. However in soft evidence the posterior
marginal distribution for X; is not given and the evidence only acts as a bias affecting X;. In
our problem, the marginal distribution over X; is given and is required to be satisfied. Ordi-
nary BP can be used to find the posterior given soft evidence but unfortunately the minimum
divergence problem cannot be solved so easily. In the next section, we introduce an algorithm
to solve it which is very similar to BP.

2.3 IPF-BP

Generalized iterative proportional fitting (GIPF) is a procedure for solving general constrained
minimum divergence problems [Darroch and Ratcliff, 1972]. It can be used to solve our gener-
alized inference problem as well. Since our distributions are defined over a tree, BP is required
as an inner loop to compute marginal distributions. In this section we describe the relation-
ship between the GIPF outer loop and the BP inner loop and introduce a unifying algorithm
which we call IPF-BP to solve the generalized inference problem. IPF-BP consists of the same
BP updates (5,6,7) performed in a particular order to ensure convergence.

Theorem 2 Suppose we made observations Q(x;) = bi(x;) for i € V. There is an ordering of the
IPF-BP updates (5,6,7), with b;(z;) clamped at Bi(gci) for each i € V, which guarantees that IPF-BP
will converge. Further, the beliefs given by (3,4) are the marginal and pairwise marginal distributions
of Q(x), where Q(x) minimizes K L(Q||P) while satisfying the constraints Q(z;) = bi(x;) for each
i € V. Q(z) itself is given by

n;—1
Q) o P(&) [ ((“E’f((jf))) 11 Aji(xn) ©)

=% JEN(3)

where n; is the number of neighbors of i.

Proof. We can solve for the posterior distribution Q(z) using Lagrange multipliers. The La-
grangian is

L= ZQ ) (log Q(x) —log P(2)) = > > Nil:)(Q(x:) — bo(x2) (10)

i€V



Solving for Q(z), we get

Q(z) x P(x) H eti(@i) o H U;i(zi, zj) H U, (z;) H (Wi(xi)e)‘i(“)) (11)

eV (i5) i€H eV

where \;(z;)’s are chosen to satisfy the constraints.

We shall first prove the result when V' consists of only leaf nodes (i.e. nodes with only one
neighbor). Then we shall show the general case by applying the algorithm and proof to each
segment of the tree separated by V, and patching the segments together using the Markov
property of trees. The BP algorithm remains unchanged.

First suppose that V' consists of only leaf nodes. The Lagrange multipliers in (11) can be
solved using GIPE, which at each iteration updates a subset U C V of the Lagrange multipliers

with the update rule
(:) () I;($) v
Ailx; Ail(z; 1\~
eMi\Ti) ¢ enilTi _ANTE 12
(Q(ﬂfz’)) 12)

where Q(z) is given by (11) with the current setting of the Lagrange multipliers. We shall in
particular use the serial version of GIPF where U consists of a single node i. The update rule
is thus

oy D)
Ai(zi) e\
—e 13
Q(z:) (19
Q(z;) can be computed in an inner loop using the usual BP procedure with no evidence nodes
and Q(z) given by (11). From (3), it is given by

Ai(z;)

e

Q) o (Wilw)eM ™)) Mya(as) (14

where j; is the unique neighbor of node 7. Substituting (14) into (13), the serial GIPF update
rule then reduces to

bi(:)

Aq( S ST
W, (zi) Mj,i(wi)

i) (15)
which is exactly the same as the BP update for Aj;(z;) given in (6). Identifying etil@) =
Aj.i(z;), we see that the two loop serial IPF algorithm can be reduced to a single run of the BP
procedure given by (5,6,7) with b;(z;) fixed at b;(z;) for each i € V. We shall call this single run
BP procedure IPF-BP. IPF-BP updates of A j;(z;) where ¢ is a clamped node will be called IPF
updates, other updates will be called internal BP updates. Note that our derivation of IPF-BP
assumes a particular ordering of the updates : after each IPF update, we have to perform a
batch of internal BP updates until the internal BP messages have converged. In section 2.4 we
show that more efficient update orderings are possible.

Now suppose that V' contains internal nodes of the tree T'. The minimum divergence dis-
tribution Q(xz) is the unique distribution of the form (11) which satisfies the constraints. We
will construct a distribution satisfying the above properties, which by uniqueness, must be
Q().

