1

Bayesian Tools for Natural Language Learning

Yee Whye Teh
Gatsby Computational Neuroscience Unit UCL

Bayesian Learning of Probabilistic Models

- Potential outcomes/observations X.
- Unobserved latent variables Y.
- Joint distribution over X and Y :

$$
P(x \in X, y \in Y \mid \theta)
$$

- Parameters of the model θ.
- Inference:

$$
P(y \in Y \mid x \in X, \theta)=\frac{P(y, x \mid \theta)}{P(x \mid \theta)}
$$

- Learning: $P($ training data $\mid \theta)$
- Bayesian learning:

$$
\begin{aligned}
& \text { learning: } \\
& P(\theta \mid \text { training data })=\frac{P(\text { training data } \mid \theta) P(\theta)}{Z}
\end{aligned}
$$

Why Bayesian Learning?

- Less worry about overfitting.
- Nonparametric Bayes mitigates issues of model selection.
- Separation of modeling assumptions and algorithmic concerns.
- Explicit statement of assumptions made.
- Allows inclusion of domain knowledge into model via the structure and form of Bayesian priors.
- Power law properties via Pitman-Yor processes.
- Information sharing via hierarchical Bayes.

\#10.

Hierarchical Bayes,

Pitman-Yor Processes, and N-gram Language Models

N-gram Language Models

- Probabilistic models for sequences of words and characters, e.g.

$$
\begin{gathered}
\text { south, parks, road } \\
s, o, u, t, h, \ldots, p, a, r, k, s, \ldots, r, o, a, d
\end{gathered}
$$

- ($\mathrm{N}-1$)th order Markov model:

$$
P(\text { sentence })=\prod_{i} P\left(\operatorname{word}_{i} \mid \operatorname{word}_{i-N+1} \ldots \operatorname{word}_{i-1}\right)
$$

Sparsity and Smoothing

$$
P(\text { sentence })=\prod_{i} P\left(\operatorname{word}_{i} \mid \operatorname{word}_{i-N+1} \ldots \operatorname{word}_{i-1}\right)
$$

- Large vocabulary size means naïvely estimating parameters of this model from data counts is problematic for $\mathrm{N}>2$.

$$
P^{\mathrm{ML}}\left(\operatorname{word}_{i} \mid \operatorname{word}_{i-N+1} \ldots \operatorname{word}_{i-1}\right)=\frac{C\left(\operatorname{word}_{i-N+1} \ldots \operatorname{word}_{i}\right)}{C\left(\operatorname{word}_{i-N+1} \ldots \operatorname{word}_{i-1}\right)}
$$

- Naïve priors/regularization fail as well: most parameters have no associated data.
- Smoothing.

Smoothing on Context Tree

- Context of conditional probabilities naturally organized using a tree.

$$
P^{\text {smooth }} \text { (road|south parks) }
$$

- Smoothing makes conditional probabilities $=\lambda(3) Q_{3}($ road \mid south parks $)+$ of neighbouring contexts more similar. $\lambda(2) Q_{2}($ road \mid parks $)+$ $\lambda(1) Q_{1}($ road $\mid \emptyset)$
- Later words in context more important in predicting next word.

Smoothing in Language Models

- Interpolated and modified Kneser-Ney are best under virtually all circumstances.

Hierarchical Bayesian Models

- Hierarchical modelling an important overarching theme in modern statistics.
- In machine learning, have been used for multitask learning, transfer learning, learning-to-learn and domain adaptation.

[Gelman et al, 1995, James \& Stein 1961]

Hierarchical Bayesian Models on Context Tree

- Parametrize the conditional probabilities of Markov model:

$$
\begin{gathered}
P\left(\operatorname{word}_{i}=w \mid \operatorname{word}_{i-N+1}^{i-1}=u\right)=G_{u}(w) \\
G_{u}=\left[G_{u}(w)\right]_{w \in \mathrm{vocabulary}}
\end{gathered}
$$

- $G u$ is a probability vector associated with context u.

[MacKay and Peto 1994]

Hierarchical Dirichlet Language Models

- What is $P\left(G_{u} \mid G_{\mathrm{pa}(u)}\right)$? [MacKay and Peto 1994] proposed using the standard Dirichlet distribution over probability vectors.

T	N-1	IKN	MKN	HDLM
2×10^{6}	2	148.8	144.1	191.2
4×10^{6}	2	137.1	132.7	172.7
6×10^{6}	2	130.6	126.7	162.3
8×10^{6}	2	125.9	122.3	154.7
10×10^{6}	2	122.0	118.6	148.7
12×10^{6}	2	119.0	115.8	144.0
14×10^{6}	2	116.7	113.6	140.5
14×10^{6}	1	169.9	169.2	180.6
14×10^{6}	3	106.1	102.4	136.6

- We will use Pitman-Yor processes instead.

