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1 Introduction

In this article we aim to provide a gentle introduction to the field of Bayesian nonparametric
modeling and inference. The basic motivation for nonparametrics is that in many statistical
inference problems we expect that structures or patterns will continue to emerge as data
accrue, perhaps ad infinitum, and that when we find ourselves in such situations we may
wish to consider a modeling framework that supplies a growing, unbounded number of
degrees of freedom to the data analyst. Of course, as in all statistical inference problems,
if we allow degrees of freedom to accrue too quickly, we risk finding structures that are
statistical artifacts; that is, we will “overfit.” This is a serious problem, and it motivates
the “Bayesian” aspect of the Bayesian nonparametric programme. While Bayesian inference
is by no means immune to overfitting, its use of integration over probability measures as the
core methodology does provide a natural resilience to overfitting, one that is suggested by
terminology such as “Ockham’s razor,” “parsimony” and “shrinkage” (Bernardo and Smith,
1994; Jeffreys and Berger, 1992).

Let us emphasize from the outset that “nonparametric” does not mean “no parame-
ters.” Rather, it means “not parametric,” which has the interpretation that we do not
assume a parametric model in which the number of parameters is fixed once and for all.
Thus, Bayesian nonparametrics is not opposed to parameters; quite to the contrary, the
framework can be viewed as allowing an infinite number of parameters. Another important
point to make is that it is quite possible to treat some of the parameters in a Bayesian non-
parametric model as classical parameters with a fixed meaning, such as “treatment effect”
or “rate of decay.” Such models, which blend parametric modeling and nonparametrics,
are often referred to as “semiparametric.” For example, as we will discuss, one important
branch of Bayesian nonparametrics aims to find clusterings in data, with the number of
clusters unknown a priori. We can imagine situations in which two heterogeneous popu-
lations are being studied, one of which has been exposed to a treatment and other which
serves as a control, such that our model contains both a classical parameter characterizing
the treatment effect and an open-ended number of parameters for clustering. The nonpara-
metric clustering machinery is able to capture the heterogeneity in the two populations,
thereby allowing us to obtain a more precise estimate of the fixed parameter. Finally, note
that it usually makes little sense to ask whether a specific model, for a specific fixed number
of data points, is parametric or nonparametric. The distinction really refers to our attitude
with respect to growing amounts of data.

In the Bayesian approach to statistical inference, parameters are treated as random vari-
ables. To obtain models comprising open-ended, potentially infinite numbers of parameters,
we require infinite collections of random variables. That is, we require stochastic processes.
Indeed, Bayesian nonparametrics can be viewed as the branch of Bayesian analysis in which
general stochastic processes replace the fixed-dimensional prior distributions of classical
Bayesian analysis. The familiar Bayesian process of updating a prior distribution into a
posterior distribution via the likelihood becomes the notion of updating a prior stochastic
process into a posterior stochastic process. Building a branch of Bayesian analysis on this
idea requires not only addressing the mathematical issues that arise in making such up-
dating rigorous, but also discovering classes of stochastic processes that are both useful in
describing real-world phenomena and are computationally tractable.
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There are two major areas of Bayesian nonparametrics that have seen the most develop-
ment to date. The first area is built around theGaussian process and involves nonparametric
forms of regression, survival analysis and other methods in which the object of inference is
a continuous function. The Gaussian process allows such continuous functions to be treated
nonparametrically as random functions. Textbook treatments of this area and its applica-
tions can be found in Rasmussen and Williams (2006) and Stein (1999). Our focus is on
the second major area, in which the random objects of interest are not continuous functions
but are discrete, combinatorial objects. As we will see, this area is built around a family of
stochastic processes known as completely random measures. Examples of completely random
measures include the beta process and the gamma process. Another important stochastic
process, the Dirichlet process, is obtained by normalizing a completely random measure.
From these basic stochastic processes we can obtain distributions on combinatorial objects
such as partitions, trees and discrete-valued features. Such random objects can be used to
provide Bayesian nonparametric treatments of structural aspects of models.

We aim to provide a treatment of Bayesian nonparametrics that can be read by anyone
with an undergraduate-level understanding of probability theory and a minimal exposure
to Bayesian statistics. Indeed, we provide a self-contained treatment of core ideas, spelling
out the mathematical details in the main text and the appendices. That said, it must be
noted that Bayesian nonparametrics is fundamentally a topic that requires a somewhat so-
phisticated mathematical treatment. Nontrivial ideas from probability theory—such as de
Finetti’s theorem, Poisson random measures and the Lévy-Khinchin theorem—will make
their appearance in our treatment. Anyone wanting to work in the field of Bayesian non-
parametrics will eventually need to feel comfortable with such ideas. And yet, Bayesian
nonparametrics is a branch of statistics, where the fundamental goal is to solve applied
problems. Although our treatment is not an applied one, it is still true that the concerns
of applications are never too far below the surface, and our real hope is that readers will
make use of the mathematical ideas presented here to find creative solutions to problems
that arise in real-world applications.

The article is organized as follows. Part I considers the clustering problem, with the
Dirichlet process and the Pitman-Yor process providing the probabilistic underpinnings. We
build up to these stochastic processes slowly, starting with the Chinese restaurant process
and urn models, introducing exchangeability and de Finetti’s theorem and then deriving
stick-breaking representations for the Dirichlet process and Pitman-Yor process. We then
indulge in a further level of abstraction, introducing the framework of completely random
measures and showing how the Dirichlet process can be obtained from this framework. We
also discuss hierarchical Dirichlet processes. Part II considers featural representations of
objects. In this case we start from the underlying completely random measure (the beta
process) and head towards the combinatorial representation (the Indian buffet process). In
Part III we discuss the class of normalized completely random measures and in Part IV we
present some pointers to further reading. The appendices contain mathematical background
and various detailed derivations that support the main text.
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Part I: The Dirichlet Process
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2 Clustering and Partitions

The Dirichlet process has been a centerpiece of Bayesian nonparametrics since its introduc-
tion in a seminal paper by Ferguson (1973). Our aim in Part I is to provide an elementary—
but relatively thorough—treatment of this important stochastic process. We do so within
an applied context, that of the problem of clustering, where the goal is to discover a set of
clusters underlying a data set and to assign each of N data points to exactly one cluster.

The Dirichlet process can be viewed as an infinite-dimensional analog of the classical
Dirichlet distribution. This latter distribution plays an important role in Bayesian statistics
as a conjugate distribution to the multinomial.1 For example, a standard Bayesian model
for clustering involves assuming that each data point is assigned to one of K clusters, with
the assignment to cluster k occurring with probability wk, for k = 1, 2, . . . ,K. We assume
that

∑K
k=1wk = 1, and place a Dirichlet prior placed on the probabilities {wk}. One can

attempt to arrive at the Dirichlet process by taking K to infinity in this setup. This is not
the approach that we take here. Instead we take a combinatorial approach to the clustering
problem, treating the problem as one of inferring the partition underlying the data. From
a Bayesian point of view this requires placing probability distributions on partitions. We
introduce a particular probability distribution on partitions known as the Chinese restaurant
process, and show that an understanding of the properties of the Chinese restaurant process,
most notably its exchangeability, lead to the Dirichlet process.

Recall that a partition is a set of non-empty subsets of a set of basic entities, such that
the subsets are non-overlapping and each entity is contained in exactly one subset. If the
entities are data points, denoted (x1, x2, . . . , xN ), where each xi is a p-dimensional vector,
then a partition is often referred to as a clustering.

In working towards a probabilistic framework for clustering based on probability dis-
tributions on partitions, we find it useful to first consider a deterministic methodology. In
particular, let us consider the classical K-means algorithm (MacQueen, 1967). This algo-
rithm is neither Bayesian nor nonparametric, but it will provide us with a useful point of
departure. Indeed, it will help us to better understand the motivations for being Bayesian
and nonparametric in the setting of clustering.

In K-means clustering, the goal is to assign each data point to one (and only one) of
a set of K clusters, where K is assumed fixed and known. Let zi be an allocation variable
that ranges over {1, 2, . . . ,K}, denoting the cluster assignment for the ith data point. Let
Ck = {i : zi = k} denote the set of indices of the data points forming the kth cluster.
Finally, to each cluster we also associate a p-dimensional parameter vector, µk, which lives
in the same space as the data points and can be viewed as a “prototype” for the kth cluster.
The goal of the algorithm is to determine values for the vectors z = (z1, z2, . . . , zN ) and the
cluster prototypes µ = (µ1, µ2, . . . , µK). This is done iteratively. Using a superscript t to
denote the value of a variable at the tth iteration, which begins at t = 0, and initializing

1We provide an overview of the Dirichlet distribution in Appendix B, and in particular Dirichlet-
multinomial conjugacy is discussed in XXX.
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µ
(t+1)
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1
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(t)
k |

∑

i∈C
(t)
k

xi (1)

z
(t+1)
i = argmin

k=1,...,K
‖xi − µ

(t+1)
k ‖, (2)

where |C
(t)
k | denotes the cardinality of the set C

(t)
k . (If this cardinality is zero, then we

simply set µ
(t+1)
k to zero). Eq. (1) updates the means for each cluster to be the average

of the points currently assigned to the cluster, and Eq. (2) updates the assignments by
assigning each point to the nearest cluster.

In this algorithmic description of a clustering procedure there is no role for probabilities,
and as we move towards a probabilistic framework it is useful to step back and first consider
why we should do so. One answer is that probabilities arise naturally in the analysis of
K-means and other clustering algorithms. In particular, although we do not think it likely
that K-means would work well on all possible data sets, is it likely to work well on “most”
data sets? Quantifying this generally involves putting a probability measure on data sets.
Moreover, if we begin to consider such probability measures as reflective of an underlying
population from which the data arise, we can begin to talk about a broader range of inference
problems, such as the prediction problem of assigning new data points to existing clusters.
Finally, some of the qualitative aspects of probability can provide insight; as we will talk
about below, it is natural to make an “exchangeability” assumption for clustering, in which
the probability of a data set is invariant to the ordering of the data points. If this is the
case, then there is a theorem (de Finetti’s theorem) that encourages us to seek additional
probabilistic structure in the problem.

