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Bayesian Learning of Probabilistic Models
• Potential outcomes/observations X.

• Unobserved latent variables Y.

• Joint distribution over X and Y:

• Parameters of the model θ.

• Inference:

• Learning:

• Bayesian learning:

P (x ∈ X, y ∈ Y |θ)

P (training data|θ)

P (θ|training data) =
P (training data|θ)P (θ)

Z

P (y ∈ Y |x ∈ X, θ) =
P (y, x|θ)
P (x|θ)



Why Bayesian Learning?
• Less worry about overfitting.

• Nonparametric Bayes mitigates issues of model selection.

• Separation of modeling assumptions and algorithmic concerns.

• Explicit statement of assumptions made.

• Allows inclusion of domain knowledge into model via the structure and form 
of Bayesian priors.

• Power law properties via Pitman-Yor processes.

• Information sharing via hierarchical Bayes.



Hierarchical Bayes,
Pitman-Yor Processes, and
N-gram Language Models



N-gram Language Models

• Probabilistic models for sequences of words and characters, e.g.

• (N-1)th order Markov model:

south, parks, road

s, o, u, t, h, _, p, a, r, k, s, _, r, o, a, d

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



• Large vocabulary size means naïvely estimating parameters of this model 
from data counts is problematic for N>2.

• Naïve priors/regularization fail as well: most parameters have no 
associated data.

• Smoothing.

Sparsity and Smoothing

PML(wordi|wordi−N+1 . . .wordi−1) =
C(wordi−N+1 . . .wordi)

C(wordi−N+1 . . .wordi−1)

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



• Context of conditional probabilities naturally organized using a tree.

• Smoothing makes conditional probabilities                                       
of neighbouring contexts more similar.

• Later words in context more important                                              
in predicting next word.

∅

Smoothing on Context Tree

along south parks

south parks

parks

to parks university parks

at south parks

P smooth(road|south parks)

= λ(3)Q3(road|south parks) +

λ(2)Q2(road|parks) +
λ(1)Q1(road|∅)



Smoothing in Language Models

• Interpolated and modified Kneser-Ney are best under virtually all 
circumstances.

[Chen and Goodman 1998]



Hierarchical Bayesian Models
• Hierarchical modelling an important overarching theme in modern statistics.

• In machine learning, have been used for multitask learning, transfer learning, 
learning-to-learn and domain adaptation.

i=1...n2

φ0

φ2

x2i

i=1...n3

φ3

x3i

i=1...n1

φ1

x1i

[Gelman et al, 1995, James & Stein 1961]



• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.
G∅

Hierarchical Bayesian Models on Context Tree

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

[MacKay and Peto 1994]



Hierarchical Dirichlet Language Models

• What is                       ? [MacKay and Peto 1994] proposed using the 
standard Dirichlet distribution over probability vectors.

• We will use Pitman-Yor processes instead.

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2× 106 2 148.8 144.1 191.2
4× 106 2 137.1 132.7 172.7
6× 106 2 130.6 126.7 162.3
8× 106 2 125.9 122.3 154.7

10× 106 2 122.0 118.6 148.7
12× 106 2 119.0 115.8 144.0
14× 106 2 116.7 113.6 140.5
14× 106 1 169.9 169.2 180.6
14× 106 3 106.1 102.4 136.6



Power Laws in English
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• Generative Process:

• Defines an exchangeable stochastic process over sequences x1, x2, ...

• The de Finetti measure is the Pitman-Yor process,

Chinese Restaurant Processes

y1

x1 x2
x3
x4

x5

x6

x7
x8

x9

y2 y3 y4

G ∼ PY(θ, d, H)
xi ∼ G i = 1, 2, . . .

p(sit at table k) =
ck − d

θ +
�K

j=1 cj

p(sit at new table) =
θ + dK

θ +
�K

j=1 cj

p(table serves dish y) =H(y)

[Perman, Pitman & Yor 1992, Pitman & Yor 1997, Ishwaran & James 2001]



• customers = word tokens.

