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Sequence Models for Language and Text

• Probabilistic models for sequences of words and characters, e.g.

• Uses:

• Natural language processing: speech recognition, OCR, machine 
translation.

• Compression.

• Cognitive models of language acquisition.

• Sequence data arises in many other domains.

statistical, machine, learning
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Probabilistic Modelling
• Set of potential outcomes/observations X.

• Set of unobserved latent variables Y.

• Joint distribution over X and Y:

• θ parameters of the model.

• Inference:

• Learning:

• Bayesian learning:

P (x ∈ X, y ∈ Y |θ)

P (training data|θ)

P (θ|training data) =
P (training data|θ)P (θ)

Z

Rev. Thomas Bayes
P (y ∈ Y |x ∈ X, θ) =

P (y, x|θ)
P (x|θ)



Communication via Noisy Channel

Mary likes
little Sam

Sentence Utterance Reconstructed
sentence

Mary has a 
little lamb

P (s|u) = P (s)P (u|s)
P (u)



Communication via Noisy Channel

Mary has a
little lamb

Sentence foreign 
sentence

Reconstructed
sentence

Mary has a 
little lamb

María tiene un 
pequeño cordero

P (s|u) = P (s)P (u|s)
P (u)



Markov Models for Language and Text
• Probabilistic models for sequences of words and characters.

• Usually makes a Markov assumption:

• Order of Markov model typically ranges from ~3 to > 10.

P(statistical machine learning) = 
P(statistical)*

P(machine | statistical)*
P(learning | statistical machine)

P(statistical machine learning) = 
P(statistical)*

P(machine | statistical)*
P(learning | machine)

Andrey Markov

George E. P. Box



• Consider a high order Markov models:

• Large vocabulary size means naïvely estimating parameters of this model 
from data counts is problematic for N>2.

• Naïve priors/regularization fail as well: most parameters have no 
associated data.

• Smoothing.

• Hierarchical Bayesian models.

Sparsity in Markov Models

PML(wordi|wordi−N+1 . . .wordi−1) =
C(wordi−N+1 . . .wordi)

C(wordi−N+1 . . .wordi−1)

P (sentence) =
�

i

P (wordi|wordi−N+1 . . .wordi−1)



Smoothing in Language Models

• Smoothing is a way of dealing with data sparsity by combining large and 
small models together.

• Combines expressive power of large models with better estimation of 
small models (cf bias-variance trade-off).

P smooth(wordi|wordi−1
i−N+1) =

N�

n=1

λ(n)Qn(wordi|wordi−1
i−n+1)

P smooth(learning|statistical machine)

= λ(3)Q3(learning|statistical machine) +

λ(2)Q2(learning|machine) +

λ(1)Q1(learning|∅)



Smoothing in Language Models

• [Chen and Goodman 1998] found that Interpolated and modified Kneser-Ney 
are best under virtually all circumstances.
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Hierarchical Bayesian Models
• Hierarchical modelling an important overarching theme in modern statistics 

[Gelman et al, 1995, James & Stein 1961].

• In machine learning, have been used for multitask learning, transfer learning, 
learning-to-learn and domain adaptation.

i=1...n2

φ0

φ2

x2i

i=1...n3

φ3

x3i

i=1...n1

φ1

x1i



• Context of conditional probabilities naturally organized using a tree.

• Smoothing makes conditional probabilities                                     
of neighbouring contexts more similar.

• Later words in context more important                                            
in predicting next word.

∅

Context Tree

in statistical machine

statistical machine

machine

a machine Bayesian machine

is statistical machine

P smooth(learning|statistical machine)

=λ(3)Q3(learning|statistical machine)+

λ(2)Q2(learning|machine)+

λ(1)Q1(learning|∅)



• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• [MacKay and Peto 1994].

G∅

Hierarchical Bayesian Models on Context Tree

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

Gmachine

Gstatistical machine Ga machine

Gin statistical machine Gis statistical machine

GBayesian machine



Hierarchical Dirichlet Language Models

• What is                      ? [MacKay and Peto 1994] proposed using the 
standard Dirichlet distribution over probability vectors.

