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Bayesian Learning of Probabilistic Models

e Potential outcomes/observations X.

e Unobserved latent variables .

e Joint distribution over X and :
Plx e X,y € Y|0)

e Parameters of the model O.

P(y,|0)
* Inference: PlyeYlr € X,0) = P(z|6)
e Learning: P(training datal|6)

e Bayesian learning:

Pltraing P
P(f|training data) = (training data|0)P(6)

/




Why Bayesian Learning?

* Less worry about overfitting.

e Nonparametric Bayes mitigates issues of model selection.

e Separation of modeling assumptions and algorithmic concerns.

e Explicit statement of assumptions made.

* Allows inclusion of domain knowledge into model via the structure and form
of Bayesian priors.

e Power law properties via Pitman-Yor processes.

e Information sharing via hierarchical Bayes.



Hierarchical Bayes,
Pitman-Yor Processes, and
N-gram Language Models



N-gram Language Models

e Probabilistic models for sequences of words and characters, e.g.

south, parks, road

s,o,ut,h _,parks _road

e (N-1)th order Markov model:

P(sentence) = H P(word;|word; _ni11...word; 1)



Sparsity and Smoothing

P(sentence) = H P(word;|word; _ni11...word; 1)

e | arge vocabulary size means naively estimating parameters of this model
from data counts is problematic for N>2.

C’(Wordi_N+1 ce WOI‘dq;)

PML(Wordi‘Wordi_NH - word;—1) = C(word;_n41...word;_1)

e Naive priors/regularization fail as well: most parameters have no
associated data.

e Smoothing.



Smoothing on Context Tree

e Context of conditional probabilities naturally organized using a tree.

Psmeoth (road|south parks)
e Smoothing makes conditional probabilities = A(3)Q@3(road|south parks) +
of neighbouring contexts more similar. A(2)Q2(road|parks) +
)\(1)@1(1‘0&6. @)
e Later words in context more important 0
in predicting next word. / \
/ parks
south parks to parks university parks

N SN\

along south parks at south parks




Smoothing in Language Models

relative performance of algorithms on WSJ/NAB corpus, 4-gram
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e Interpolated and modified Kneser-Ney are best under virtually all
circumstances.

[Chen and Goodman 1998]



Hierarchical Bayesian Models

e Hierarchical modelling an important overarching theme in modern statistics.

* In machine learning, have been used for multitask learning, transfer learning,
learning-to-learn and domain adaptation.

®

y y y

) | @ |} @

i=1...n1 i=1...n2 i=1...n3

[Gelman et al, 1995, James & Stein 1961]



Hierarchical Bayesian Models on Context Tree

e Parametrize the conditional probabilities of Markov model:
P(word; = w\wordz_]\,Jrl =u) = Gy (w)

Gu — [Gu (w)]wEVocabulary

* Gu is a probability vector associated with context u.
G

e
- N o

south parks to parks unlver81ty parks

~ N SN\

Galong south parks at south parks

[MacKay and Peto 1994]



Hierarchical Dirichlet Language Models

* What is P(Gy|Gpa(w))? [MacKay and Peto 1994] proposed using the
standard Dirichlet distribution over probability vectors.

T N-1| IKN MKN HDLM
2x10° 2| 148.8 144.1 191.2
4x10% 2| 137.1 132.7 172.7
6x10° 2| 130.6 126.7 162.3
8x 10° 211259 122.3 154.7

10 x 106 2| 122.0 118.6 148.7
12 x 105 2| 119.0 115.8 144.0
14 x 10 2| 116.7 113.6 140.5
14 x 10 1] 169.9 169.2 180.6
14 x10° 3] 106.1 1024 136.6

 We will use Pitman-Yor processes instead.



Power Laws in English
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Chinese Restaurant Processes

e (Generative Process:

L1
L5
0000
6
(sit at table k) o
pisl K
9 —|_ 2321 C.]
0+ dK
p(sit at new table) = + = p(table serves dish y) =H (y)
9 T 2321 C.]

e Defines an exchangeable stochastic process over sequences x1, X2, ...

e The de Finetti measure is the Pitman-Yor process,
G ~ PY(0,d H)

[Perman, Pitman & Yor 1992, Pitman & Yor 1997, Ishwaran & James 2001]



Chinese Restaurant Processes

e customers = word tokens.
e H = dictionary.

e tables = dictionary lookup.

xr i
1 332 337 &
I T3 L9
0000
z, | dog
L6

e Dictionary look-up sequence:
cat, dog, cat, mouse

e Word token sequence:

cat, dog, dog, dog, cat, dog, cat, mouse, mouse



Stochastic Programming Perspective
e G~ PY(O,dH)

C

at, dog, cat, mouse ... ~ H iid

e et
L6

cat dog dog

dog cat dog

cat mouse mouse ~ G iid

e A stochastic program producing a random sequence of words.