• H = dictionary.

• tables = dictionary lookup.

• Dictionary look-up sequence: 

• cat, dog, cat, mouse

• Word token sequence: 

• cat, dog, dog, dog, cat, dog, cat, mouse, mouse

Chinese Restaurant Processes

x1 x2
x3
x4

x5

x6

x7
x8

x9

cat dog cat mouse



Stochastic Programming Perspective
• G ~ PY(θ,d,H)

x1 x2
x3
x4

x5

x6

x7
x8

x9

cat dog dog dog cat dog cat mouse mouse

cat dog cat mouse

cat, dog, cat, mouse ... ~ H iid

~ G iid

G ~ PY(θ,d,H)

cat, dog, cat, mouse ... cat, dog, dog, dog, cat ...

H

• A stochastic program producing a random sequence of words.

[Goodman et al 2008]



Power Law Properties of Pitman-Yor Processes
• Chinese restaurant process:

• Pitman-Yor processes produce distributions over words given by a power law 
distribution with index 1+d.

• Small number of common word types;

• Large number of rare word types.

• This is more suitable for languages than Dirichlet distributions.

• [Goldwater et al 2006] investigated the Pitman-Yor process from this 
perspective. 

p(sit at table k) ∝ ck − d

p(sit at new table) ∝ θ + dK

[Goldwater et al 2006]



Power Law Properties of Pitman-Yor Processes
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Hierarchical Pitman-Yor Language Models
• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Place Pitman-Yor process                                                                           
prior on each Gu.

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks



Stochastic Programming Perspective
• G1 ~ PY(θ1,d1,G0)

• G2 | G1 ~ PY(θ2,d2,G1)

• G3 | G1 ~ PY(θ3,d3,G1)

G3 ~ PY(θ3,d3,G1)

G1 ~ PY(θ1,d1,G0)

G0

w01,w02,w03,...

w11,w12,w13,...

G2 ~ PY(θ2,d2,G1)

w21,w22,w23,... w31,w32,w33,...



Hierarchical Pitman-Yor Language Models

• Significantly improved on the hierarchical Dirichlet language model.

• Results better Kneser-Ney smoothing, state-of-the-art language models.

T N-1 IKN MKN HDLM HPYLM

2× 106 2 148.8 144.1 191.2 144.3
4× 106 2 137.1 132.7 172.7 132.7
6× 106 2 130.6 126.7 162.3 126.4
8× 106 2 125.9 122.3 154.7 121.9

10× 106 2 122.0 118.6 148.7 118.2
12× 106 2 119.0 115.8 144.0 115.4
14× 106 2 116.7 113.6 140.5 113.2
14× 106 1 169.9 169.2 180.6 169.3
14× 106 3 106.1 102.4 136.6 101.9



Pitman-Yor and Kneser-Ney

• Interpolated Kneser-Ney can be derived as a particular approximate 
inference method in a hierarchical Pitman-Yor language model.

• Pitman-Yor processes can be used in place of Kneser-Ney.

x1 x2
x3
x4

x5

x6

x7
x8

x9

cat dog dog dog cat dog cat mouse mouse

cat dog cat mouse

P (x10 = dog) =
4− d

θ + 9
+

θ + 4d

θ + 9
H(dog)

absolute
discounting

interpolation 
with H(dog)



∞-gram Language Models and
Computational Advantages



Markov Language Models

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).

• How do we determine the order of our Markov models?

• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | parks)



Non-Markov Language Models

• Model the conditional probabilities of each possible word occurring 
after each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share                   
information across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.

...
.

...
.

...
.

...
.

G∅

Gparks

Gsouth parks Gto parks Guniversity parks

Galong south parks Gat south parks

Gmeet at south parks



• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored 
(integrated out), leaving a finite number of                                                
nodes in context tree.

• But there are still O(T2) number of                                                             
nodes in the context tree...     

