

Bayesian Tools for Natural Language Learning

Yee Whye Teh Gatsby Computational Neuroscience Unit UCL

Bayesian Learning of Probabilistic Models

- Potential outcomes/observations X.
- Unobserved latent variables Y.
- Joint distribution over X and Y:

$$P(x \in X, y \in Y|\theta)$$

• Parameters of the model θ .

• Inference:
$$P(y \in Y | x \in X, \theta) = \frac{P(y, x | \theta)}{P(x | \theta)}$$

- Learning: $P(\text{training data}|\theta)$
- Bayesian learning: $P(\theta | \text{training data}) = \frac{P(\text{training data}|\theta)P(\theta)}{Z}$

Why Bayesian Learning?

- Less worry about overfitting.
- Nonparametric Bayes mitigates issues of model selection.
- Separation of modeling assumptions and algorithmic concerns.
- Explicit statement of assumptions made.
- Allows inclusion of domain knowledge into model via the structure and form of Bayesian priors.
 - Power law properties via Pitman-Yor processes.
 - Information sharing via hierarchical Bayes.

Hierarchical Bayes, Pitman-Yor Processes, and N-gram Language Models

N-gram Language Models

• Probabilistic models for sequences of words and characters, e.g.

south, parks, road

• (N-1)th order Markov model:

$$P(\text{sentence}) = \prod_{i} P(\text{word}_{i} | \text{word}_{i-N+1} \dots \text{word}_{i-1})$$

Sparsity and Smoothing

$$P(\text{sentence}) = \prod_{i} P(\text{word}_{i} | \text{word}_{i-N+1} \dots \text{word}_{i-1})$$

 Large vocabulary size means naïvely estimating parameters of this model from data counts is problematic for N>2.

$$P^{\mathrm{ML}}(\mathrm{word}_{i}|\mathrm{word}_{i-N+1}\ldots\mathrm{word}_{i-1}) = \frac{C(\mathrm{word}_{i-N+1}\ldots\mathrm{word}_{i})}{C(\mathrm{word}_{i-N+1}\ldots\mathrm{word}_{i-1})}$$

- Naïve priors/regularization fail as well: most parameters have *no* associated data.
 - Smoothing.

≜UC

Smoothing on Context Tree

• Context of conditional probabilities naturally organized using a tree.

 $P^{\text{smooth}}(\text{road}|\text{south parks})$

• Smoothing makes conditional probabilities = of neighbouring contexts more similar.

 $= \lambda(3)Q_3(\text{road}|\text{south parks}) + \lambda(2)Q_2(\text{road}|\text{parks}) + \lambda(1)Q_1(\text{road}|\emptyset)$

Smoothing in Language Models

• Interpolated and modified Kneser-Ney are best under virtually all circumstances.

[Chen and Goodman 1998]

Hierarchical Bayesian Models

- Hierarchical modelling an important overarching theme in modern statistics.
- In machine learning, have been used for multitask learning, transfer learning, learning-to-learn and domain adaptation.

[Gelman et al, 1995, James & Stein 1961]

[±]UCl

Hierarchical Bayesian Models on Context Tree

• Parametrize the conditional probabilities of Markov model:

$$P(\text{word}_i = w | \text{word}_{i-N+1}^{i-1} = u) = G_u(w)$$
$$G_u = [G_u(w)]_{w \in \text{vocabulary}}$$

• G_u is a probability vector associated with context u.

[MacKay and Peto 1994]

Hierarchical Dirichlet Language Models

• What is $P(G_u|G_{pa(u)})$? [MacKay and Peto 1994] proposed using the standard Dirichlet distribution over probability vectors.

Т	N-1	IKN	MKN	HDLM
2×10^6	2	148.8	144.1	191.2
4×10^6	2	137.1	132.7	172.7
6×10^6	2	130.6	126.7	162.3
8×10^6	2	125.9	122.3	154.7
10×10^6	2	122.0	118.6	148.7
12×10^6	2	119.0	115.8	144.0
14×10^6	2	116.7	113.6	140.5
14×10^6	1	169.9	169.2	180.6
14×10^6	3	106.1	102.4	136.6
		1		

• We will use Pitman-Yor processes instead.