Once probability has entered into the problem via the analysis of the algorithm, it is
then natural to allow the probabilities to also enter into the design of the algorithm. In
particular, it is natural to consider replacing each of the K parameter vectors µk with a
probabilistic model, p(xi |µk). For example, if this model is a Gaussian with mean µk and
unit variance, then the density p(xi |µk) is a simple monotone function of the Euclidean
distance ‖xi − µk‖ employed by K-means. In general, using probability models allows us
to be creative in defining the “distance” function used in clustering.

Having motivated the use of probabilities—and therefore headed in a Bayesian direction—
what about nonparametrics? Clearly, it would be desirable to remove the assumption that
K is known a priori. Although there are various ways to do this, in many problems it is
natural to imagine new clusters arising as we collect more data; moreover, we may want to
model the growth rate of new clusters. In the following section we begin our discussion of
the Bayesian nonparametric approach to achieving this goal.

3 Clustering via the Chinese Restaurant Process

K-means exemplifies an algorithmic approach to clustering where one specifies a procedure
that performs clustering and then provides a theoretical analysis of the procedure. The
Bayesian approach is somewhat more indirect. Bayesian methods are model-based methods,
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Figure 1: A depiction of a possible state of the Chinese restaurant process after ten cus-
tomers have arrived.

in that they first specify a model by which the data are assumed to be generated. The
clustering algorithm arises as a procedure for computing posterior probabilities under this
model.

Thus we begin our discussion of Bayesian nonparametric clustering by specifying a model
by which the data are assumed to be generated. We do this in stages, first concentrating on
the core of the clustering problem—the partitioning of the data into disjoint subsets. Later
we will discuss how to go beyond the partition to provide probabilities for the observed data
points given the partition.

3.1 The Chinese restaurant process

Let us denote a partition of N points as π[N ]. Recall that this is a set of subsets of the N
points, where each point belongs to exactly one subset. Thus, for example, if the points are
the integers one through ten, a possible partition is π[10] = {{3, 5}, {1, 2, 9, 10}, {4, 6, 7}, {8}}.
We refer to the subsets as clusters. Note that the ordering of the subsets and the ordering
of points within subsets is arbitrary.

The Chinese restaurant process (CRP) is a probability distribution on partitions. The
distribution is built up in a sequential manner, where one point at a time is added to an
existing set of clusters. The CRP describes this process using the metaphor of a restaurant,
with points corresponding to customers and clusters corresponding to tables. Customers
arrive at the restaurant one at a time. The first customer is seated alone. Each subsequent
customer is either seated at one of the already occupied tables, with probability propor-
tional to the number of customers sitting at the table, or, with probability proportional
to a fixed constant, α, the customer starts a new table. Consider, for example, the con-
figuration shown in Fig. (1), where after ten customers have arrived the seating pattern is
{{3, 5}, {1, 2, 9, 10}, {4, 6, 7}, {8}}. If we set α = 1, the eleventh customer joins customers
3 and 5 with probability 2/11, joins customers 1, 2, 9, and 10 with probability 4/11, and
starts a new table with probability 1/11.

The tables are to be viewed as unordered, and to avoid introducing labels that suggest
an ordering, we refer to a table by the subset of customers sitting at the table. In particular,
we use the same symbol, c, to refer to either a cluster or a table, and let |c| denote the
cardinality of the cluster c as well as the number of customers sitting at table c. With this

9



notation, we write the probabilistic rule characterizing the CRP as follows:

P (customer n+ 1 joins table c |π[n]) =















|c|

α+ n
if c ∈ π[n],

α

α+ n
otherwise.

(3)

Note that we can think of there being an infinite number of unlabeled tables in the restaurant
at any given point in time, and when a customer is assigned to a new table, one of the
unlabeled tables is chosen arbitrarily. In particular, this rule applies to the first customer.

After N customers have arrived, their seating pattern defines a set of clusters and thus a
partition. This partition is random, and thus the CRP defines a distribution on partitions.
We denote this distribution as follows:

π[N ] ∼ CRP(α,N). (4)

As suggested by our notation, the CRP is a family of distributions, one for each value of N .
Although the CRP is specified using an ordering of the customers, it turns out that the

distribution on partitions defined by the CRP is invariant to the ordering, in the sense that
it is only the size of the clusters that matters in determining the probability of the partition,
not the identities of the specific customers forming the clusters. This property is known as
exchangeability, and it will play an essential role in our development. As an example, let
α = 1, and consider the probability that customers 1 and 2 will be found sitting together
at the same table after N customers have entered the restaurant. This probability is 1/2—
customer 1 sits at an arbitrary table and customer 2 joins customer 1 with probability 1/2.
Now, by exchangeability, this probability doesn’t change if the customers were to enter the
restaurant in a different order. Put differently, the probability of any two customers i and
j sitting at the same table is 1/2.

We can prove the exchangeability of the CRP by computing explicitly the probability of
a partition under the CRP. Consider a partition π[N ] composed of K clusters, c1, c2, . . . , cK .
The probability of forming such a partition is obtained from the conditional probabilities
in Eq. (3). Each customer contributes one factor and the overall probability is a product
of these factors. Consider, for example, the following sequence of events: customer 1 starts
a new table, customer 2 joins customer 1, customer 3 sits at a new table, customer 4 joins
customer 3, customer 5 joins 1 and 2, and then customer 6 sits at a new table. We have:

P ({{1, 2, 5}, {3, 4}, {6}}) =
(α

α

)

(

1

α+ 1

)(

α

α+ 2

)(

1

α+ 3

)(

2

α+ 4

)(

α

α+ 5

)

. (5)

In general, as we proceed through N customers under the CRP model, the denominators
simply increment by one. For every new table that is started we obtain a factor of α, so
if at the end K clusters are present, we obtain a factor of αK . Finally, for each cluster
c that is present at the end, each time a customer is added to the table the numerator is
simply the number of current customers at the table, so that overall we obtain a factor of
1 · 2 · · · · · (|c| − 1) = (|c| − 1)!. Putting this all together, we obtain:

P (π[N ]) =
αK

α(N)

∏

c∈π[N]

(|c| − 1)!, (6)
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where α(N) := α(α + 1) · · · (α + N − 1). This equation shows that the probability of a
partition is a function only of the sizes of the clusters forming the partition. Thus, if we
relabel the customers we obtain new clusters, but the set of cluster sizes does not change
and therefore neither does the probability. This establishes the exchangeability of the CRP.

We can also turn the argument around and recover the CRP update rule in Eq. (3) from
the partition probability in Eq. (6). Let π′

[n+1] be obtained from π[n] by adding customer
n+ 1 to table c. We have:

P (customer n+ 1 joins table c |π[n]) =
P (π′

[n+1])

P (π[n])

=
α(n)

α(n+1)
|c|

=
|c|

α+ n
, (7)

where the first equality follows from the fact that the event that π′
[n+1] is the partition after

n + 1 customers have arrived logically implies the event that π[n] is the partition after n
customers have arrived. If instead we let π′

[n+1] be obtained from π[n] by placing customer
n+ 1 at a new table, which we again denote by c, we have:

P (customer n+ 1 starts new table c |π[n]) =
P (π′

[n+1])

P (π[n])

=

(

αK+1

α(n+1)

)

(

α(n)

αK

)

=
α

α+ n
, (8)

where we use (|c| − 1)! = (1− 1)! = 0! = 1, when c is a new table. We thus recover the two
cases of Eq. (3).

Exchangeability is a natural property for the clustering of data. Indeed, many algo-
rithms for clustering, including K-means, are invariant to the ordering of the data points
(indeed, if such invariance is broken in the implementation of the algorithm this is generally
viewed as undesirable). From a probabilistic point of view, such algorithms can be viewed as
making an implicit assumption of exchangeability. Note also that although we are focusing
on CRP for didactic reasons, there are other distributions on partitions that are exchange-
able. Indeed, a significant line of research focuses on characterizing general “exchangeable
probability partition functions” (EPPFs), of which Eq. (6) is an example (Pitman, 2006).
We will see another example of an EPPF in Sec. (7).

3.2 The CRP mixture model

The CRP provides us with a vocabulary for talking about probabilities and partitions but
leaves us short of a model for generating data points. To take the next step, we recall that
the data points in clustering problems generally have a representation as points in a vector
space (or some other metric space). Distances between the points in this space play an
essential role in algorithms for determining a clustering. K-means exemplifies one way in
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which this is done: each of the K clusters is represented by a vector µk that is embedded in
the same space as the data, and the distances ‖xi−µk‖ are used to determine the assignment
of points xi to clusters. We would like to do something similar in a model-based framework.

Let x = (x1, x2, . . . , xN ) denote the observed data. Let us treat the data points as
customers in the CRP by identifying data point xi with its index i. Thus we say that
data point xi sits at table c if i ∈ c. To each table c ∈ π[N ] we assign a parameter vector
φc and we assume that the data points at table c are generated independently from a
common probability distribution indexed by φc. Thus, for i ∈ c, we let f(xi |φc) denote
the probability density for generating data point xi and we take the product over i ∈ c
to obtain the total probability of generating the data associated with table c. Finally, the
overall conditional probability of the data (given the parameters {φc} and the partition
π[N ]) is the product over clusters and over data points within clusters:

p(x |φ,π[N ]) =
∏

c∈π[N]

∏

i∈c

f(xi |φc), (9)

where φ = (φ1, . . . , φK). Viewed as a function of φ and π[N ] for fixed x, this probability
density is known as the likelihood function.

To complete the probability model, we need to specify a distribution for the parameters
φ. Let us simply assume that these parameters are drawn independently (across the tables)
from a distribution G0. Putting together the pieces we obtain the following model for
generating data points:

π[N ] ∼ CRP(α,N) (10)

φc |π[N ]
iid
∼ G0, for c ∈ π[N ], (11)

xi |φ,π[N ]
ind
∼ F (φc), for c ∈ π[N ], i ∈ c. (12)

where the notation “
iid
∼” means that the draws are assumed to be independent and identically

distributed, where “
ind
∼ ” means that the draws are assumed to be independent and where

F (φc) is the distribution with density f(· |φc). These linked conditional probabilities yield
a joint probability distribution on the collection of variables (x, φ,π[N ]). As we discuss in
the following section, Bayesian inference can then be invoked to obtain various posterior
probabilities of interest, in particular the probability of π[N ] given x, which serves as a
Bayesian clustering procedure.

