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Sequence Models for Language and Text

e Probabilistic models for sequences of words and characters, e.g.

statistical, machine, learning

s, t,a,t1,s,t1i,c,al _machine_,learning

e Uses:

e Natural language processing: speech recognition, OCR, machine
translation.

e Compression.
e Cognitive models of language acquisition.

e Sequence data arises in many other domains.



Probabilistic Modelling

e Set of potential outcomes/observations X.

e Set of unobserved latent variables .

e Joint distribution over X and :

Plx e X,y € Y|0)

O parameters of the model.

Py, z|0)

o : P(y < Y‘QZ’ c X, 9) — S
Inference: P(£E|(9) Rev. Thomas Bayes

« Learning P(training datal|0)

e Bayesian learning: P(training data|6’)P(9)

P(0|training data) =

A



Communication via Noisy Channel

Mary has a
little lamb

Mary likes
little Sam

Sentence -~ Ultterance = RQEZZ;Z; Lézted
P(s P(uls P(s)P

P(u)



Communication via Noisy Channel

Maria tiene un
pequerio cordero

Mary has a
little lamb

Mary has a
little lamb

Sentence | foreign | Reconstructed
sentence sentence
P(s) P(uls) P(sfu) — P(s)P(uls)

P(u)



Markov Models for Language and Text

 Probabilistic models for sequences of words and characters.

P(statistical machine learning) =
P(statistical)*
P(machine | statistical)*

P(learning | statistical machine) Andrey Markov

e Usually makes a Markov assumption:

P(statistical machine learning) =
P(statistical)* p—

P(machl.ne | statlstlFal) George E. P. Box
P(learning | machine)

e Order of Markov model typically ranges from ~3 to > 10.



Sparsity in Markov Models

e Consider a high order Markov models:

P(sentence) = H P(word;|word; _ni11...word; 1)

e Large vocabulary size means naively estimating parameters of this model
from data counts is problematic for N>2.

C(Wordi_N+1 ce WOI‘di)

PML(Word”;‘Wordi_NH o word; ) = C'(word;—n41...word;_1)

e Naive priors/regularization fail as well: most parameters have no
associated data.

e Smoothing.

e Hierarchical Bayesian models.



Smoothing in Language Models

e Smoothing is a way of dealing with data sparsity by combining large and
small models together.

Mz

Psmooth (

word;|word} ;) n)Qn(word;|word;~, . ;)

n=1

e Combines expressive power of large models with better estimation of
small models (cf bias-variance trade-off).

Psmeoth (Jearning|statistical machine)

= A(3)Q3(learning|statistical machine) +
A(2)Q2(learning|machine) +
A(1)Q1 (learning|0)




Smoothing in Language Models

relative performance of algorithms on WSJ/NAB corpus, 4-gram
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e [Chen and Goodman 1998] found that Interpolated and modified Kneser-Ney
are best under virtually all circumstances.
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Hierarchical Bayesian Models

e Hierarchical modelling an important overarching theme in modern statistics
[Gelman et al, 1995, James & Stein 1961].

* In machine learning, have been used for multitask learning, transfer learning,
learning-to-learn and domain adaptation.

®
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Context Tree

e Context of conditional probabilities naturally organized using a tree.

Psmooth (

e Smoothing makes conditional probabilities =~ =A(3)Q@s(learning

of neighbouring contexts more similar. A(2)Q2(learning
A(1)Q1 (learning

e Later words in context more important
in predicting next word.

machine

~

l

statistical machine a machine

learning|statistical machine)

statistical machine)—+

machine)+

0)

.

N

in statistical machine is statistical machine

Bayesian machine

7\



Hierarchical Bayesian Models on Context Tree

e Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

Gy

hi / \
e [MacKay and Peto 1994]. / malc ) \

statlstlcal machine a machine Bayesian machine

O\ SN\

Gm statistical machine IS statistical machine

* Gu is a probability vector associated with context u.



Hierarchical Dirichlet Language Models

* Whatis  P(G,|Gpau$)[MacKay and Peto 1994] proposed using the
standard Dirichlet distribution over probability vectors.