First we partition the tree T' into a number of segments as follows. Each node i € V is
replicated n; times and each replica of ¢ is connected to a neighbor j € N(i) and no other
nodes. A segment is defined to be a connected component of the resulting graph. Aside from
being connected to different neighbors of i, there is no difference between the replicas of 7, and
we will in general make no distinction between the individual replicas and the node ¢ itself,
and will identify each segment with the corresponding subtree of T'. The same segmentation
scheme can be applied to any graph G with a number of clamped nodes. This is depicted in
figure 2. Note that a single edge can form a segment (bottom right of graph), and a segment
can be singly connected even though the original subgraph is not (top right).

6



N I/
Figure 2: Segmenting a graph. On the left is the original graph, with filled circles being

clamped nodes, and unfilled circles being unclamped nodes. The clamped nodes are repli-
cated on the right and each connected component forms a segment of the original graph.

Since the clamped nodes of T appear only as leaf nodes of segments of T', we can run the
previously described IPF-BP algorithm independently on each segment S of T'. The resulting
posterior distribution on §'is

Qs(es) o [ Wijlai,z)) [T Vilwi) [ Aysili) (16)
(i5)eS €S 1€EVNS

where j is the unique neighbor of i in S. Define

HS AQS (xS) (17)
ey bifoo)!
where we take 0/0 = 0. Because T is a tree and we have Qs(x;) = b;(z;) for each S adjacent to

i € V, it can easily be shown that )~ Q(z) = 1 hence Q(z) is a distribution. Further, for each
i € V, Q(x;) = bi(x;) satisfies the constraint. Now expanding each Qs in (17) using (16), we

see that .
Q(z) x P(z) [| ((‘Z((;”))) 11 Aj,-(xi)) (18)

=% JEN(i)

Q) =

has the same form as (11). By uniqueness, Q(z) must be the sought after generalized posterior
distribution. O

2.4 Scheduling of IPF-BP messages

There are a few differences between IPF-BP and ordinary BP. Firstly, ordinary BP can converge
with only one update to each message on the tree. This is achieved with the following scheme
: update a message M;; only if each incoming message My; for k € N(i)\j has already been
updated or is a fixed message coming in from an observed node. IPF-BP, on the other hand,
cannot in general converge exactly to the correct solution with a finite number of steps, since
simple GIPF itself cannot do so either.

Secondly, the updates of ordinary BP can be performed in parallel, while the IPF updates in
IPE-BP cannot be parallelized unless one takes small steps, i.e. use U = V in the GIPF update
(12). Ordinary BP can be parallelized because the value of each M;; never directly or indirectly
affect the value of Mj;. With IPF-BP, a message going into a clamped node will “bounce” off
the node and affect the message going out of the node. As a result every message is dependent
on every other message which implies that IPF-BP cannot be parallelized.

Thirdly, the proof of theorem 2 assumes a particular ordering of message updates where
all internal BP messages are updated before each IPF update. Since the convergence of IPF-BP
is determined by the number of IPF updates performed, this is very inefficient since it requires
a full sweep of internal BP updates for each IPF update. However, it turns out that we do not
actually need to update all internal BP messages in between two consecutive IPF updates.
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Figure 3: The internal BP update path from i to [ is given by the arrowed edges.

Suppose the first IPF update is for A j;(z;) and the second update is for Ag;(x;). See figure 3.
Then we only need to update the messages along the path from ¢ to I. For each unclamped
node v traversed on the path from i to [, we update b, (z,) and for edge v — u traversed we first
update Ay, (z,) then update My, (z,). The reason these internal BP updates are sufficient is
because updating Ay, (z;) requires only My, (z;) which in turn only requires messages pointing
toward [ to be computed. Among these messages, only those laying along the path from ¢ to
are affected by the first IPF update of A ;(z;) and hence need to be recomputed. Messages like
My () in figure 3 remain unchanged after the first IPF update.

The above describes the minimum set of internal BP updates required between two IPF
updates. We still have freedom in deciding how to schedule the IPF updates. For efficiency, it
is desirable to schedule the IPF updates such that the number of internal BP updates per IPF
update is minimized. This can be achieved by minimizing the length of the path traversed
from one IPF update site to the next.