We will refer to the model specification in Eq. (12) as a CRP mixture model. In general,
a mixture model is a probability model in which each data point is generated from one of a
set of “mixture components,” and the choice of mixture component is made randomly for
each data point. In our case, the choice of φ defines the mixture components, the choice
of π[N ] selects randomly among the mixture components (by choosing a table at which to
seat each data point), and a data point is generated from the selected mixture component
via the draw from F (φc).

Let us make two additional comments before turning to a description of a clustering
procedure based on the CRP mixture model. First, it is important to note that although
we have begun to use the word “parameter,” our framework is definitely a nonparametric
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one. In particular, as N grows, the number of clusters grows (at rate O(logN), as we
discuss in Sec. (7)), and therefore the number of parameter vectors grows. We are not
in a parametric situation in which the number of parameter vectors is fixed once and for
all. Second, in writing down the probability model, several assumptions of independence
were introduced without comment, and we need to provide some justification for these
assumptions. This requires us to delve more deeply into the notion of exchangeability, a
task that we undertake beginning in Sec. (4).

3.3 Gibbs sampling based on the CRP mixture model

In general, the Bayesian approach to statistical inference is based on the use of Bayes’
theorem to compute the probability of a parameter of interest given the data. That is,
given a parameter θ, a likelihood, p(x | θ), and a prior, p(θ), inferences are based on the
posterior probability :

p(θ |x) =
p(x | θ)p(θ)

∫

p(x | θ)p(θ)dθ
. (13)

Often one is interested in only a subset of the components of the vector θ; the components
that are not of inferential interest are marginalized out of the posterior probability. That
is, if θ = (θ1, θ2), and only θ2 is of inferential interest, then we would form the marginal
posterior: p(θ2 |x) =

∫

p(θ1, θ2 |x)dθ1.
In our setting, the overall “parameter” is the pair (φ,π[N ]).

2 While in some cases we
might be interested in inferring both φ and π[N ], the main goal of clustering is often that of
finding the partition. We thus focus on the problem of computing the posterior probability
of π[N ] given the data x, marginalizing over the vector φ.

There are two problems that arise in attempting to use Eq. (13) to derive an infer-
ence algorithm for clustering. The first is that π[N ] is a discrete structure and our use
of probability densities in Eq. (13) needs some interpretation. Here the interpretation is
easily provided, because π[N ] ranges over a finite set and for each value of π[N ] there is a
well-defined density on φ. (The issue is worth raising because in our later work this issue
will become more problematic, due to the fact that the objects of interest will often not
range over finite sets.) The second issue is the more serious one: it is infeasible to compute
the posterior probability in Eq. (13). The integral in the denominator involves a sum over
all possible partitions, the number of which (known as the Bell number) grows at a rate of
O(NN ).

The standard response to this problem in Bayesian statistics is to make use of sampling-
based frameworks such as Markov chain Monte Carlo (MCMC), importance sampling and
sequential Monte Carlo to approximate the posterior probability (see, e.g., Gilks et al.,
1996). All of these frameworks have indeed been applied to Bayesian nonparametric infer-
ence problems, including the CRP-based clustering problem that is our focus here. Specif-
ically, within the MCMC framework, Gibbs sampling and Metropolis-Hastings algorithms
have been explored for Bayesian nonparametric clustering (Neal, 2000). In this section we

2We have put “parameter” in quotes to again recall our earlier discussion contrasting “parametric” and
“nonparametric.” But, given that the number of data points are being viewed as fixed in this section, the
distinction becomes less essential than before, and henceforth we will no longer use the quotes.
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present a particular example of a Gibbs sampling algorithm. Our choice of algorithm is
based mainly on its simplicity—as we will see, it can be derived easily given the tools that
we have developed thus far, and it has a simple intuitive interpretation. But we hasten to
note that there are a variety of competing algorithms that may be better in various practical
situations. We will present some of these algorithms later, after the necessary mathematical
groundwork has been laid. We will also, in Sec. (??), provide pointers to literature on in-
ference algorithms, where more systematic treatments of inference algorithms are provided
than we wish to provide in this paper.

The basic idea of Gibbs sampling is to perform a kind of stochastic “hill-climbing” or
“coordinate ascent,” where we consider one variable at a time and sample a new value of
that variable while keeping all other variables fixed. Thus at each step we sample from a
conditional probability. In our setting, the variables of interest are the cluster assignments
of each of the data points. To implement a classical Gibbs sampler we need to sample the
cluster assignment of a given data point while holding fixed the cluster assignments of all
other data points. However, rather than explicitly introducing indicator variables to denote
cluster assignments, we will instead work directly in the space of partitions, defining our
sampler via “hill-climbing” steps in this space.

The prior distribution and the likelihood for our problem are provided by the set of con-
ditionals in Eq. (12). Multiplying these conditionals we obtain the overall joint probability
density:

p(π[N ], φ, x) =
αK

α(N)

∏

c∈π[N]

(

(|c| − 1)! g0(φc)
∏

i∈c

f(xi |φc)

)

, (14)

where for simplicity we assume that G0 has a probability density that we denote by g0. The
overall posterior is proportional to this joint probability density.

Given that our interest is in marginal posterior p(π[N ] |x), which is proportional to
p(π[N ], x), the first step is to integrate out φ. Given the independence of the components
of φ, we obtain:

p(π[N ], x) =
αK

α(N)

∏

c∈π[N]

(|c| − 1)! f(xc), (15)

where we have defined xc := (xi : i ∈ c), and where

f(xc) =

∫

(

∏

i∈c

f(xi|φc)

)

g0(φc)dφc (16)

is the marginal probability density of the data points associated with cluster c.
We will assume that the integral in Eq. (16) can be performed analytically. This can be

done in particular when the prior g0 is conjugate to the likelihoods f(xi|φc). There exist
conjugate priors for many widely-used distributions; in particular for likelihoods in the
exponential family there exist conjugate priors (Bernardo and Smith, 1994). That said, one
may not want to use a conjugate prior in a given situation, and in that case, the algorithm
that we present in this section cannot be used. (See Sec. (??) for references to papers that
treat inference in the non-conjugate setting.)
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We can now derive a Gibbs sampler. To lighten our notation, we will drop the subscript
“[N ]” in denoting the partition π[N ]. The state space of the sampler is the set of partitions
Π[N ] of the items [N ]. Given the current state π, we consider a single index i, either chosen
at random or according to a fixed order, and consider the set of neighboring partitions
obtained by reassigning the index i. Let π−i denote the partition of the set [N ]\{i} obtained
by removing reference to the index i in π. If i is reassigned to an existing cluster, c ∈ π−i,
then the resulting partition will be π+ = π−i− c+(c∪{i}).3 If instead item i is reassigned
to a new cluster not already in π−i, then the new value of π+ will be π−i + {i}. The
probabilities of these choices are given by the joint density Eq. (15), so that:

p(π+ |x) ∝



























αK

α(N)
(|c|)! f(xc∪{i})

∏

c′∈π−i

c′ 6=c

(|c′| − 1)! f(xc′) for π+ = π−i − c+ (c ∪ {i}), c ∈ π−i,

αK+1

α(N)
f(xi)

∏

c′∈π−i

(|c′| − 1)! f(xc′) for π+ = π−i + {i},

where the proportionality comes from the denominator, p(x), which is common to both
cases. We now cancel all of the factors that appear in both of these equations, as it is
only the relative values of the probabilities that matter. In doing so, we retain a common
denominator factor of α +N − 1 that helps—as we will show—with interpretability. This
yields:

∝







|c|
α+N−1f(xi |xc) for π = π−i − c+ (c ∪ {i}), c ∈ π−i,

α
α+N−1f(xi) for π = π−i + {i},

(17)

where f(xi |xc) = f(xc∪{i})/f(xc) is the conditional probability of xi under cluster c which
currently contains data points xc.

The pair of equations in Eq. (17) defines a Gibbs sampling algorithm. This algorithm
was originally proposed by MacEachern (1994) and Neal (1992); the derivation that we
have presented here, based on the EPPF of the Chinese restaurant process, is streamlined
relative to the derivations presented by those authors.

The Gibbs sampler in Eq. (17) has a simple intuitive interpretation. Consider the Nth
data point, xN . From the point of view of the CRP prior, this data point is the last to
arrive in the restaurant, and it sits at an existing table c with probability proportional to
|c|, or starts a new table with probability proportional to α. These prior probabilities are
multiplied by marginalized likelihoods, either the likelihood f(xN |xc) associated with an
existing table, or the likelihood f(xN ) associated with a new table, to form the conditional
probabilities of the data point sitting at each table while accounting for the similarity of
xN with the other data points currently sitting at each cluster, as defined by the likelihood
model.

Now consider the ith data point, for i 6= N . It might seem that our simple argument
would break down, because the Gibbs sampler needs to consider all other data points,

3Recall that the partition π is a set of sets, and we use the notation “+” and “−” to denote the addition
and removal of sets from the partition.
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Figure 2: Gibbs sampling example.

and the CRP prior involves only the previous data points. But exchangeability comes to
the rescue. By exchangeability, the joint probability is invariant to permutation, and thus
the conditional for any given data point given the other data points is the same as the
conditional for the last data point given the previous data points. Thus the overall Gibbs
sampling algorithm in Eq. (17) has the same simple form for all data points.

As a concrete example, consider a two-dimensional clustering problem where we assume
that the component density, f(xi |φc), is given by a Gaussian distribution, with φc the mean
vector and with the covariance matrix assumed to be a fixed constant matrix σ2I, with σ2

known:

f(xi |φc) =
1

2πσ
exp

(

−
1

2σ2
‖xi − φc‖

)

. (18)

If we place a conjugate Gaussian prior on φc, then the marginal distributions f(xi) and
f(xi |xc) will also be Gaussian. Suppose that there are ten data points, and that at a
given moment the state of the Gibbs sampler is π = {{3, 5}, {1, 2, 9, 10}, {4, 6, 7}, {8}} (see
Fig. (2)). Suppose that we now wish to reassign data point x5, which is currently clustered
with data point x3. There is pressure from the CRP prior to move this data point to the
larger clusters. This is balanced by the pressure from the likelihood to move the data point
to a nearby cluster, where “nearby” is defined by the exponential of the negative Euclidean
distance. As shown in the figure, data point x5 is nearby the cluster containing {x4, x6, x7}
(i.e., it has high probability under the posterior defined by those points), and overall it is
likely that the point will be moved to that cluster.