Power Laws in English

Chinese Restaurant Processes

- Generative Process:

- Defines an exchangeable stochastic process over sequences $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots$
- The de Finetti measure is the Pitman-Yor process,

$$
\begin{aligned}
G & \sim \operatorname{PY}(\theta, d, H) \\
x_{i} & \sim G \quad i=1,2, \ldots
\end{aligned}
$$

[Perman, Pitman \& Yor 1992, Pitman \& Yor 1997, Ishwaran \& James 2001]

Chinese Restaurant Processes

- customers $=$ word tokens.
- $\mathrm{H}=$ dictionary.
- tables $=$ dictionary lookup.

- Dictionary look-up sequence:
cat, dog, cat, mouse
- Word token sequence:
cat, dog, dog, dog, cat, dog, cat, mouse, mouse

Stochastic Programming Perspective

- G ~ $\operatorname{PY}(\theta, \mathrm{d}, \mathrm{H})$
cat, dog, cat, mouse ... ~ H iid

cat dog dog dog cat dog cat mouse mouse \sim G iid
- A stochastic program producing a random sequence of words.

[Goodman et al 2008]

Power Law Properties of Pitman-Yor Processes

- Chinese restaurant process:

$$
\begin{aligned}
p(\text { sit at table } k) & \propto c_{k}-d \\
p(\text { sit at new table }) & \propto \theta+d K
\end{aligned}
$$

- Pitman-Yor processes produce distributions over words given by a power law distribution with index $1+\mathrm{d}$.
- Small number of common word types;
- Large number of rare word types.
- This is more suitable for languages than Dirichlet distributions.
- [Goldwater et al 2006] investigated the Pitman-Yor process from this perspective.
[Goldwater et al 2006]

Power Law Properties of Pitman-Yor Processes

Hierarchical Pitman-Yor Language Models

- Parametrize the conditional probabilities of Markov model:

$$
\begin{gathered}
P\left(\operatorname{word}_{i}=w \mid \operatorname{word}_{i-N+1}^{i-1}=u\right)=G_{u}(w) \\
G_{u}=\left[G_{u}(w)\right]_{w \in \text { vocabulary }}
\end{gathered}
$$

- G_{u} is a probability vector associated with context u.
- Place Pitman-Yor process prior on each $G u$.

Stochastic Programming Perspective

- $\mathrm{G}_{1} \sim \operatorname{PY}\left(\theta_{1}, \mathrm{~d}_{1}, \mathrm{G}_{0}\right)$
- $\mathrm{G}_{2} \mid \mathrm{G}_{1} \sim \operatorname{PY}\left(\theta_{2}, \mathrm{~d}_{2}, \mathrm{G}_{1}\right)$
- $\mathrm{G}_{3} \mid \mathrm{G}_{1} \sim \operatorname{PY}\left(\theta_{3}, \mathrm{~d}_{3}, \mathrm{G}_{1}\right)$

Hierarchical Pitman-Yor Language Models

- Significantly improved on the hierarchical Dirichlet language model.
- Results better Kneser-Ney smoothing, state-of-the-art language models.

T	$\mathrm{N}-1$	IKN	MKN	HDLM	HPYLM
2×10^{6}	2	148.8	$\mathbf{1 4 4 . 1}$	191.2	144.3
4×10^{6}	2	137.1	$\mathbf{1 3 2 . 7}$	172.7	$\mathbf{1 3 2 . 7}$
6×10^{6}	2	130.6	126.7	162.3	$\mathbf{1 2 6 . 4}$
8×10^{6}	2	125.9	122.3	154.7	$\mathbf{1 2 1 . 9}$
10×10^{6}	2	122.0	118.6	148.7	$\mathbf{1 1 8 . 2}$
12×10^{6}	2	119.0	115.8	144.0	$\mathbf{1 1 5 . 4}$
14×10^{6}	2	116.7	113.6	140.5	$\mathbf{1 1 3 . 2}$
14×10^{6}	1	169.9	$\mathbf{1 6 9 . 2}$	180.6	169.3
14×10^{6}	3	106.1	102.4	136.6	$\mathbf{1 0 1 . 9}$

Pitman-Yor and Kneser-Ney

- Interpolated Kneser-Ney can be derived as a particular approximate inference method in a hierarchical Pitman-Yor language model.

cat dog dog dog cat dog cat mouse mouse

$$
P\left(x_{10}=\operatorname{dog}\right)=\frac{4-d}{\theta+9}+\frac{\theta+4 d}{\theta+9} H(\operatorname{dog})
$$

- Pitman-Yor processes can be used in place of Kneser-Ney.