3 Loopy Extension to IPF-BP

Recently, a number of groups have shown that BP works surprisingly well in many prac-
tical problems where the graphical model involved contains loops [Frey and MacKay, 1997,
McEliece et al., 1998, Freeman and Pasztor, 1998, Murphy et al., 1999]. Efforts to understand
how and why loopy BP works were spear headed by Weiss [Weiss, 2000], but the breakthrough
came when Yedidia et al showed that the fixed points of loopy BP correspond exactly to the
stationary points of the Bethe free energy [Yedidia et al., 2000]. The Bethe free energy is an
approximation to the true free energy, and in practice the BP fixed points are found to be min-
ima of the Bethe free energy. This motivates exploring the use of other algorithms to minimize
the Bethe free energy. In this section we shall derive an algorithm based on IPF-BP to directly
minimize the Bethe free energy. We refer to this algorithm as IPF-BO, where BO stands for
belief optimization [Welling and Teh, 2001].

Suppose we have a second order, discrete, undirected graphical model G. Let i, 7, k denote
nodes of the model, and (ij) denote an edge connecting nodes i and j. Each node i is associated
with a variable X;, and let z; be some states of X;. Let X = {X;} and z = {z;}. The distribution
over X is defined by

P(X = a) o [ [ Wijlas, ) [ ] (=) (19)
(i) i

where ¥;;(z;, z;) denotes a pairwise potential between node ¢ and j, while ¥;(z;) denotes the
local potential for node i. Let the beliefs b;(z;) be our estimate of P(z;), and b;;(z;, z;) be our
estimate of P(z;,z;). Define

Eij(zi, ) = —log [V (ws, 27) Ui (x;) ¥, (z5)]

The Bethe free energy is defined as

Fiethe :Z Z bij(zi, z;) (Eij(xi,xj) + log bz’j(ﬂﬁi,»??j))

(ig) TiTj

+ Z(l —ni) Y bi(x) (Ei(wz') + log bz'(xi)) (21)

We obtain estimates b;, b;; by minimizing Fpepe subject to constraints that every b;; marginal-
izes down to b; and b;, and that every b; sums to 1. We can enforce these constraints by adding
Lagrange multipliers to the free energy as follows?,

L =Fpyethe — Z Z )‘JZ(CCZ)(Z bij(miamj) - bZ(zZ))
(ig) i Zj
- Z Z Az’j(ﬂﬂj)(zbij(xi’xj) — bj(xj)) - Z%(Z bi(z;) — 1) (22)

(i7) =

It was shown in [Yedidia et al., 2000], that the stationary points of this cost function correspond
to the fixed points of loopy BP.

In the following we will describe an iterative procedure to decrease the Bethe free energy
at every iteration and show that the procedure stops only when a stationary point has been
found. At each iteration a number of nodes are chosen to have their marginals clamped at
the current values. These clamped nodes define a segmentation of the graph as in figure 2.
The nodes are chosen such that each resulting segment forms a tree, and IPF-BP is applied to

3Notice that unlike [Yedidia et al., 2000], we do not include Lagrange multipliers which directly enforce the
pairwise marginals to integrate to one, which are redundant.



each segment with the aforementioned nodes clamped to their current marginals. After IPF-
BP converges, a new iteration starts with a new set of nodes chosen to have their marginals
clamped. We will show that each iteration of this algorithm decreases the Bethe free energy,
hence is guaranteed to converge since the Bethe free energy is bounded below for discrete
networks. So long as no node stays clamped at every iteration, we shall show furthermore
that the algorithm will converge to a stationary point of the Bethe free energy (it can be a
saddle point or local minimum).

Let C be a set of nodes and consider a segment T' of the graph after we clamp the nodes of
C to their marginals. T is assumed to be singly-connected. We wish to minimize Fpespe With
respect to the beliefs corresponding to the edges and unclamped nodes of T'. The relevant
terms of L are

Ly = Z Z bzg Zi, Tj ( zy(xia$j) +10gbij($iawj))

(ij)€T Ti,xj

+> (1 -nf) Zb xz( (i) +logb(wz))

€T

_ Z Z)‘JZ () (wa (zi,25) (wz)>

(ij)ET Ti

o Z ZA” ;) (wa (i, 5) (%))

z] eT T

—Z%(Zb x;) — ) (23)

€T

where nZT is the number of neighbors of node ¢ in T. We can minimize L with respect to the
unclamped beliefs of T' by minimizing Lr. Because T is a tree, if each b;; marginalizes down
to b; and b;, we can define a distribution over T by

[ (ij)er bij (@i, z5)

[Tier bi(z:)™

The problem of the constrained minimization of L7 with respect to the unclamped beliefs of
T is equivalent to the problem of minimizing

ZbT(xT) (long ) Z Eij(z;, x;) -I—Z (1 —n ) (25)