It is interesting to compare this Gibbs sampling algorithm to the K-means algorithm.
Both algorithms are based on the Euclidean distance. But where the K-means places a data
point in a cluster based solely on the Euclidean distance between the point and a cluster
centroid, the Gibbs sampler makes use of the CRP prior, favoring the growth of large
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clusters and not requiring a fixed choice of K. Moreover, the Gibbs sampler makes use of
an integrated notion of “distance,” via the factor f(xi |xc) which is computed as an integral
over φc. The major difference between these ideas, however, is in the kinds of generalizations
that they inspire. As we will see, the Bayesian nonparametric framework provides natural
upgrade paths, via different choices of mixture components, different stochastic process
priors and the use of hierarchical modeling concepts.

4 Urn Models and Exchangeability

In this section and the next several sections our goal is to provide a deeper mathematical
understanding of the particular Bayesian nonparametric approach to clustering that has
been our focus thus far. This understanding will culminate in the presentation of several
important concepts: stick-breaking, the Dirichlet process and completely random measures.
There are three major motivations that we have in mind in embarking on this discussion.
First, in developing the CRP mixture model we made several conditional independence
assumptions. We would like to justify these assumptions, in particular by tying them to
properties of the observed data. Such justifications are essential when trying to understand
when the CRP mixture model is appropriate for practical data analysis problems and when
it is not. Second, mathematial concepts such as stick-breaking, the Dirichlet process and
completely random measures provide an abstract understanding of clustering, and as such
they provide a platform for the development of other Bayesian nonparametric models, in
the clustering domain and beyond. Finally, the various representations that we develop can
provide new variables with which to express posterior inference algorithms. Indeed, we will
present several such algorithms along the way.

4.1 The Pólya urn and the Blackwell-MacQueen urn

As the point of departure for our further development we return to the notion of exchange-
ability. Thus far we have exploited exchangeability in only a limited way, as a tool for
computing conditional probabilities in the context of the Gibbs sampler. Moreover, ex-
changeability has been developed for random partitions, which are rather specialized math-
ematical objects. To make further progress, we need to study exchangeability for random
variables, which are more widely useful mathematical objects. To convert from random
partitions to random variables, we change our focus from the Chinese restaurant process,
which is a distribution on partitions, to the closely-related Pólya urn, which is a distribution
on (sequences of) random variables.

The Pólya urn model is defined as follows (Johnson and Kotz, 1977). Consider an urn
in which there are b0 black balls and w0 white balls. Choose a ball at random, and put two
balls of the same color back in the urn. That is, letting bn and wn denote the number of
black and white balls in the urn at step n, pick a black ball with probability bn/(bn + wn)
and a white ball with probability wn/(bn + wn), setting bn+1 = bn + 1 and wn+1 = wn if a
black ball is chosen, and conversely if a white ball is chosen.

The Pólya urn is closely related to the CRP. Indeed, suitably generalized, it is identical
to the first two stages (Eq. (10) and Eq. (11)) of the CRP mixture model that we discussed
in Sec. (3.2). To make the connection, note first that if we can allow the initial values b0
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and w0 to be real numbers instead of integers. The resulting urn model is still well defined
mathematically; we can still compute bn/(bn + wn) and wn/(bn + wn) at each step and
augment the value associated with the winning color by one. Second, it is straightforward
to generalize to any finite number of colors. Third, we can actually let the number of colors
be open-ended with the following trick. Let black be a special color such that if black is
chosen, we generate a new color (from some continuous palette), label a ball with the new
color and place it in the urn. The “number” of black balls (which need not be an integer)
stays fixed, and we designate that fixed value by the constant α. We thus generate a new
color at each step with probability proportional to α, just as the CRP chooses a new table
with probability proportional to α. Indeed, if the initial state of the urn is such that it only
contains the color black, at the first step we choose a new color and assign it the value one,
just as the CRP seats the first customer at a new table, and all subsequent steps of choosing
colors are isomorphic to the seating decisions of the CRP. This generalization of the Pólya
urn has been studied by a number of authors, including Blackwell and MacQueen (1973)
and Hoppe (1984). We will refer to it as the Blackwell-MacQueen urn.

Finally, the “palette” does not need to be the real line, as is suggested by the word
“color,” but it can be any infinite-dimensional space, where the process of choosing a new
value is implemented by drawing from a diffuse distribution on that space (so that unique
values are chosen with probability one). Denoting this distribution by G0 and equating
parameter vectors with colors, we obtain a model which is isomorphic with the model
specification in Eq. (10) and Eq. (11), where the CRP places customers at tables, and each
table is labeled with a parameter vector, which is inherited by each of the customers sitting
at that table.

Let the parameter vector (“color”) chosen at the nth step be denoted θn and let the
space from which θn is drawn be denoted Θ. The Blackwell-MacQueen urn can be written
as follows:

θn+1 | θ1, . . . , θn ∼
α

α+ n
G0 +

1

α+ n

n
∑

i=1

δθi , (19)

where δθi denotes an atom at location θi (i.e., a probability distribution whose mass is
concentrated at θi). The factor α + n ensures that the right-hand side is a probability
distribution (i.e., that it assigns a total mass of one to Θ). Letting θ = (θ1, θ2, . . . , θN ), we
write:

θ ∼ BM(α,G0, N) (20)

to denote the draw of an entire sequence under the Blackwell-MacQueen urn model.
Having drawn a sequence (θ1, θ2, . . . , θN ), we can form the set of unique values, and

identify the unique values with the parameters {φc} that label a set of tables in a CRP.
Assigning each index n ∈ {1, . . . , N} to a table according to the equality of the parameter
θn to a label φc, we can map a draw from the Blackwell-MacQueen urn onto a draw from
the CRP.

As should be clear intuitively from the representation of this process in terms of an un-
derlying CRP, there must be some sense in which the distribution we obtain on sequences of
random vectors is exchangeable. If the indices of the customers are irrelevant in determin-
ing the partition, then they should also be irrelevant in determining the vectors that label
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the customers, if these vectors are chosen independently given the partition. In fact, while
partitions are somewhat exotic objects in probability theory, sequences of random vectors
are garden-variety objects, and, as we discuss in the following section, there is a classical
notion of exchangeability for such objects, one that leads to an important theorem.

4.2 Exchangeability and the de Finetti theorem

An infinite sequence of random vectors, (θ1, θ2, . . .), is said to be infinitely exchangeable if
the distribution of any finite subsequence is invariant to permutation. That is, if σ is a
permutation of the integers 1 through N , we require that

P (θ1 ∈ A1, θ2 ∈ A2, . . . , θN ∈ AN ) = P (θσ(1) ∈ A1, θσ(2) ∈ A2, . . . , θσ(N) ∈ AN ), (21)

for arbitrary N and arbitrary sets (A1, . . . , AN ). Intuitively, infinitely exchangeable se-
quences are just those for which the ordering doesn’t matter.4

In 1931, de Finetti proved a fundamental theorem for exchangeable sequences (de Finetti,
1931). De Finetti’s original theorem was for binary random variables, a special case that
will be of interest to us, but it has been generalized far beyond that setting. Here is such a
generalization:

Theorem 1. The infinite sequence of random vectors, (θ1, θ2, . . .), is infinitely exchangeable
if and only if the joint distribution of any N elements can be written as follows:

P (θ1 ∈ A1, θ2 ∈ A2, θN ∈ AN ) =

∫

(

N
∏

n=1

G(An)

)

Q(dG) (22)

for some random probability measure G with distribution Q.

If the notation “Q(dG)” is unfamiliar, please see Appendix A.
This theorem establishes an equivalence between exchangeability and the notion of “con-

ditionally independent and identically distributed (iid).” That is, conditioning on G, the
sequence (θ1, θ2, . . . , θN ) is iid; that is the meaning of the product in the integrand. In one
direction, the theorem is obvious: if (θ1, θ2, . . . , θN ) has a representation as on the right-
hand side of Eq. (22), then we clearly have invariance to permutation (because the product
is invariant to permutation). The deep result is that the converse holds.

The notion of a random probability measure will seem mysterious to the uninitiated,
and it is our purpose in the next two sections to make it seem natural. As a first step,
let us consider the special case of Bernoulli random variables. In this case, a probability
measure can be encoded by a single number η ∈ (0, 1) giving the probability of heads. If this
number η is itself a random variable, then it can be viewed as encoding a random probability
measure. In this setting, we write de Finetti’s theorem in a simplified form. For a Bernoulli
sequence (Z1, Z2, . . .), and binary values (z1, z2, . . . , zN ), we have exchangeability if and

4There is also a notion of finite exchangeability, but, given that the focus of Bayesian nonparametrics is
sequences with an open-ended number of elements, the notion of infinite exchangeability is more suited to
our purposes.
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only if:

P (Z1 = z1, Z2 = z2, . . . , ZN = zN ) =

∫

(

N
∏

n=1

ηzn(1− η)1−zn

)

Q(dη), (23)

for some distribution Q which is the distribution of η. In some (but not all) cases this
distribution can be obtained from a density, p(η), in which case we can substitute p(η)dη
for P (dη) in the integral.

As a concrete example, let us consider the case in which P is the beta distribution. The
beta distribution has a density of the form:

q(η) =
1

B(α1, α2)
ηα1−1(1− η)α2−1, (24)

where B(α1, α2) is the normalizing constant:

B(α1, α2) =

∫

ηα1−1(1− η)α2−1dη. (25)

If we plug this density into the right-hand side of Eq. (23) and define s =
∑N

n=1 zn as the
number of heads, we obtain:

P (Z1 = z1, Z2 = z2, . . . , ZN = zN ) =

∫

(

N
∏

n=1

ηzn(1− η)1−zn

)

1

B(α1, α2)
ηα1−1(1− η)α2−1dη

=
1

B(α1, α2)

∫

ηs+α1−1(1− η)N−s+α2−1dη

=
B(s+ α1, N − s+ α2)

B(α1, α2)

=
Γ(s+ α1)Γ(N − s+ α2)Γ(α1 + α2)

Γ(N + α1 + α2)Γ(α1)Γ(α2)
. (26)

We see that the result is invariant to the ordering of the random variables Zn; it is a function
only of the total count s. This confirms exchangeability.