Model Size: Infinite -> O(T2) 

G[oacac]

G[acac]

G[cac]

G[ac]

G[c]

G[ ]

G[a] G[o]

G[ca]

G[aca]

G[oaca]

G[oa]

G[oac]

c

a

a

c

c

c

c

a
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o

o
a

o
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o

H



Model Size: Infinite -> O(T2) -> 2T
• Idea: integrate out non-branching, non-leaf nodes of the context tree.

• Resulting tree is related to a suffix tree data structure,                                 
and has at most 2T nodes.

• There are linear time construction                                                     
algorithms [Ukkonen 1995].

oac

ac

oac

G[oacac]

G[ac]

G[ ]

G[a] G[o]

G[oaca]

G[oa]

G[oac]

c

c

a

a

o

o

o
a

o

H



Closure under Marginalization
• In marginalizing out non-branching interior nodes, need to ensure that 

resulting conditional distributions are still tractable.

• E.g.: If each conditional is Dirichlet, resulting conditional is not of known 
analytic form.

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

PY(θ3, d3, G[ca])

G[a]

G[aca]

?



• In marginalizing out non-branching interior nodes, need to ensure that 
resulting conditional distributions are still tractable.

• For certain parameter settings, Pitman-Yor processes are closed under 
marginalization! 

Closure under Marginalization

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

G[a]

G[aca]

PY(θ2d3, d3, G[ca])

PY(θ2d3, d2d3, G[a])

[Pitman 1999]



Comparison to Finite Order HPYLM



Compression Results

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



Hierarchical Bayes and 
Domain Adaptation



Domain Adaptation

statistics computational
linguistics

Children

General 
English



Graphical Pitman-Yor Process
• Each conditional probability vector given context u=(w1,w2) and in domain 

has prior: 

• Back-off in two different ways.

• More flexible than a straight mixture of the two base distributions.

• An example of a graphical Pitman-Yor process.

Gdomain
w1,w2

| Gdomain
w2

, Ggeneral
w1,w2

∼ PY(θ, d, πGdomain
w2

+ (1− π)Ggeneral
w1,w2

)



Graphical Pitman-Yor Process

Ghidden Markov

Gorder Markov

GMarkov

GMary has

GCharlie has

Ghas

G.
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Graphical Pitman-Yor Process
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Domain Adaptation Results
• Compared a graphical Pitman-Yor domain adapted language model to:

• no additional domain.

• naively including additional domain.

• mixture model.
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Related Works



Adaptor Grammars

• Reuse fully expanded subtrees of PCFG using Chinese restaurant processes.

• Flexible framework and software to make use of hierarchical Pitman-Yor 
process technology.

• Applied to unsupervised word segmentation, morphological analysis etc.

[Johnson, Griffiths, Goldwater *]



Adaptor Grammars

Stem → Phon+

talk, look, talk, eat,...

Suffix → Phon+

ing, s, ed, ing, ...

Word → Stem Suffix

talking, looks, talking, talked, eated, ...



Tree Substitution Grammars

• Multiple level hierarchy of adapted by Pitman-Yor processes:

• tree fragments

• PCFG productions

• lexicalization

• heads of CFG rules

[Goldwater, Blunsom & Cohn *] also [Post & Gildea 2009, O’Donnell et al 2009] 



Other Related Works

• Infinite PCFGs [Finkel et al 2007, Liang et al 2007]

• Infinite Markov model [Mochihashi & Sumita 2008]

• Nested Pitman-Yor language models [Mochihashi et al 2009]

• POS induction [Blunsom & Cohn 2011]



Concluding Remarks



Conclusions

• Bayesian methods are powerful approaches to computational linguistics.

• Hierarchical Bayesian models for encoding generalization capabilities.

• Pitman-Yor processes for encoding power law properties.

• Nonparametric Bayesian models for sidestepping model selection.

• Hurdles to future progress:

• Scaling up Bayesian inference to large datasets and large models.

• Better exploration of combinatorial spaces.

• Fruitful cross-pollination of ideas across machine learning, statistics and 
computational linguistics.



Thank You!
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