(i5)eT €T

(24)

br(zr) =

subject to the constraints that by has to be of the form given in (24) and that b7 has to marginal-
ize down to b;(z;) for each clamped node i € C' N T. Define a distribution over T' by

Pr(zr) o exp ( Z Ezg xlax] Z(l - ?’L?)E,(x») (26)

(ij)eT i€T
By theorem 2, the the minimum divergence distribution Q7 from Pr with constraints Qr(z;) =
bi(z;) foreachi € CNTis

Qr(zr) < Pr(zr) [[ exp(vi(z:)) (27)
ieCNT

where 7;(z;) are chosen to satisfy the constraints. Because 7' is a tree, a Q7 given by (27) can
also be expressed in the form

H(ij)eT Qr(zi, z;)
[Licr QT(%)niT_l

10

Qr(zT) = (28)



Now (25) is, up to an additive constant, K L(br||Pr), hence Qr is the solution to the con-
strained minimization of (25).

By theorem 2, we can find Qr using IPF-BP, and so IPF-BP can be used to decrease Fpespe
at each iteration. Now we will show that the overall algorithm converges to a stationary point
of Fpetne if no node is left clamped in every iteration. Suppose that the algorithm has already
converged. Let i be a node and j be a neighbor of 7, and consider an iteration where i is
unclamped. Let T' be the segment containing ¢ and consider the IPF-BP updates of 7. Since
the overall algorithm has converged, the update rules (5,6,7) do not change b;, A;; or Mj;.
Consider b;; as given by (4). We have

sz-j(:vi,xj) X Z \Ifij(:vi,:vj)\lfi(xi)\lfj(:vj) H Mki(xi)HMlj(l'j)

kEN(i)\j leN()\e

=3 Uj(wi, ) W) U () Aij () Agi () by (5,6)
= Ui(zi) Aji(i) Mji () by (7)
= Uy(z;) [ [ Myi(z:) by (5,6)
kEN (i)
= b;(z;) by (3) (29)

So the beliefs satisfy the marginalization and normalization constraints. Since a set of beliefs
b; and b;; are at the stationary point of Fy if they are given by (3) and (4), and they satisfy
the marginalization and normalization constraints [Yedidia et al., 2000], our overall algorithm
has converged to a stationary point of Fyetpe.

11



4 Comparing Loopy BP and IPF-BO

We investigated the practicality of minimizing the Bethe free energy using IPF-BO by com-
paring the accuracy of its estimated marginal and pairwise marginal distributions with loopy
BP.

We ran all our experiments on a 10 by 10 square lattice with binary (0, 1)-valued units. This
is because it is still feasible to compute the exact marginal and pairwise marginal distributions,
against which we can compare the estimates obtained using loopy BP and IPF-BO. The exact
marginal and pairwise marginal distributions are calculated using the junction tree algorithm
where we cluster the nodes in each row into a super-node. We sampled each weight W,
independently from a zero mean Gaussian with standard deviation s,,. Then we sampled each
bias b; independently from a Gaussian with mean —% Y ke NG) Wi, and standard deviation sy.
The means of the biases are offset from 0 so that networks with biases deviating only slightly
from their means have complex multi-modal distributions where the mean value of each X; is
approximately 0.5, while if the biases deviate more from their means the distribution will tend
to be peaked around a single mode with the mean value of X; polarized at either 0 or 1. That s,
if sp is small the resulting distribution will be qualitatively more similar to a prior distribution
before observations were made, and if sy is large the resulting distribution will be qualitatively
more similar to the posterior after observing some nodes. The standard deviations s,, and s,
are chosen from {0.1,1,3,6,10} separately. For each setting of s,, and sp, 20 networks are
generated and used to compare loopy BP and IPF-BO. For large weights s,, > 6 and small
biases s, < 3, we generated and used 40 networks instead, as loopy BP does not converge all
the time.

For IPE-BO, we iterate over the nodes i of the network, clamping the neighboring marginals
bj(z;),j € N(i) to their current values and running IPF-BO on the star-shaped segment con-
taining ¢. For loopy BP, we used a strong damping factor of 0.9 so that it has a higher chance
of convergence. For both algorithms, the convergence criteria was for all the means b;(1) to
be changed by less than 10 * for twenty consecutive iterations. We stop if loopy BP has not
converged by 10000 iterations.