On the other hand, if someone had handed us a distribution on binary sequences that
is proportional to Γ(s + α1)Γ(N − s + α2), we would know by de Finetti’s theorem that
there must exist an underlying random variable η such that we obtain this distribution upon
integrating out η. We would set off on a hunt for such a random variable, and (hopefully)
would soon discover that η is a beta random variable.

It should now be clear why we have introduced de Finetti’s theorem into our discussion.
The Blackwell-MacQueen urn is exchangeable,5 and thus, by de Finetti, there must exist
some underlying random measure G such that if we condition on a specific instantiation
of G, then the sequence obtained from the Blackwell-MacQueen urn can be mimicked by
drawing vectors iid from G. We are motivated to hunt for such a G.

5We have not proved the exchangeability of the Blackwell-MacQueen urn, but as we have alluded to, it
follows from the exchangeability of the random partition provided by the CRP and the isomorphism of the
Blackwell-MacQueen urn to the CRP combined with the iid labeling process.
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In setting off on this hunt, we note a few facts. First, G cannot be a diffuse distribution
(i.e., a distribution with no atoms). This is clear from the fact that the Blackwell-MacQueen
urn can output the same vector multiple times. Second, G cannot have a finite support.
This is clear from the fact that the Blackwell-MacQueen urn can continue to generate new
vectors, with no upper bound. Thus, G is not the kind of object that is studied in an
elementary probability class. Moreover, we are not interested in only a single G, but in
a distribution on G (not a single measure, but a random measure). This all seems rather
daunting. As we will see, however, the hunt can be successfully carried out, and the prey—
the Dirichlet process—is an elegant and relatively simple object.

4.3 Gibbs sampling based on the Blackwell-MacQueen urn representation

Before turning to the Dirichlet process, we wish to provide a concrete example of the use
of the Blackwell-MacQueen urn representation in the context of Gibbs sampling. Whereas
Gibbs sampling in the CRP representation integrates over parameter vectors (the φc), in the
Blackwell-MacQueen urn representation the Gibbs sampler instantiates parameter vectors
(the θn) explicitly (Escobar, 1994; Escobar and West, 1995).

We note at the outset that this Gibbs sampler is not a very effective sampler, tending
to mix slowly. We present it in part for historical reasons (it was among the first Markov
chain Monte Carlo samplers to be developed for Bayesian nonparametric clustering), but
also because it is useful to understand why the sampler mixes slowly.

The model on which the sampler is based is the following:

θ ∼ BM(α,G0, N)

xi | θi
ind
∼ F (θi) for i = 1, . . . , N. (27)

From a generative point of view, this model can be viewed as a notational variant of the
CRP mixture model in Eq. (12). In particular, given that the sequence θ = (θ1, θ2, . . .) is
exchangeable, the sequence x = (x1, x2, . . .) is also exchangeable, and the marginal distri-
bution obtained for x is the same as that in Eq. (12). Inferentially, however, the different
model specification yields a quite different algorithm.

We consider a Gibbs sampler in which the state is the vector θ. Consider updating a com-
ponent θi given the observations x and the other parameters, θ−i = (θ1, . . . , θi−1, θi+1, . . . , θN ).
The conditional distribution of θi can be obtained from the normalized product of the con-
ditional prior of θi given θ−i and the likelihood f(xi | θi). Exploiting the exchangeability
of θ under the Blackwell-MacQueen urn scheme, we can treat θi as the last variable in the
sequence, so that the conditional prior is simply:

θi | θ−i ∼
α

N − 1 + α
G0 +

∑

j 6=i

1

N − 1 + α
δθj =

α

N − 1 + α
G0 +

K
∑

k=1

nk
N − 1 + α

δφk , (28)

where φ1, . . . , φK are the K unique values among θ−i and where nk is the number of com-
ponents θi equal to φk. (Note that slight change in notation—we now index the parameter
vectors φk by integers k rather than by clusters c as in the CRP where we wrote φc. One
can map between these indices by letting the tables in the CRP be numbered according to

21



the order of their occupancy.) Multiplying by the likelihood f(xi | θi) and normalizing gives
the conditional distribution of θi given θ−i. As the conditional prior in Eq. (28) has both a
diffuse component G0 and atoms δφk at the current values of θ−i, the conditional posterior
will also have these components. Thus there are K + 1 options for θi, with probabilities
given as follows:

P (θi ∈ Θ\{φk}
K
k=1 |x, θ−i) ∝

α

N − 1 + α

∫

f(xi |φ)g0(φ)dφ

P (θi = φk |x, θ−i) ∝
nk

N − 1 + α
f(xi |φk) for each k = 1, . . . ,K, (29)

where the constant of proportionality is obtained by normalizing across these K + 1 alter-
natives. To sample θi, we first sample from Eq. (29) to determine if the new value of θi will
equal some φk. If not, then θi takes on a value distinct from those in θ−i, and we obtain
that value by sampling from its conditional distribution with density:

p(θi |x, θ−i, θi 6∈ {φk}
K
k=1) ∝ f(xi | θi)g0(θi). (30)

As we noted earlier, this Gibbs sampler tends to mix slowly. To understand the prob-
lem, consider a situation in which the Gibbs sampler has correctly identified a cluster c
of similar observations, but that the parameter of the cluster is not sharply determined
in the posterior, so that the Gibbs sampler should integrate over the likely values for the
parameter. Suppose the current value is φ, but that there is another value φ∗ which has
higher likelihood, and consider the chance that the Gibbs sampler will update the parameter
value from φ to φ∗. Note that under the Blackwell-MacQueen urn representation there is
no single explicit random variable that represents a cluster or the corresponding parameter;
rather, the cluster is represented implicitly as a maximal set of indices c such that all θi = φ
for each i ∈ c. For the Gibbs sampler to update the parameter of the cluster to φ∗ would
require each individual θi to be updated to the new value φ∗ in turn, conditioned on the
current values of θj for j ∈ c\{i}. Some of these may have been updated to φ∗ already,
while some have not been updated so still have the value φ. This means that on the way to
the state in which all θi equal the new value φ∗, the Gibbs sampler has to pass through a
state in which the single cluster is split into two clusters, one with the previous parameter
value φ and one with the new value φ∗. Such a state generally has low probability, so that
the chance of the Gibbs sampler successfully updating the parameter of the cluster to φ∗ is
low.

Another problematic aspect of this Gibbs sampler is the computation of integrals needed
to sample from Eq. (29) and Eq. (30). This is generally possible only when G0 is conjugate
to the likelihood f(x |φ), or when the parameter space is low dimensional so that numerical
integration is feasible.

While the mixing problem can be alleviated via an improved scheme in which the values
of all values of θi for each i ∈ c are updated together (MacEachern, 1994; Bush and MacEachern,
1996), the difficulty of evaluating the needed integrals remains. This problem is mitigated
by the samplers that we discuss in later sections. We also refer to Neal (2000), who presents
samplers based on Metropolis-Hastings and augmentation techniques that do not require
conjugacy.
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5 Stick-Breaking and the Dirichlet Process

We return to the main thread of our discussion, the attempt to identify the random measure
G underlying the Blackwell-MacQueen urn model. We begin this section with a short
tutorial on measures and atoms, including a discussion of random measures, and then
derive the Dirichlet process from the Blackwell-MacQueen urn model.

Recall that a measure µ on a set Θ is a function from subsets of Θ to the nonnegative
real numbers that satisfies countable additivity:6 for disjoint subsets, (A1, A2, . . .), we have
µ(∪nAn) =

∑

n µ(An). As a simple example of a measure, consider the atomic measure,
µ = δθ, which places a unit mass at the point θ ∈ Θ. We will refer to such a point as an
atom. For any subset A, we have δθ(A) = 1 if the atom θ lies in A and zero otherwise. This
function clearly satisfies countable additivity.

Atomic measures can be used to build up general discrete measures. Note in particular
that multiplying δθ by a nonnegative scalar yields a new measure. Moreover, countable
sums of such measures are measures, so the following object is a measure:

µ =

∞
∑

k=1

wkδφk , (31)

for nonnegative “weights” {wk}. For A ⊆ Θ, we have

µ(A) =

∞
∑

k=1

wkδφk(A) =
∑

k:φk∈A

wk, (32)

which is the sum of the weights of the atoms falling in A.
We now take the step to a random measure. We do this by making the object in Eq. (31)

random, doing so in two ways. First, we let the {wk} be nonnegative random variables.
Second, the atoms {φk} are also chosen randomly. Specific ways of making these random
choices will define particular families of random measures. We write

G =

∞
∑

k=1

wkδφk (33)

to denote the random measure; this is the same as Eq. (31) but the {wk} and the {φk} are
now random, and we have written G instead of µ to remind us that the measure is random.7

If we fix a particular subset A of Θ and compute G(A), the result is no longer a number
as in the case of µ(A), but a random variable. Note in particular that we can apply G to
Θ. If G(Θ) = 1, with probability one, then we refer to G as a random probability measure.8

6For completeness, let us note that the set of subsets of Θ on which the measure is defined needs to be a
sigma algebra, but it will not be necessary to know what a sigma algebra is to proceed.

7We will forgo an attempt to define a random measure more formally, but for readers wishing to pursue
the matter, let us note in passing that the formal definition of a random measure is as a “transition kernel.”
See, e.g., Kallenberg (2002). See also Sec. (6.1) for a discussion that links random measures to stochastic
processes.

8A statement such as “G(Θ) = 1” is a probabilistic statement, given that G(Θ) is a random variable, and
in referring to G as a random probability measure, we require this statement to hold only with probability
one with respect to the underlying randomness that makes G a random measure.
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We can achieve this by requiring
∑∞

k=1wk = 1 to hold (with probability one), because

G(Θ) =
∞
∑

k=1

wkδφk(Θ) =
∞
∑

k=1

wk. (34)

Returning to the Blackwell-MacQueen urn, it is reasonable to expect that the underlying
measure promised by the de Finetti theorem can be written in the form of Eq. (33), given
that we require a countably infinite number of atoms. Indeed, thinking in terms of the CRP
representation, it seems reasonable that we should associate one atom with each table in
the CRP, and require

∑∞
k=1wk = 1 to capture the fact that the CRP chooses one and only

one table at each step. The problem is to uncover the specific way in which we must turn
the {wk} and the {φk} into random variables for the case of the Blackwell-MacQueen urn.