[±]UCl

Power Laws in English

Chinese Restaurant Processes

• Generative Process:

- Defines an exchangeable stochastic process over sequences x1, x2, ...
- The de Finetti measure is the Pitman-Yor process,

$$G \sim \operatorname{PY}(\theta, d, H)$$

 $x_i \sim G \quad i = 1, 2, \dots$

[Perman, Pitman & Yor 1992, Pitman & Yor 1997, Ishwaran & James 2001]

Chinese Restaurant Processes

- customers = word tokens.
- H = dictionary.
- tables = dictionary lookup.

• Dictionary look-up sequence:

cat, dog, cat, mouse

• Word token sequence:

cat, dog, dog, dog, cat, dog, cat, mouse, mouse

Stochastic Programming Perspective

• G ~ PY($\boldsymbol{\theta}, d, H$)

cat, dog, cat, mouse ... ~ H iid

• A stochastic program producing a random sequence of words.

[Goodman et al 2008]

Power Law Properties of Pitman-Yor Processes

• Chinese restaurant process:

 $p(\text{sit at table } k) \propto c_k - d$ $p(\text{sit at new table}) \propto \theta + dK$

- Pitman-Yor processes produce distributions over words given by a power law distribution with index 1+d.
 - Small number of common word types;
 - Large number of rare word types.
- This is more suitable for languages than Dirichlet distributions.
- [Goldwater et al 2006] investigated the Pitman-Yor process from this perspective.

[Goldwater et al 2006]

Power Law Properties of Pitman-Yor Processes

UCL

Hierarchical Pitman-Yor Language Models

• Parametrize the conditional probabilities of Markov model:

$$P(\operatorname{word}_{i} = w | \operatorname{word}_{i-N+1}^{i-1} = u) = G_{u}(w)$$

$$G_u = [G_u(w)]_{w \in \text{vocabulary}}$$

• *G*^{*u*} is a probability vector associated with context *u*.

Stochastic Programming Perspective

• $G_1 \sim PY(\boldsymbol{\theta}_1, d_1, G_0)$

[±]UCl

Hierarchical Pitman-Yor Language Models

- Significantly improved on the hierarchical Dirichlet language model.
- Results better Kneser-Ney smoothing, state-of-the-art language models.

	ΓΙ	N-1	IKN	MKN	HDLM	HPYLM
2×1	0^{6}	2	148.8	144.1	191.2	144.3
4×1	0^{6}	2	137.1	132.7	172.7	132.7
6×1	0^{6}	2	130.6	126.7	162.3	126.4
8×1	0^{6}	2	125.9	122.3	154.7	121.9
10×1	0^{6}	2	122.0	118.6	148.7	118.2
12×1	0^{6}	2	119.0	115.8	144.0	115.4
14×1	0^{6}	2	116.7	113.6	140.5	113.2
14×1	0^{6}	1	169.9	169.2	180.6	169.3
14×1	0^{6}	3	106.1	102.4	136.6	101.9

Pitman-Yor and Kneser-Ney

• Interpolated Kneser-Ney can be derived as a particular approximate inference method in a hierarchical Pitman-Yor language model.

• Pitman-Yor processes can be used in place of Kneser-Ney.

∞-gram Language Models and Computational Advantages

Markov Language Models

• Usually makes a Markov assumption to simplify model:

P(south parks road) ~ P(south)* P(parks | south)* P(road | parks)

- Language models: usually Markov models of order 2-4 (3-5-grams).
- How do we determine the order of our Markov models?
- Is the Markov assumption a reasonable assumption?
 - Be nonparametric about Markov order...

Non-Markov Language Models

- Model the conditional probabilities of each possible word occurring after each possible context (of unbounded length).
- Use hierarchical Pitman-Yor process prior to share information across all contexts.