H

l

cat, dog, cat, mouse ...

-

G ~ PY(O,d,H)

cat, dog, dog, dog, cat ...

|[Goodman et al 2008]



Power Law Properties of Pitman-Yor Processes

e Chinese restaurant process:

p(sit at table k) o« ¢ —d
p(sit at new table) oo 0+ dK

e Pitman-Yor processes produce distributions over words given by a power law
distribution with index 1+d.

e Small number of common word types;

e | arge number of rare word types.

 This is more suitable for languages than Dirichlet distributions.

* [Goldwater et al 2006] investigated the Pitman-Yor process from this
perspective.

[Goldwater et al 2006]



Power Law Properties of Pitman-Yor Processes
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Hierarchical Pitman-Yor Language Models

e Parametrize the conditional probabilities of Markov model:

P(word; = w|word!”; Nyl = u) = Gy(w)
Gu — [Gu (w)]wEVocabulary

* Gu is a probability vector associated with context u.
G

e Place Pitman-Yor process / \

prior on each Gu. Gparks

R TN

south parks to parks university parks

~ N SN\

Galong south parks at south parks



Stochastic Programming Perspective
e G ~ PY(91,d1,Go)

e Gy | Gi~ PY(02,d2,Gy) Go
* G3 | G~ PY(63,d3,G1) l
Wo1,Wo02,Wo03,...

l

G1 ~ PY(04,d1,Go)

l

W11,W12,W13,...

7N\

Gy ~ PY(02,d2,Gy) G; ~ PY(93,d5,G1)

l l

W21,W22,W323,... W31,W32,W33,...




Hierarchical Pitman-Yor Language Models

e Significantly improved on the hierarchical Dirichlet language model.

e Results better Kneser-Ney smoothing, state-of-the-art language models.

T N-1| IKN MKN HDLM HPYLM
2x10° 2| 148.8 144.1 191.2 144.3
4%x10% 2| 137.1 132.7 172.7 132.7
6x10% 211306 126.7 162.3 126.4
8x 10° 211259 122.3 154.7 121.9

10 x 10 2] 122.0 118.6 148.7 118.2
12x 10 2] 119.0 115.8 144.0 115.4
14 x 10 2| 116.7 113.6 140.5 113.2
14 x 10 1| 169.9 169.2 180.6 169.3
14 x 10 3] 106.1 102.4 136.6 101.9




Pitman-Yor and Kneser-Ney

* Interpolated Kneser-Ney can be derived as a particular approximate
inference method in a hierarchical Pitman-Yor Ianguage model.

L]
L5
0000
6

mouse mouse

4—-d 0+4d

049

P(a:m:dog): 09

H (dog)

absolute
discounting

interpolation
with H(dog)

e Pitman-Yor processes can be used in place of Kneser-Ney.



co-gram Language Models and
Computational Advantages



Markov Language Models

e Usually makes a Markov assumption to simplify model:

P(south parks road) ~
P(south)*
P(parks | south)*
P(road | parks)

e Language models: usually Markov models of order 2-4 (3-5-grams).

e How do we determine the order of our Markov models?

* |s the Markov assumption a reasonable assumption?

e Be nonparametric about Markov order...



Non-Markov Language Models

* Model the conditional probabilities of each possible word occurring
after each possible context (of unbounded length).

e Use hierarchical Pitman-Yor process prior to share
information across all contexts.

G
e Hierarchy is infinitely deep. / \

. G
* Sequence memoizer. / pirks
Gsouth parks Gto parks Guniversity parks
Galong south parks Gat south parks

meet at south parks

SN



Model Size: Infinite -> O(T?)

e The sequence memoizer model is very large (actually, infinite).

e Given a training sequence (e.g.: 0,a,c,a,c), most of the model can be ignored
(integrated out), leaving a finite number of

nodes in context tree.
G 1

e But there are still O(T?) number of

nodes in the context tree...
G acyO ﬂ :
| Glog Gleal




Model Size: Infinite -> O(T?) -> 2T

e |dea: integrate out non-branching, non-leaf nodes of the context tree.

e Resulting tree is related to a suffix tree data structure,
and has at most 2T nodes.

e There are linear time construction
algorithms [Ukkonen 1995].

oac

G[oacac c



Closure under Marginalization

* In marginalizing out non-branching interior nodes, need to ensure that
resulting conditional distributions are still tractable.

Gla) Gla)

PY(927 d27 G[a])

v v
G[aca] G[aca]

e E.g.: If each conditional is Dirichlet, resulting conditional is not of known
analytic form.