Let us focus first on the {wk}. For these numbers to sum to one, they must decay
as i goes to infinity. This corresponds to the occupancy of the tables in the CRP—those
tables that are occupied early in the process are likely to continue to remain the most
highly occupied, and should thus correspond stochastically to the larger values of wk. Let
us therefore consider treating w1 as the probability associated with the first occupied table
in the CRP, and see if we can deduce the distribution of w1 from the CRP dynamics.

Just after the moment in time in which the first table is occupied in the CRP, we have
one customer at that table. Future customers can either sit at that table or sit at some
other table. Let us therefore consider a Pólya urn in which “one” denotes sitting at the
identified table and “zero” denotes sitting at some other table. Let Zi denote the binary
indicator associated with the ith customer after the first customer (thus, Z1 denotes the
indicator associated with the second customer). We compute the probability of observing
a sequence of N ones under this Pólya urn:

P (Z1 = 1, Z2 = 1, . . . , ZN = 1) =

(

1

α+ 1

)(

2

α+ 2

)

· · ·

(

N

α+N

)

=
Γ(N + 1)

(α+ 1)(N)
. (35)

On the other hand, from the Bernoulli version of de Finetti’s theorem in Eq. (23), we have:

P (Z1 = 1, Z2 = 1, . . . , ZN = 1) =

∫

ηNP (dη), (36)

for some random variable η. This latter expression is the Nth moment of η. The set of
moments of a random variable uniquely identify the distribution of that random variable,
and so the problem is to find a random variable whose Nth moment is Γ(N +1)/(α+1)(N) .
But we have already found this random variable: from Eq. (26) if we substitute s = N , and
let α1 = 1 and α2 = α, we obtain:

P (Z1 = 1, Z2 = 1, . . . , ZN = 1) =
Γ(N + 1)Γ(1 + α)

Γ(N + 1 + α)
(37)

=
Γ(N + 1)

(α+ 1)(N)
, (38)
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Figure 3: Stick-breaking construction for the Dirichlet process. We start with a stick of
length 1, and recursively break off pieces of sticks of lengths w1, w2, . . ..

which is the same as Eq. (35). Thus we see that w1 ∼ Beta(1, α).
The same thought experiment applies to the determination of w2. Having allocated

probability w1 to the event of sitting at the first occupied table, we have probability 1−w1

to allocate to further seating decisions. We again consider a Pólya urn, in which “one”
denotes sitting at the second occupied table, and “zero” denotes sitting at some heretofore
unoccupied table (i.e., neither the first or the second). This latter event still occurs with
probability proportional to α, and so we have the identical urn as before. Thus the proba-
bility of sitting at the second occupied table, given that we do not sit at the first occupied
table, is drawn from Beta(1, α). Denoting that draw by β2, we have w2 = β2(1− w1).

In general, we can generate the values wk as follows:

βk
iid
∼ Beta(1, α) k = 1, 2, . . .

wk = βk
∏

j<k

(1− βj) k = 1, 2, . . . . (39)

This procedure is referred to as stick-breaking, and the distribution that it defines on the
infinite sequence w = (w1, w2, . . .) is known as the GEM distribution:

w ∼ GEM(α). (40)

As shown in Fig. (3), the values w can be viewed as fragments of a unit-length stick, obtained
by breaking off a fraction of the remainder of the stick after the preceding fragments have
been removed.

We also need to specify the random mechanism behind the choice of the atoms φk in
Eq. (33). Given that the stick-breaking process has captured the CRP dynamics, all that
is left to do is to draw the vectors φk independently:

φk
iid
∼ G0 k = 1, 2, . . . . (41)

Thus, G as defined in Eq. (33) is indeed random in two ways: the weights w are chosen
randomly by stick-breaking, and the atoms φk are chosen randomly by iid draws.

We show some examples of draws of the random measure G in Fig. (4). Note that
these draws are all discrete, and they are centered around the underlying measure G0. The
heights of the atoms are determined independently of the locations by the stick-breaking
process.
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Figure 4: Examples of draws from the Dirichlet process. From left to right are 4 independent
draws G, with concentration parameters 0.5, 1, 10 and 100 respectively. The blue curve is
the density of the base distribution, while each vertical black line corresponds to an atom
(with mass given on y axis) in G.

The random measure that we have constructed has a name: it is the Dirichlet process.
We explain the name—in what sense our random measure is a “process” and where the
“Dirichlet” comes from—in Sec. (6). We denote a draw from the Dirichlet process as
follows:

G ∼ DP(α,G0), (42)

where we refer to α as the concentration parameter and G0 as the base measure or base
distribution. That “concentration parameter” is a reasonable name for α can be seen from
Fig. (4), where we see that large values of α lead to draws that are concentrated around
the base measure G0 and small values of α lead to draws that are more variable. This point
will be made more precise later in Eq. (51) where we compute the variance of the Dirichlet
process, finding that α appears in the denominator of the variance. The intuitive reason for
the behavior should be clear from considering the role of α in the CRP; a small value of α
leads to draws G that have their support on a small number of atoms at random locations.
Note also that the Dirichlet process is sometimes denoted as DP(αG0), where αG0 is an
unnormalized measure and where the concentration parameter α can be recovered from the
parameter αG0 by normalization.

Finally, we define the Dirichlet process mixture model, a full-blown model specification
where we connect the Dirichlet process to a likelihood and thereby provide a Bayesian
generative model for data. The overall model specification is as follows:

G ∼ DP(α,G0), (43)

θi |G
iid
∼ G for i = 1, 2, . . . , N, (44)

xi | θi
ind
∼ F (θi) for i = 1, 2, . . . , N, (45)

where F (θi) is the distribution corresponding to the density f(· | θi). This model should
be viewed as an augmentation of the model presented earlier in Eq. (27) to include the
underlying random measure G.
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5.1 Gibbs sampling based on stick-breaking

The stick-breaking representation of the DP opens up new opportunities for sampling-based
posterior inference algorithms. In particular, we can now design algorithms that explicitly
instantiate the random measure G, thereby decoupling (i.e., rendering conditionally inde-
pendent) the parameters {θi}. Samplers that explicitly instantiate G are referred to as
“conditional samplers.” The samplers that we have discussed in previous sections, which
operate on a model in which G has been integrated out, are referred to as “marginalized sam-
plers.” Conditional samplers are often simpler to implement and more readily parallelizable
than marginalized samplers. Further, with conditional samplers we can estimate various
functionals of the posterior of G, such as medians and quantiles, that are not available with
marginalized samplers.

The main difficulty one faces in the design of conditional samplers comes from the fact
that the random measure G has its support on infinitely many atoms, as seen in Eq. (33).
Representing such a random measure exactly would be impossible on a computer with a
finite amount of memory. We present two approaches to dealing with this issue. The first
involves an approximation in which the infinite sum in Eq. (33) is truncated to a finite sum,
exploiting the fact that the fact that the masses wk decrease to zero exponentially quickly.
This can be viewed as the analog of the floating-point representation of real numbers on
computers, where we simply keep track of the most significant digits of each real number
(its mantissa), along with an exponent. The second involves no approximation, but instead
exploits the fact that only a finite number of the atoms comprising G are used in the
generation of data points; these atoms can be generated on the fly as needed. We present
the first approach in this section and present the latter in Sec. (6.4).

In the truncation approach (Ishwaran and James, 2001), we truncate the representation
of G by picking a value Kmax and retaining only atoms φk for which k ≤ Kmax:

G =

Kmax
∑

k=1

wkδφk ,

where

φk ∼ G0 wk = βk
∏

j<k

(1− βj), k = 1, . . . ,Kmax,

βKmax = 1, βk ∼ Beta(1, α), k = 1, . . . ,Kmax − 1. (46)

Note that we set βKmax = 1 so that G has a total mass of one and is thus still a random
probability measure even after truncation.

The choice of Kmax is obviously important here, and Ishwaran and James (2001) present
theoretical results capturing the error induced in the prior distribution by the truncation.
This error in the prior does not translate immediately into control over error in the posterior,
but it does serve as a guide. In practice, one often sets Kmax to a value that is 4− 5 times
larger than a subjectively chosen value of the number of clusters in the data, runs the
algorithm discussed below, and assesses whether the posterior appears to place most of its
mass significantly below Kmax. If not, one runs the algorithm again with a larger Kmax.
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To specify a sampling algorithm based on the truncated model, we introduce cluster as-
signment variables, zi, which indicate the index k ∈ {1, . . . ,Kmax} to which each observation
xi is assigned in the generative model. The conditional distributions are:

zi |G ∼ Discrete(w1, . . . , wKmax) i = 1, . . . , N

xi | zi = k,G ∼ F (φk) i = 1, . . . , N. (47)

We now define a Gibbs sampler with state space {βk, φk}
Kmax
k=1 and {zi}

n
i=1. The condi-

tional distributions are straightforward to derive, giving:

p(zi = k |x, z−i, β, φ) ∝ wkf(xi |φk) i = 1, . . . , N

p(φk |x, z, β, φ−k) ∝ g0(φk)
∏

i:zi=k

f(xi |φk) k = 1, . . . ,Kmax

p(βk |x, z, β−k, φ) ∝ βnk

k (1− βk)
α+n>k−1 k = 1, . . . ,Kmax − 1 (48)

where nk =
∑n

i=1 1(zi = k) is the number of observations in cluster k and where n>k =
∑n

i=1 1(zi > k) is the number of observations in clusters ℓ > k. We see that the conditional
distribution of βk is just Beta(1 + nk, α + n>k). The conditional distribution of φk is also
obtained in a closed form if G0 is conjugate to the likelihood; if not we can employ a
Metropolis-Hastings step to update φk (or some other ergodic MCMC update which leaves
the conditional distribution invariant).