T N-1| IKN MKN HDLM

2 % 106 2 | 148.8 144.1 191.2

4 x 10° 2 1 137.1 132.7 172.7

6 x 106 2 1130.6 126.7 162.3

8 x 106 21 125.9 122.3 154.7

10 x 106 2 1 122.0 118.6 148.7
12 x 106 2 1 119.0 115.8 144.0
14 x 106 2 | 116.7 113.6 140.5
14 x 10° 1| 169.9 169.2 180.6
14 x 106 31 106.1 1024 136.6

e We will use Pitman-Yor processes instead [Perman, Pitman and Yor 1992],

[Pitman and Yor 1997], [Ishwaran and James 2001].
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Pitman-Yor Processes
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Pitman-Yor Processes

PYP(0,0.9,1/3)

PYP(0,0.5,1/3)

PYP(0,0.1,1/3)

PYP(50,0,1/3)

PYP(3,0,1/3)

PYP(0.1,0,1/3)

Yee Whye Teh



Chinese Restaurant Processes

e Easiest to understand them using Chinese restaurant processes.

p(sit at table k) o _K
9 —|_ 2321 C.]
04+ dK
p(sit at new table) = il = p(table serves dish y) =H (y)
9 —I_ 2321 C.]

e Defines an exchangeable stochastic process over sequences — L1,Z22; .-

e The de Finetti measure is the Pitman-Yor process,
G ~ PY(0,d H)

¢ [Perman, Pitman & Yor 1992, Pitman & Yor 1997]



Power Law Properties of Pitman-Yor Processes

e Chinese restaurant process:

p(sit at table k) o ¢ —d
p(sit at new table) o« 64 dK

e Pitman-Yor processes produce distributions over words given by a power-law
distribution with index 14+d

e Customers = word instances, tables = dictionary look-up;

e Small number of common word types;

e Large number of rare word types.

e This is more suitable for languages than Dirichlet distributions.

e [Goldwater, Griffiths and Johnson 2005] investigated the Pitman-Yor process
from this perspective.



Power Law Properties of Pitman-Yor Processes
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Power Law Properties of Pitman-Yor Processes

- Pitman—Y or
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Hierarchical Pitman-Yor Language Models

e Parametrize the conditional probabilities of Markov model:

P(word; = w\wordz_]\,Jrl =u) = Gy (w)
Gu — [Gu (w)]wEVocabulary

* Gu is a probability vector associated with context u.

Gy
e Place Pitman-Yor process / \
prior on each Gu. / malchlne \
statlstlcal machine a machine Bayesian machine

O\ SN\

Gm statistical machine IS statistical machine



Hierarchical Pitman-Yor Language Models

e Significantly improved on the hierarchical Dirichlet language model.

e Results better Kneser-Ney smoothing, state-of-the-art language models.

T N-1| IKN MKN HDLM HPYLM
2x10° 2| 148.8 144.1 191.2 144.3
4%x10% 2| 137.1 132.7 172.7 132.7
6x10% 211306 126.7 162.3 126.4
8x 10° 211259 122.3 154.7 121.9

10 x 10 2] 122.0 118.6 148.7 118.2
12x 10 2] 119.0 115.8 144.0 115.4
14 x 10 2| 116.7 113.6 140.5 113.2
14 x 10 1| 169.9 169.2 180.6 169.3
14 x 10 3] 106.1 102.4 136.6 101.9

e Similarity of perplexities not a surprise---Kneser-Ney can be derived as a

particular approximate inference method.
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Markov Models for Language and Text

e Usually makes a Markov assumption to simplify model:

P(south parks road) ~
P(south)*
P(parks | south)*
P(road | south parks)

e Language models: usually Markov models of order 2-4 (3-5-grams).

e How do we determine the order of our Markov models?

* |s the Markov assumption a reasonable assumption?

e Be nonparametric about Markov order...