For a given setting of s,, and s, the generated networks are separated into two sets : one
in which loopy BP converged, and one in which it failed to converge. For each set separately,
we compared IPF-BO and loopy BP using the mean error in the estimated marginals b;(1)
averaged over all nodes and all networks in the set. We also compared the mean error in the
estimated covariances b;;(1,1) — b;(1) — b;(1), averaged over all neighboring pairs of nodes
and all networks in each set. Accompanying each mean we also looked at the mean absolute
deviation (MAD). The results are given in figure 4.

Each row of figure 4 corresponds to a setting of s,,, increasing from top to bottom. Within
each row the left plot shows the errors in the estimated marginals, while the right plot shows
the errors in the estimated covariances. In each plot there are five groups of four bars each.
Each group corresponds to a setting of s, increasing from left to right. In each group, the first
two bars show the errors using IPF-BO and loopy BP respectively, when loopy BP converged.
The next two bars show the errors for both IPF-BO and loopy BP when loopy BP failed to
converge in 10000 iterations. The number associated with each group indicates the percentage
of runs that loopy BP failed to converge.

The qualitative behaviors of the errors of the marginals and covariances are the same.
Hence we shall concentrate on the errors of the marginals. The general trends in figure 4
confirm our expectations. With increasing weights, both loopy BP and IPF-BO performed
increasingly worse, as the distribution becomes more complicated and multi-modal. With in-
creasing biases, both loopy BP and IPF-BO performed better, as the distribution tends toward
a single mode.

For small weights or large biases (s,, < 3, or s; > 6, or s,, = 6 and s; > 1), loopy BP always
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Figure 6: Scatter plot of Bethe free energy obtained using IPF-BO versus those obtained using
loopy BP.

converged and both algorithm performed equally well. As a matter of fact, most of the time
both algorithms converged to very similar solutions. This is shown in figure 5, where we plot
the marginals obtained by IPF-BO versus those obtained by loopy BP. On the right plot, the
algorithms sometimes get stuck in local minima or plateaus, resulting in a very small number
of marginals being different : out of a total of 12000 points on the plot, only 372 lie outside the
region |z — y| < 0.01.

The situation is more complicated for large weights and small biases (s,, = 6 and s, = 0.1,
or s,y = 10 and s < 3). In the regime where s, = 0.1 and s,, = 6, 10, IPF-BO performed better
than loopy BP, especially when s,, = 10. In the regime where s; > 1 and s,, = 10, loopy BP
amazingly performed better than IPF-BO even when loopy BP did not converge.

One possible explanation for this phenomenon is that IPF-BO is stuck in local minima or
plateaus, in which case we can diagnose this by seeing if the Bethe free energy of the final
beliefs obtained using IPF-BO is larger than the Bethe free energy of the beliefs obtained using
loopy BP. This is shown in figure 6. We see that the reverse is true instead — IPF-BO always
converges to a point where the Bethe free energy is lower than the Bethe free energy obtained
with loopy BP. This shows that IPF-BO is not stuck in local minima and also shows that IPF-BO
does what it was advertised to do — to decrease the Bethe free energy.

To understand why IPF-BO gives larger errors than loopy BP we look at how the marginals

14
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with v, = 10, wp = 1.

estimated by IPF-BO and loopy BP are related to the true marginals. This is shown in figure 7.
We did not separate out cases where loopy BP converged from those where it did not because
the analyses turn out to be similar anyway. Consider first the left plot of loopy BP marginals
versus the true marginals. Most of the points are concentrated near the (1, 1) and (0,0) corner.
This means that if a true marginal is close to 0 or 1, loopy BP often converges to a limit cycle
or stationary point close to the true marginal. Otherwise the loopy BP marginal can be totally
unrelated to the true marginal, as seen by the uniform spread of the points on the plot away
from (0,0) and (1,1). In summary, loopy BP often got the right marginal but sometimes got
it totally wrong. Now consider the right plot of IPF-BO marginals versus the true marginals.
Since there are not many points in the top left and bottom right quadrants, we see that the
IPF-BO marginals are often on the same side of 0.5 as the true marginals. The problem lies
with the (almost) horizontal ridge of points, where regardless of what the true marginal is, the
IPF-BO estimate is often close to 0.5 (even though the IPF-BO estimate might lie on the same
side of 0.5). This is true even when the true marginal is near to 0 or 1 (observe the two clumps
of points, one near (0,0.5) and one near (1,0.5)). It is the points near (0,0.5) and (1, 0.5) which
contributed to the high error as report in figure 4. IPF-BO prefers its marginals to be near 0.5
because they give a lower Bethe free energy, as seen in figure 6.