An advantage of this Gibbs sampler relative to the samplers that we have discussed
earlier is that the introduction of G in the sampler (i.e., the use of {βk, φk}) exposes the in-
herent independence between the cluster assignment variables, making it possible to sample
these values in parallel. Moreover, updates to β and φ can also be sampled in parallel. Note
also that the conditional probability of the cluster assignment variables does not involve
the evaluation on an integral, diminishing the need for conjugacy in this approach.

6 Properties of the Dirichlet Process and its Posterior

The Dirichlet process is our first example of a random measure. As we proceed we will
see other random measures. These random measures play a key role in Bayesian nonpara-
metrics, by introducing an infinite number of degrees of freedom into a model and thereby
freeing us from parametric restrictions. To be able to exploit this flexibility, we need to show
that the standard operations of Bayesian inference are feasible within a model that includes
random measures. In particular, we need to show that a formula akin to Bayes’ theorem
allows us to compute conditional probabilities in a model that includes random measures
as first-class citizens in the model. In this section we demonstrate this computation in the
simple setting of a hierarchical model in which vectors θ = (θ1, . . . , θN ) are drawn indepen-
dently from a random measure G and the problem is to compute the posterior of G given
θ.

Before turning to this problem we provide some further background on basic properties
of the Dirichlet process (DP). We first explain the name—in particular we explain the sense
in which the DP is a “process,” and we explain the meaning of “Dirichlet.” We show how
to compute moments of the DP. We then turn to the key issue of obtaining the posterior
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distribution of a DP. From the posterior representation of the DP we show how to derive
the Chinese restaurant process, bringing our chain of arguments full circle. Finally, we
illustrate the use of the posterior representation in the design of a slice sampling algorithm
for posterior inference.

6.1 Marginals and moments

A stochastic process is an indexed collection of random variables that obey certain consis-
tency conditions. Often the index set is the real line (e.g., in the case of Brownian motion)
or some other Euclidean space. However, other index sets can be considered and indeed the
right way to think about the DP (and other random measures) is that its index set is a set
of sets. Let us slow down and understand this perspective.

Recall that if we evaluate G on a fixed subset A, the resulting object G(A) is a random
variable. Ranging over a set of such subsets, we obtain a collection of random variables.
Indeed, applying G to a collection of sets, (A1, A2, . . . , AK), we obtain a random vector,
(G(A1), G(A2), . . . , G(AK)). If G is to be a random probability measure, then we require the
joint probability distribution of this random vector to satisfy certain consistency conditions
as we range over choices of subsets (A1, A2, . . . , AK). These consistency conditions are
easy to understand if we specialize to consider sets of sets that are finite partitions of the
underlying space, and, in fact, a small amount of measure-theoretic thinking reveals that it
suffices partitions. Thus, again denoting the underlying space by Θ, let (A1, A2, . . . , AK) be
a partition of Θ, and consider all such partitions, for all values of K. If G is to be a random
probability measure, then we requireG(Θ) = 1 and we require that the following aggregation
property holds: the random vector (G(A1), . . . , G(Ai) + G(Ai+1), . . . , G(AK)) must have
the same distribution as the random vector (G(A1), . . . , G(Ai ∪ Ai+1), . . . , G(AK)), for all
choices of i.

One well-known distribution that satisfies these properties is the Dirichlet distribution.
(See Appendix B for an overview of the Dirichlet distribution.) Thus, if we have in hand
a putative random measure G that satisfies the following finite-dimensional distributional
requirement:

(G(A1), G(A2), . . . , G(AK)) ∼ Dir(αG0(A1), αG0(A2), . . . , αG0(AK)), (49)

for all partitions (A1, A2, . . . , AK) and for all K, then we certainly satisfy the consistency
conditions associated with G being a random measure.

In fact, the random probability measureG that we defined in Eq. (33) turns out to satisfy
Eq. (49). It is for this reason that the distribution of the random probability measure G
is known as the “Dirichlet process.” We summarize Eq. (49) by saying that “the Dirichlet
process has Dirichlet marginals.” We provide a direct proof of this fact, starting with
Eq. (33), in Appendix C. We also provide a second path to understanding how Dirichlet
marginals arise in Sec. (9), via the theory of completely random measures and the gamma
process.

The Dirichlet process first appeared in a paper by Ferguson (1973), and in that pa-
per Eq. (49) was treated as the definition of the process. Such a definition leaves open
the question as to whether such a process actually exists, and Ferguson made an appeal
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to a general theorem of Kolmogorov on the existence of stochastic processes, given collec-
tions of finite-dimensional distributions that satisfy consistency conditions. As emphasized
by Sethuraman (1994), such an appeal runs into a measure-theoretic difficulty that requires
certain topological conditions to be placed on Θ. We have followed Sethuraman in treating
Eq. (33) as the definition of the Dirichlet process. This approach avoids the need to place
any conditions on Θ. Moreover, under the definition, G is clearly a probability measure
(under the event that the weights wk sum to one, which happens with probability one).

Although Eq. (33) has virtues as a definition, it makes computations difficult which are
easy under Eq. (49). In particular, a simple consequence of Eq. (49) is that we can readily
compute the mean and variance of G(A), for any A ∈ A:

E(G(A)) = G0(A) (50)

Var(G(A)) =
G0(A)(1 −G0(A))

1 + α
. (51)

This follows directly from Eq. (271) and Eq. (277) in Appendix B. In the following section
we will see another important application of Eq. (49).

6.2 The posterior Dirichlet process

We now turn to the important problem of obtaining the posterior distribution of a DP in
models in which a draw from a DP is one component of a more elaborate model. Let us
consider the following simple hierarchical model:

G ∼ DP(α,G0) (52)

θi |G
iid
∼ G for i = 1, . . . , N , (53)

where a set of variables, θ = (θ1, . . . , θN ), are drawn independently from the random prob-
ability measure G. The random measure G is a draw from the Dirichlet process. The
problem is to determine the posterior distribution of G given θ.

We can obtain a hint as to what this posterior distribution should be by considering
the finite-dimensional Dirichlet distribution. A draw from the Dirichlet distribution can be
considered as a probability measure over a discrete set of values. Fixing this probability
measure and drawing from it repeatedly corresponds to multinomial sampling. It is well
known that the posterior distribution in such a setting is Dirichlet, with the Dirichlet
parameters updated by adding the observed counts (this is often expressed by saying that
the Dirichlet is conjugate to the multinomial). Our problem is essentially the same problem,
with the difference that G provides a countable infinity of options. Selecting a value θi from
G corresponds to picking one of these options, which is the infinite-dimensional analog of
multinomial sampling. This line of reasoning suggests that the posterior distribution under
the model in Eq. (53) should itself be a Dirichlet process.

To turn this intuition into a rigorous argument, we make use of the connection in-
duced between the Dirichlet process and the Dirichlet distribution when considering fi-
nite partitions of Θ. Given such a finite partition, (A1, . . . , AK), consider the vector
(δθi(A1), . . . , δθi(AK)) for fixed i. Because (A1, . . . , AK) is a partition, exactly one of the
entries of this vector is equal to one with the rest being equal to zero. Further, since θi
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is distributed according to G, the probability that δθi(Aj) = 1, that is, the probability
that θi ∈ Aj , is simply G(Aj). Thus, (δθi(A1), . . . , δθi(AK)) has a multinomial distribu-
tion with parameter (G(A1), . . . , G(AK)). This is true for each i = 1, . . . , N ; moreover,
the corresponding multinomial vectors are independent, given that the θi are independent.
We thus use the fact that the Dirichlet distribution is conjugate to the multinomial and
thereby obtain the posterior distribution of (G(A1), . . . , G(AK)) given the multinomial vec-
tors {(δθi(A1), . . . , δθi(AK))}:

(G(A1), . . . , G(AK)) | {(δθi(A1), . . . , δθi(AK))} ∼ Dir

(

αG0(A1) +

N
∑

i=1

δθi(A1), . . . , αG0(AK) +

N
∑

i=1

δθi(AK)

)

,

(54)

where
∑N

i=1 δθi(Aj) is the count of the number of times that θi lies in the subset Aj for
each j = 1, . . . ,K. Since this result holds for any partition (A1, . . . , AK), and for any value
of K, we have shown that the posterior distribution of G—given the multinomial vectors
{(δθi(A1), . . . , δθi(AK))}—is the Dirichlet process. However, we want to obtain the posterior
of G given θ, rather than given the multinomial vectors, and so this is not quite what we
need. Indeed, each θi in principle contains more information than (δθi(A1), . . . , δθi(AK)),
which only tells us in which subset θi lies, not where in the subset θi lies. It turns out,
however, that these two conditional distributions are the same; the extra information about
where θi lies within each subset is not relevant for the conditional distribution. This fact,
which is referred to as the “tail-free property of the Dirichlet process,” is established in
Appendix D. Assuming the tail-freeness, we obtain our expected conclusion: the posterior
of G given θ is itself a Dirichlet process.

We can now remove reference to the specific partition and write our result simply in
terms of the concentration parameter and the base measure:

G | θ ∼ DP

(

α+N,
α

α+N
G0 +

1

α+N

N
∑

i=1

δθi

)

. (55)

We see that the concentration parameter of the posterior DP is α + N , the prior concen-
tration plus the number N of observed values of θi, while the updated base distribution
is α

α+NG0 +
1

α+N

∑N
i=1 δθi . This updated base distribution is a convex combination of the

original base distribution, G0, and the empirical distribution 1
N

∑N
i=1 δθi . Thus we obtain

the standard Bayesian compromise between our prior as given by the base distribution and
the “data,” as given by the vector θ. Further, as the number of observations increase, and
recalling Eq. (51), the posterior distribution over G concentrates around its posterior mean,
which, recalling Eq. (50), becomes increasingly dominated by the empirical distribution.