• We will use Pitman-Yor processes instead [Perman, Pitman and Yor 1992], 
[Pitman and Yor 1997], [Ishwaran and James 2001].

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2× 106 2 148.8 144.1 191.2
4× 106 2 137.1 132.7 172.7
6× 106 2 130.6 126.7 162.3
8× 106 2 125.9 122.3 154.7

10× 106 2 122.0 118.6 148.7
12× 106 2 119.0 115.8 144.0
14× 106 2 116.7 113.6 140.5
14× 106 1 169.9 169.2 180.6
14× 106 3 106.1 102.4 136.6
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Pitman-Yor Processes
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Pitman-Yor Process

What does PY(G|d ,H) look like?
No closed form expression, but can draw G ∼ PY(d ,H)

Jan Gasthaus (Gatsby Unit, UCL) Sequence Memoizer DCC 2010 7 / 19

Yee Whye Teh

Pitman-Yor Processes



• Easiest to understand them using Chinese restaurant processes.

• Defines an exchangeable stochastic process over sequences

• The de Finetti measure is the Pitman-Yor process,

• [Perman, Pitman & Yor 1992, Pitman & Yor 1997]

x1, x2, . . .

Chinese Restaurant Processes

y1

x1 x2
x3
x4

x5

x6

x7
x8

x9
y2 y3 y4

G ∼ PY(θ, d, H)
xi ∼ G i = 1, 2, . . .

p(sit at table k) =
ck − d

θ +
�K

j=1 cj

p(sit at new table) =
θ + dK

θ +
�K

j=1 cj

p(table serves dish y) =H(y)



Power Law Properties of Pitman-Yor Processes
• Chinese restaurant process:

• Pitman-Yor processes produce distributions over words given by a power-law 
distribution with index         .

• Customers = word instances, tables = dictionary look-up;

• Small number of common word types;

• Large number of rare word types.

• This is more suitable for languages than Dirichlet distributions.

• [Goldwater, Griffiths and Johnson 2005] investigated the Pitman-Yor process 
from this perspective. 

p(sit at table k) ∝ ck − d

p(sit at new table) ∝ θ + dK

1 + d



Power Law Properties of Pitman-Yor Processes
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Power Law Properties of Pitman-Yor Processes



Hierarchical Pitman-Yor Language Models
• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Place Pitman-Yor process                                                                           
prior on each Gu.

P (wordi = w|wordi−1
i−N+1 = u) = Gu(w)

Gu = [Gu(w)]w∈vocabulary

G∅

Gmachine

Gstatistical machine Ga machine

Gin statistical machine Gis statistical machine

GBayesian machine



Hierarchical Pitman-Yor Language Models

• Significantly improved on the hierarchical Dirichlet language model.

• Results better Kneser-Ney smoothing, state-of-the-art language models.

• Similarity of perplexities not a surprise---Kneser-Ney can be derived as a 
particular approximate inference method.

T N-1 IKN MKN HDLM HPYLM

2× 106 2 148.8 144.1 191.2 144.3
4× 106 2 137.1 132.7 172.7 132.7
6× 106 2 130.6 126.7 162.3 126.4
8× 106 2 125.9 122.3 154.7 121.9

10× 106 2 122.0 118.6 148.7 118.2
12× 106 2 119.0 115.8 144.0 115.4
14× 106 2 116.7 113.6 140.5 113.2
14× 106 1 169.9 169.2 180.6 169.3
14× 106 3 106.1 102.4 136.6 101.9
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Markov Models for Language and Text

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).

• How do we determine the order of our Markov models?

• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | south parks)



Non-Markov Models for Language and Text

• Model the conditional probabilities of each possible word occurring 
after each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share                  
information across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.

...
.

...
.

...
.

...
.

G∅

Gmachine

Gstatistical machine Ga machine

Gin statistical machine Gis statistical machine

GBayesian machine

Gthis is statistical machine
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• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored 
(integrated out), leaving a finite number of                                                
nodes in context tree.

• But there are still O(T2) number of                                                           
nodes in the context tree...     