The same analysis shows why IPF-BO does better than loopy BP when v,, = 6,10 and
vp = 0.1. The results are shown in figure 8 for v,, = 10. The results are similar for v,, = 6.
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Figure 8: Scatter plot of loopy BP and IPF-BO marginals versus the true marginals for networks

True marginals

with v, = 10, wp = 0.1.

15

True marginals




Again we did not distinguish between whether loopy BP converged or not as the analyses
were similar. First of all note that because the biases are so small, the true marginals are
mostly between 0.3 and 0.7. Loopy BP did not converge in 87.5% of the networks, and we
can see from figure 8 that the marginals it estimated are essentially random. For IPF-BO, the
points in the right plot of figure 8 can be approximately split into two strips : a horizontal strip
from (0, 0.5) to (1,0.5), and a less distinct vertical strip from (0.5, 0) to (0.5,1). This means that
IPF-BO marginals either close to 0.5 (horizontal strip), or are totally random (vertical strip).
This should not be much better than what loopy BP did on the left plot. The reason the IPF-BO
errors in figure 4 are so much smaller than the loopy BP errors is because the true marginals
themselves are coincidentally often close to 0.5.

The above detailed analysis shows that loopy BP always converges when the Bethe ap-
proximation is good. Both IPF-BO and loopy BP will then converge to the same solutions in
this case. If the Bethe approximation is bad, loopy BP often does not converge, but IPF-BO
does not seem to do much better either. We can view this as an advantage for loopy BP — if
loopy BP does not converge we can be certain that the Bethe approximation is not good to start
with and perhaps we should look into more accurate approximations. The down side is that
even if loopy BP converges we still cannot be sure if the Bethe approximation is good and the
loopy BP estimates are good. However the stable nature of IPF-BO might make it more suit-
able as part of a network parameter learning scheme with approximate inference, as it is likely
that we will encounter parameter settings for which loopy BP will not converge during the
course of learning. Our conclusions are, however, limited by our use of synthetic randomly
generated networks, and further experiments are necessary in understanding when and why
direct minimization of the Bethe free energy might be better than loopy BP.
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5 Discussion

In this work we have presented a unified view on inference and an algorithm to solve it ef-
ficiently on trees. We are currently investigating the possibility to perform exact generalized
inference on loopy graphs which can be efficiently represented as junction trees, and its rela-
tion to Jirousek’s and Preucil’s algorithm.

Approximate generalized inference on loopy graphs is studied through the introduction of
an extended Bethe free energy as an objective function to be minimized. An iterative algorithm
which cycles through tree structured subgraphs while performing IPF-BP on each segmented
tree was shown to minimize this objective efficiently. We briefly mentioned the possibility
of segmenting small clusters of nodes containing loops and treating them exactly. Although
initial experiments show promising results, we haven’t yet found an appropriate costfunction
which is being minimized. It it our hope that there is a close relationship with the Kikuchi free
energy and the generalized BP algorithm [Yedidia et al., 2000].

In the experiment section we have tried to map out where the Bethe free energy is a good
approximation. Theoretically, we know three regimes where it should be appropriate,

e On a tree, where it is exact.

e For small weights, since the correlations are expected to be short ranged, which is the
appropriate regime for mean field type approximations.

e For very large weights if the interactions at most second order, since in this regime the
entropy is negligable and the energy contribution is exact.

From an algorithmic perspective we have found good performance of both loopy BP and
our belief optimization procedure for small weights (and on trees of course). However, when
the weights grow too large and the biases remain small both loopy BP and BO procedures
become inaccurate. In this regime, the lack of external evidence (in the form of small biases)
will not produce a sharply peaked posterior distribution, but a distribution with many modes
with polarized marginals. Since BP (when it converges) and BO will produce identical, but
inaccurate estimates of the posterior marginals, we deduce, that the Bethe approximation must
have broken down. We have found that this happens even before loopy BP fails to converge,
making the use of minimization procedures like belief optimization not extremely useful for
this application (one could even think of using the failure of BP to converge as a diagnostic
tool for the accuracy of Bethe free energy). We have not found good performance in the regime
of very large weights, irrespective of the biases (third regime), which may be explained by the
rugged energy landscape of the posterior distribution.

Possible applications may involve learing where BO can be used as a partial E-step in an
EM algorithm. It is our hope that other applications, possibly in the field of error correcting
codes, will emerge in the future.
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