Closure under Marginalization

 In marginalizing out non-branching interior nodes, need to ensure that
resulting conditional distributions are still tractable.

Gla) Gla)
PY(927 d27 G[a])
\4
G[ca] PY(92d37 dads, G[a])
PY(92d37 d37 G[ca])
\J \J
G[aca] G[aca]

e For certain parameter settings, Pitman-Yor processes are closed under
marginalization!

[Pitman 1999]



Comparison to Finite Order HPYLM
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Compression Results

Model Average bits/byte
gzIp 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching
CTW: Context Tree Weigting

Online inference, entropic coding.



Hierarchical Bayes and
Domain Adaptation



Domain Adaptation

General
English

computational
linguistics



Graphical Pitman-Yor Process

e Each conditional probability vector given context u=(w1,w>) and in domain
has prior:

Gdomain | Gdomain Ggeneral
w1 ,Ww?2 w2 ) T W1,Ww2

~ PY‘(Q7 d, WG?U(;main 4+ (1 o 7_‘_)Ggeneral)

wi,W2

e Back-off in two different ways.

* More flexible than a straight mixture of the two base distributions.

e An example of a graphical Pitman-Yor process.



Graphical Pitman-Yor Process

General English
Ghidden Markov

GMarkov
(Gorder Markov <« \
G
GMary has '
-— G /
GCharIie has «
(Ghidden Markov - (Ghidden Markov -
-«— GMarkov -«— GMarkov
(Gorder Markov \ (Gorder Markov \
G G
GMary has / ' GMary has / '
> Ghas > Ghas
GCharIie has GCharIie has
Domain=statistics Domain=children




Graphical Pitman-Yor Process

Ghidden Markov

General English

GMarkov
S G.

/
Ghas

<
_— Gorder Markov
o GMary has
~_ (Gcharlie has /

Gorder

\
Ghidden}A ribv /
—
/ -— GiMarkov
arkov
G.

GMary as

\ /
-« Ghas

GCharIie has

Domain=statistics

Ghidden Markov
GMarkov

™~

G.
\ /
-«— Gihas

Gorder Markov
GMary has

GCharIie has

Domain=children




Graphical Pitman-Yor Process

General English
Gihidden Markov

-« GiMarkov

- Gorder Markov
- GMary has

~— GCharIie has

Ghldden |d en Markov L
GM k —
arkov -« Markov
Gorder Markov orger Markov \

GMary as ary has

\Gh

GCharIie has GCharIie has

Domain=statistics Domain=children




Domain Adaptation Results

e Compared a graphical Pitman-Yor domain adapted language model to:

e no additional domain.

* naively including additional domain.

e mixture model.
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Related Works



Adaptor Grammars

Word
Word — Stem Suffix T~
Stem — Phon™ Stem Suffix
A AN
Suffix — Phon™ falking#

e Reuse fully expanded subtrees of PCFG using Chinese restaurant processes.

e Flexible framework and software to make use of hierarchical Pitman-Yor
process technology.

e Applied to unsupervised word segmentation, morphological analysis etc.

Johnson, Griffiths, Goldwater *]



Adaptor Grammars

Stem — Phon™ Suffix = Phon™

| |

talk, look, talk, eat,... Ing, s, ed, ing, ...

N

Word — Stem Suffix

|

talking, looks, talking, talked, eated, ...




Tree Substitution Grammars

S S NP NP
\'P VP NP VP George broccoli

V NP

| | f -
George hates NP hates

broccoli

Multiple level hierarchy of adapted by Pitman-Yor processes:
* tree fragments
e PCFG productions

e |exicalization

e heads of CFG rules

|Goldwater, Blunsom & Cohn *] also [Post & Gildea 2009, O’Donnell et al 2009]



Other Related Works

e Infinite PCFGs [Finkel et al 2007, Liang et al 2007]
¢ [nfinite Markov model [Mochihashi & Sumita 2008]

e Nested Pitman-Yor language models [Mochihashi et al 2009]

e POS induction [Blunsom & Cohn 2011]



Concluding Remarks



Conclusions

e Bayesian methods are powerful approaches to computational linguistics.
e Hierarchical Bayesian models for encoding generalization capabilities.
e Pitman-Yor processes for encoding power law properties.

e Nonparametric Bayesian models for sidestepping model selection.

e Hurdles to future progress:
e Scaling up Bayesian inference to large datasets and large models.

 Better exploration of combinatorial spaces.

e Fruitful cross-pollination of ideas across machine learning, statistics and
computational linguistics.



Thank You!

Sharon Goldwater, Chris Manning & CoNLL committee
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