Model Size: Infinite -> $O(T^2)$

- The sequence memoizer model is very large (actually, infinite).
- Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored (integrated out), leaving a finite number of nodes in context tree.
- But there are still O(T²) number of nodes in the context tree...

Model Size: Infinite -> $O(T^2)$ -> 2T

- Idea: integrate out non-branching, non-leaf nodes of the context tree.
- Resulting tree is related to a suffix tree data structure, and has at most 2T nodes.
- There are linear time construction G_{\lceil} 0 algorithms [Ukkonen 1995]. $\mathcal{G}_{[a]}$ $\mathbf{\underline{L}}[o]$ ac $G_{[oa]}$ $G_{[ac]}$ oac $\left[oac \right]$ oac**L**[oaca] $G_{[oacac}$

Closure under Marginalization

• In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.

• E.g.: If each conditional is Dirichlet, resulting conditional is not of known analytic form.

Closure under Marginalization

• In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.

• For certain parameter settings, Pitman-Yor processes are closed under marginalization!

[Pitman 1999]

Comparison to Finite Order HPYLM

Compression Results

Model	Average bits/byte		
gzip	2.61		
bzip2	2.11		
CTW	1.99		
PPM	1.93		
Sequence Memoizer	1.89		

Calgary corpus SM inference: particle filter PPM: Prediction by Partial Matching CTW: Context Tree Weigting Online inference, entropic coding.

Hierarchical Bayes and Domain Adaptation

Domain Adaptation

UCI

• Each conditional probability vector given context u=(w₁,w₂) and in domain has prior:

$$G_{w_1,w_2}^{\text{domain}} \mid G_{w_2}^{\text{domain}}, G_{w_1,w_2}^{\text{general}}$$

~ $PY(\theta, d, \pi G_{w_2}^{\text{domain}} + (1 - \pi) G_{w_1,w_2}^{\text{general}})$

- Back-off in two different ways.
- More flexible than a straight mixture of the two base distributions.
- An example of a graphical Pitman-Yor process.

UCL

Domain Adaptation Results

- Compared a graphical Pitman-Yor domain adapted language model to:
 - no additional domain.
 - naively including additional domain.
 - mixture model.

Related Works

⁻UCL

Adaptor Grammars

 $\frac{\text{Word}}{\text{Stem}} \rightarrow \text{Stem Suffix} \\ \frac{\text{Stem}}{\text{Suffix}} \rightarrow \text{Phon}^+$

- Reuse fully expanded subtrees of PCFG using Chinese restaurant processes.
- Flexible framework and software to make use of hierarchical Pitman-Yor process technology.
- Applied to unsupervised word segmentation, morphological analysis etc.

[Johnson, Griffiths, Goldwater *]

UCL

Adaptor Grammars

Tree Substitution Grammars

- Multiple level hierarchy of adapted by Pitman-Yor processes:
 - tree fragments
 - PCFG productions
 - lexicalization
 - heads of CFG rules

[Goldwater, Blunsom & Cohn *] also [Post & Gildea 2009, O'Donnell et al 2009]

≜UC

Other Related Works

- Infinite PCFGs [Finkel et al 2007, Liang et al 2007]
- Infinite Markov model [Mochihashi & Sumita 2008]
- Nested Pitman-Yor language models [Mochihashi et al 2009]
- POS induction [Blunsom & Cohn 2011]

Concluding Remarks

Conclusions

- Bayesian methods are powerful approaches to computational linguistics.
 - Hierarchical Bayesian models for encoding generalization capabilities.
 - Pitman-Yor processes for encoding power law properties.
 - Nonparametric Bayesian models for sidestepping model selection.
- Hurdles to future progress:
 - Scaling up Bayesian inference to large datasets and large models.
 - Better exploration of combinatorial spaces.
- Fruitful cross-pollination of ideas across machine learning, statistics and computational linguistics.

Thank You!

Sharon Goldwater, Chris Manning & CoNLL committee

Acknowledgements: Frank Wood, Jan Gasthaus, Cedric Archambeau, Lancelot James

Lee Kuan Yew Foundation Gatsby Charitable Foundation