Non-Markov Models for Language and Text

* Model the conditional probabilities of each possible word occurring
after each possible context (of unbounded length).

e Use hierarchical Pitman-Yor process prior to share

information across all contexts. Gy
e Hierarchy is infinitely deep. / \
* Sequence memoizer. / G machine \
Gstatlstlcal machine a machine Bayesian machine
Gin statistical machine 1s statistical machine

/NN

Grthis is statistical machine
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Model Size: Infinite -> O(T?)

e The sequence memoizer model is very large (actually, infinite).

e Given a training sequence (e.g.: 0,a,c,a,c), most of the model can be ignored
(integrated out), leaving a finite number of

nodes in context tree.
G 1

e But there are still O(T?) number of

nodes in the context tree...
G acyO ﬂ :
| Glog Gleal




Model Size: Infinite -> O(T?) -> 2T

e |dea: integrate out non-branching, non-leaf nodes of the context tree.

e Resulting tree is related to a suffix tree data structure,
and has at most 2T nodes.

e There are linear time construction
algorithms [Ukkonen 1995].

oac

G[oacac c



Closure under Marginalization

* In marginalizing out non-branching interior nodes, need to ensure that
resulting conditional distributions are still tractable.

Gla) Gla)

PY(927 d27 G[a])

v v
G[aca] G[aca]

e E.g.: If each conditional is Dirichlet, resulting conditional is not of known
analytic form.



Closure under Marginalization

* In marginalizing out non-branching interior nodes, need to ensure that
resulting conditional distributions are still tractable.

Gla) Gl

G[ca] PY((deSa dads, G[a])

PY(92d37 d37 G[Ca])

v v
G[aca] G[aca]

* For certain parameter settings, Pitman-Yor processes are closed under
marginalization!

e [Pitman 1999, Ho, James & Lau 2006]



Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators
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Coagulation and Fragmentation Operators

* The following statements are equivalent:
(I) o CRP[n] (Oédz, dg) and 7'('1‘7'('2 ~ CRPWz (Oz, Cll)
(II) C ~ CRP[n] (Ozdg, dldg) and Fa’C ~ CRPCL(—dldg, dg) Va € C
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Final Model Specification

Probability of sequence:

P(zir) = | | Plileiioi) = | [ Gory (22)

Prior over conditional probabilities:

Gy ~ PY(0y,dy, H)
Gu‘Ga(u) ~ PY(QU7 duy, GO‘(U))7 for u € Z*\{@}7

Constraint on parameters:

O = 6y 1] d,

v#Q, suffix of u



Comparison to Finite Order HPYLM
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Inference using Gibbs Sampling
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Inference using Gibbs Sampling

Convergence Speed

Cross entropy on test set
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Entropic Coding for Compression

e Encoder:
Model
Xi > > _I P i X ,ei
P(xi|x1...xi-1,0i) 0g>P(xi|X1...xi-1,0i)
e Decoder:
Model
a < -loga P(xi|x1...xi-1,0;
" P(Xi|X1...Xi_1,9i) 82 ( | 1 1,0i)

e O; parameter value estimated from x;...xi.1.

e A good probabilistic model = good compressor.

Claude Shannon



Compression Results

Model Average bits/byte
gzIp 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching
CTW: Context Tree Weigting

Online inference, entropic coding.
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e Text compression: Prediction by Partial Matching [Cleary & Witten
1984], Context Tree Weighting [Willems et al 1995]...

e Language model smoothing algorithms [Chen & Goodman 1998, Kneser
& Ney 1995].

e Variable length/order/memory Markov models [Ron et al 1996,
Buhlmann & Wyner 1999, Begleiter et al 2004...].

e Hierarchical Bayesian nonparametric models [Teh & Jordan 2010].



Conclusions

e Probabilistic models of sequence models without making Markov
assumptions with efficient construction and inference algorithms.

e State-of-the-art text compression and language modelling results.
e Hierarchical Bayesian modelling leads to improved performance.

e Pitman-Yor processes allow us to encode prior knowledge about power-
aw properties, leading to improved performance.

e Hierarchical Pitman-Yor processes have been used successfully for
various more linguistically motivated models.

* www.sequencememoizer.com (Java implementation)
e www.deplump.com (text compression demo)

* Jan Gasthaus’ webpage (C++ implementation)


http://www.sequencememoizer.com
http://www.sequencememoizer.com
http://www.deplump.com
http://www.deplump.com
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