Model Size: Infinite -> O(T2) 

G[oacac]

G[acac]

G[cac]

G[ac]

G[c]

G[ ]

G[a] G[o]

G[ca]

G[aca]

G[oaca]

G[oa]

G[oac]

c

a

a

c

c

c

c

a

a

o

o

o

o
a

o

a

o

H



Model Size: Infinite -> O(T2) -> 2T
• Idea: integrate out non-branching, non-leaf nodes of the context tree.

• Resulting tree is related to a suffix tree data structure,                                 
and has at most 2T nodes.

• There are linear time construction                                                     
algorithms [Ukkonen 1995].
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Closure under Marginalization
• In marginalizing out non-branching interior nodes, need to ensure that 

resulting conditional distributions are still tractable.

• E.g.: If each conditional is Dirichlet, resulting conditional is not of known 
analytic form.

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

PY(θ3, d3, G[ca])

G[a]

G[aca]

?



Closure under Marginalization

G[a]

G[ca]

G[aca]

PY(θ2, d2, G[a])

G[a]

G[aca]

PY(θ2d3, d3, G[ca])

PY(θ2d3, d2d3, G[a])

• In marginalizing out non-branching interior nodes, need to ensure that 
resulting conditional distributions are still tractable.

• For certain parameter settings, Pitman-Yor processes are closed under 
marginalization! 

• [Pitman 1999, Ho, James & Lau 2006]



Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
• The following statements are equivalent:

3

1

6

2

7

5

4

8

9

2

1

3

6

7

5

4

8

9

Coagulate

Fragment

A

B

C

D

A
B

C

D

3

1

6

2

7

5

4

8

9

π2 C

(I) π2 ∼ CRP[n](αd2, d2) and π1|π2 ∼ CRPπ2(α, d1)

(II) C ∼ CRP[n](αd2, d1d2) and Fa|C ∼ CRPa(−d1d2, d2) ∀a ∈ C
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Final Model Specification

Probability of sequence:

P (x1:T ) =
T�

i=1

P (xi|x1:i−1) =
T�

i=1

Gx1:i−1(xi)

Prior over conditional probabilities:

G∅ ∼ PY(θ∅, d∅, H)

Gu|Gσ(u) ∼ PY(θu, du, Gσ(u)), for u ∈ Σ∗\{∅},

Constraint on parameters:

θu = θ∅
�

v �=∅, suffix of u

dv



Comparison to Finite Order HPYLM



Inference using Gibbs Sampling
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Inference using Gibbs Sampling



Entropic Coding for Compression
• Encoder:

• Decoder:

• θi parameter value estimated from x1...xi-1.

• A good probabilistic model = good compressor.

xi
Model

P(xi|x1...xi-1,θi)
-log2P(xi|x1...xi-1,θi)

xi
Model

P(xi|x1...xi-1,θi)
-log2P(xi|x1...xi-1,θi)

Claude Shannon



Compression Results

Calgary corpus
SM inference: particle filter
PPM: Prediction by Partial Matching
CTW: Context Tree Weigting
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



Related Works

• Infinite Markov models [Mochihashi & Sumita 2008]

• Bayesian nonparametric grammars (Goldwater, Johnson, Blunsom, Cohn 
etc).

• Text compression: Prediction by Partial Matching [Cleary & Witten 
1984], Context Tree Weighting [Willems et al 1995]...

• Language model smoothing algorithms [Chen & Goodman 1998, Kneser 
& Ney 1995].

• Variable length/order/memory Markov models [Ron et al 1996, 
Buhlmann & Wyner 1999, Begleiter et al 2004...].

• Hierarchical Bayesian nonparametric models [Teh & Jordan 2010].



Conclusions

• Probabilistic models of sequence models without making Markov 
assumptions with efficient construction and inference algorithms.

• State-of-the-art text compression and language modelling results.

• Hierarchical Bayesian modelling leads to improved performance.

• Pitman-Yor processes allow us to encode prior knowledge about power-
law properties, leading to improved performance.

• Hierarchical Pitman-Yor processes have been used successfully for 
various more linguistically motivated models.

• www.sequencememoizer.com (Java implementation)

• www.deplump.com (text compression demo)

• Jan Gasthaus’ webpage (C++ implementation)

http://www.sequencememoizer.com
http://www.sequencememoizer.com
http://www.deplump.com
http://www.deplump.com
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