IUCI

∞-gram Language Models and Computational Advantages

Markov Language Models

- Usually makes a Markov assumption to simplify model:

$$
\begin{gathered}
\text { P(south parks road) ~ } \\
\text { P(south)* } \\
\text { P(parks | south })^{*} \\
\mathrm{P}(\text { road | parks })
\end{gathered}
$$

- Language models: usually Markov models of order 2-4 (3-5-grams).
- How do we determine the order of our Markov models?
- Is the Markov assumption a reasonable assumption?
- Be nonparametric about Markov order...

Non-Markov Language Models

- Model the conditional probabilities of each possible word occurring after each possible context (of unbounded length).
- Use hierarchical Pitman-Yor process prior to share information across all contexts.
- Hierarchy is infinitely deep.
- Sequence memoizer.

Model Size: Infinite -> $\mathrm{O}\left(\mathrm{T}^{2}\right)$

- The sequence memoizer model is very large (actually, infinite).
- Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored (integrated out), leaving a finite number of nodes in context tree.
- But there are still $\mathrm{O}\left(\mathrm{T}^{2}\right)$ number of nodes in the context tree...

Model Size: Infinite -> $\mathrm{O}\left(\mathrm{T}^{2}\right)$-> 2T

- Idea: integrate out non-branching, non-leaf nodes of the context tree.
- Resulting tree is related to a suffix tree data structure, and has at most 2 T nodes.
- There are linear time construction algorithms [Ukkonen 1995].

Closure under Marginalization

- In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.

- E.g.: If each conditional is Dirichlet, resulting conditional is not of known analytic form.

Closure under Marginalization

- In marginalizing out non-branching interior nodes, need to ensure that resulting conditional distributions are still tractable.

- For certain parameter settings, Pitman-Yor processes are closed under marginalization!
[Pitman 1999]

Comparison to Finite Order HPYLM

Compression Results

Model	Average bits/byte
gzip	2.61
bzip2	2.11
CTW	1.99
PPM	1.93
Sequence Memoizer	1.89

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

IUCI

Hierarchical Bayes and Domain Adaptation

Domain Adaptation

Graphical Pitman-Yor Process

- Each conditional probability vector given context $u=\left(w_{1}, w_{2}\right)$ and in domain has prior:

$$
\begin{aligned}
& G_{w_{1}, w_{2}}^{\text {domain }} \mid G_{w_{2}}^{\text {domain }}, G_{w_{1}, w_{2}}^{\text {general }} \\
\sim & \operatorname{PY}\left(\theta, d, \pi G_{w_{2}}^{\text {domain }}+(1-\pi) G_{w_{1}, w_{2}}^{\text {general }}\right)
\end{aligned}
$$

- Back-off in two different ways.
- More flexible than a straight mixture of the two base distributions.
- An example of a graphical Pitman-Yor process.

Graphical Pitman-Yor Process

Graphical Pitman-Yor Process

Graphical Pitman-Yor Process

Domain Adaptation Results

- Compared a graphical Pitman-Yor domain adapted language model to:
- no additional domain.
- naively including additional domain.
- mixture model.

Related Works

Adaptor Grammars

Word \rightarrow Stem Suffix Stem $\rightarrow \mathrm{Phon}^{+}$
Suffix \rightarrow Phon $^{+}$

- Reuse fully expanded subtrees of PCFG using Chinese restaurant processes.
- Flexible framework and software to make use of hierarchical Pitman-Yor process technology.
- Applied to unsupervised word segmentation, morphological analysis etc.

Adaptor Grammars

talk, look, talk, eat,...

ing, s, ed, ing, ... Word \rightarrow Stem Suffix
talking, looks, talking, talked, eated, ...

Tree Substitution Grammars

- Multiple level hierarchy of adapted by Pitman-Yor processes:
- tree fragments
- PCFG productions
- lexicalization
- heads of CFG rules
[Goldwater, Blunsom \& Cohn *] also [Post \& Gildea 2009, O'Donnell et al 2009]

Other Related Works

- Infinite PCFGs [Finkel et al 2007, Liang et al 2007]
- Infinite Markov model [Mochihashi \& Sumita 2008]
- Nested Pitman-Yor language models [Mochihashi et al 2009]
- POS induction [Blunsom \& Cohn 2011]

IICI

Concluding Remarks

Conclusions

- Bayesian methods are powerful approaches to computational linguistics.
- Hierarchical Bayesian models for encoding generalization capabilities.
- Pitman-Yor processes for encoding power law properties.
- Nonparametric Bayesian models for sidestepping model selection.
- Hurdles to future progress:
- Scaling up Bayesian inference to large datasets and large models.
- Better exploration of combinatorial spaces.
- Fruitful cross-pollination of ideas across machine learning, statistics and computational linguistics.

Thank You!

Sharon Goldwater, Chris Manning \& CoNLL committee

Acknowledgements:
Frank Wood, Jan Gasthaus, Cedric Archambeau, Lancelot James

Lee Kuan Yew Foundation
Gatsby Charitable Foundation