A second representation for the posterior DP can be derived from Eq. (55) that will prove
useful in our subsequent work. Let θ∗1, . . . , θ

∗
K be theK unique values among the components

of θ. Consider the partition of Θ into K + L subsets ({θ∗1}, . . . , {θ
∗
K}, A1, . . . , AL), where

(A1, . . . , AL) forms a partition of Θ\θ. Since the posterior distribution of G given θ is a
DP, it has posterior marginals given by Eq. (49):

(G({θ∗1}), . . . , G({θ
∗
K}), G(A1), . . . , G(AL))|θ ∼ Dir(n1, . . . , nK , αG0(A1), . . . , αG0(AL))

(56)
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where nk =
∑N

i=1 1(θi = θ∗k) is the number of occurrences of θ∗k among the components of θ.
Using Proposition 7 from Appendix B, we can decompose this random probability vector
of length K +L into two random probability vectors, of lengths K + 1 and L, respectively,
that are conditionally independent given θ:

(G({θ∗1}), . . . , G({θ
∗
K}), G(Θ\θ)) ⊥⊥

1

G(Θ\θ)
(G(A1), . . . , G(AL)), | θ (57)

with conditional distributions:

(G({θ∗1}), . . . , G({θ
∗
K}), G(Θ\θ)) | θ ∼ Dir(n1, . . . , nK , αG0(Θ\θ)) (58)

1

G(Θ\θ)
(G(A1), . . . , G(AL)) | θ ∼ Dir(αG0(A1), . . . , αG0(AL)). (59)

We now use the fact that G0 is diffuse and θ is finite, such that G0(Θ\θ) = 1. We see that
the posterior DP has the following representation:

G | θ =

K
∑

k=1

wkδθ∗
k
+w′G′ (60)

(w1, . . . , wK , w
′) | θ ∼ Dir(n1, . . . , nK , α)

G′ | θ ∼ DP(α,G0)

In words, the posterior distribution ofG given θ is described as a collection of weighted atoms
at the K unique values of θ, and an additional collection of atoms from an independently
drawn DP G′, where the weights associated with these atoms are Dirichlet distributed and
independent of G′.

6.3 From the Dirichlet process to the Chinese restaurant process

In this section we bring our chain of arguments full circle, showing that the Chinese restau-
rant process can be derived from the Dirichlet process.

Recall that the CRP can be obtained by working with the Blackwell-MacQueen urn
model and grouping together values of θi that are equal, viewing them as customers at a
table in the restaurant. Our derivation actually works with the Blackwell-MacQueen urn
representation.

The Blackwell-MacQueen urn model generates a sequence (θ1, θ2, . . . , θN ). We wish to
compute the conditional probability distribution of θN+1 given (θ1, θ2, . . . , θN ). To do so,
we let A be a subset of Θ, and calculate as follows:

P (θN+1 ∈ A | θ1, . . . , θN ) = E[P (θN+1 ∈ A | θ1, . . . , θN , G) | θ1, . . . , θN ]

= E[P (θN+1 ∈ A |G) | θ1, . . . , θN ]

= E[G(A) | θ1, . . . , θN ]

=
α

α+N
G0(A) +

1

α+N

N
∑

i=1

δθi(A), (61)
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where the first equality is the tower property of conditional expectation, the second equality
is the conditional independence assumption from Eq. (53), the third equality is also obtained
from Eq. (53), and the final equality is obtained from Eq. (50) using the posterior base
measure from Eq. (55).

This final equation is just the Blackwell-MacQueen urn. To see this, first consider the
case in which A is equal to the singleton {θi}. We see that in this case the conditional
probability of obtaining another label {θi} is proportional to the previous number of draws
with the label {θi}. Now consider the probability of obtaining a new label. This probability
is obtained by letting A = Θ\{θ1, . . . , θN}. We obtain a probability that is proportional
to αG0(A) = αG0(Θ) = α, where the first equality comes from the assumption that G0 is
diffuse.

6.4 Conditional slice sampler for DP mixture models

So far we have described three distinct samplers for different mixture models: a CRP
mixture model in Section 3.3, a Pólya urn mixture model in Section 4.3, and a stick-
breaking mixture model in Section 5.1. Further, we have seen that all three models are
intimately tied to the Dirichlet process. In this section we will describe our last sampler,
derived for the DP mixture model as given in the following:

G ∼ DP(α,G0) (62)

θi |G
iid
∼ G for i = 1, . . . , N , (63)

xi | θi
ind
∼ F (θi) for i = 1, . . . , N . (64)

In this section, we develop a second conditional sampler for DP mixture models, based
on the posterior DP representation in Eq. (60). The sampler also introduces a second
idea for truncation, based on slice sampling, which does not introduce any approximation
errors (Walker, 2007). In particular, we augment the state space with additional vari-
ables s = (s1, . . . , sN ) which are independent, with si uniformly distributed between 0
and G({θi}); i.e., the mixing proportion of the cluster to which data point xi is currently
assigned to:

si |G, θi ∼ U [0, G({θi})]. (65)

We now consider a sampler which alternates between sampling G and s together given
θ and sampling θ given G and s. Let θ∗1, . . . , θ

∗
K be the unique values among θ. These form

the parameters of the K components in the mixture model currently associated with data.
Let zi denote the component that xi belongs to, i.e. θi = θ∗zi . We can update each θ∗k using
any ergodic MCMC update which has invariant distribution given by:

p(θ∗k|x, z) ∝ g0(θ
∗
k)
∏

i:zi=k

f(xi | θ
∗
k) (66)

In the first phase, the conditional distribution of G given θ is given by Eq. (60). Making
use of the stick-breaking representation for G′ =

∑∞
ℓ=1 uℓδθ′ℓ ,

G | θ =
K
∑

k=1

wkδθ∗
k
+ w′

∞
∑

ℓ=1

uℓδθ′
ℓ
, (67)
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where

(w1, . . . , wK , w
′) | θ ∼ Dir(n1, . . . , nK , α) (68)

(u1, u2, . . .) | θ ∼ GEM(α) (69)

θ′ℓ | θ
iid
∼ G0 for ℓ = 1, 2, . . .. (70)

For i = 1, . . . , N , let zi ∈ [K] denote the cluster index such that θi = θ∗zi , so that
G({θi}) = wzi . Now given G and θ each si is conditionally independent of the others
and have distribution:

si |G, θ ∼ U [0, wzi ]. (71)

Note that the si’s depend only on the masses w1, . . . , wK of the atoms θ∗1, . . . , θ
∗
K associated

with the data points, and not on those in G′ which are not associated with data. Thus they
can be sampled after (w1, . . . , wK , w

′) but before G′. Finally G′ is independent of the data
and can be simulated using the stick-breaking representation. Note that this technically
requires simulating all infinitely many atoms in G′. However we will see next that only a
finite number of atoms in G′ are needed.

In the second phase of the sampler, conditioned on G and s, the θi’s are sampled
independently with distributions given by:

p(θi |G, si, xi) ∝

{

wk · p(si |G, θi)p(xi | θi) for θi = θ∗k, for some k = 1, . . . ,K,

w′uℓ · p(si |G, θi)p(xi | θi) for θi = θ′ℓ, for some ℓ = 1, 2, . . ..
(72)

∝











wk ·
1
wk
f(xi | θ

∗
k) for θi = θ∗k, for some k = 1, . . . ,K with wk > si,

w′uℓ ·
1

w′uℓ
f(xi | θ

′
ℓ) for θi = θ′ℓ, for some ℓ = 1, 2, . . . with w′uℓ > si,

0 otherwise.

(73)

∝











f(xi | θ
∗
k) for θi = θ∗k, for some k = 1, . . . ,K with wk > si,

f(xi | θ
′
ℓ) for θi = θ′ℓ, for some ℓ = 1, 2, . . . with w′uℓ > si,

0 otherwise.

(74)

In particular, note that we only need the atoms θ′ℓ in G′ with mass uℓ greater than S =
mini si/w

′, since all the other atoms will have probability 0 for being used in this second
phase. Since w′ ≤ 1 and each si is positive with probability 1, we have that with probability
1 as well S is positive and there are only a finite number of atoms L in G′ with mass greater
than S. We can enumerate all these atoms by generating the atoms of G′ iteratively using
the stick-breaking representation, stopping once the total left over mass is less than S.
While the number of atoms generated L is potentially unbounded, since the stick-breaking
weights decrease exponentially quickly, in practice the number of such atoms is small. In
summary, Algorithm 1 summarizes one iteration of the sampler.

7 Pitman-Yor Processes

While the Dirichlet process generates an infinite number of atoms, the rate at which new
atoms are generated is relatively slow. Many real-world phenomena are characterized by
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Algorithm 1 Conditional Slice Sampler for DP Mixture Model

1: Set θ∗1, . . . , θ
∗
K to be the collection of unique values among θ1, . . . , θN .

2: Sample each component parameter θ∗1, . . . , θ
∗
K independently using an ergodic MCMC

update with the invariant distribution in Eq. (66).
3: Sample the weights (w1, . . . , wK , w

′) from Eq. (68).
4: Sample each slice variable s1, . . . , sN independently from Eq. (71).
5: Compute the minimum slice level S = mini si.
6: Sample the number L and weights u1, u2, . . . , uL of atoms in G′ using the stick-breaking

construction, Eq. (69), where L is the smallest index with 1−
∑L

ℓ=1 uℓ < S.
7: Sample the parameters θ′1, . . . , θ

′
L in G′ independently from G0.

8: Sample each cluster assignment θ1, . . . , θN independently from Eq. (74).

faster growth, namely that characterized by power law distributions (Newman, 2005). As
we discuss in this section, while the Dirichlet process cannot generate such power laws,
a generalization of the Dirichlet process known as the Pitman-Yor process can generate
power laws (Pitman and Yor, 1997). Like the Dirichlet process, the Pitman-Yor process
is a random probability measure that induces marginal distributions characterized by a
(generalized) Chinese restaurant process and a Blackwell-MacQueen urn. In this section we
build on our previous work and show how these three perspectives play out in the case of
the Pitman-Yor process.

One way to understand the slow rate of growth of new atoms in the Dirichlet process
is to consider the Chinese restaurant process in Eq. (3). We see that the probability of the
N + 1st customer selecting a new table is α/(α +N) while the probability of selecting an
occupied table goes as N/(α +N). The latter quickly dominates the former and few new
tables emerge as N becomes large. Indeed the expected number of tables occupied by N
customers is

N
∑

n=1

α

α+ n
≍ α log(N) (75)

which grows slowly with N . Similarly, in the stick-breaking formulation in Eq. (39), each
weight wk is obtained by multiplying the remaining stick length by a Beta(1, α) random
variable, which has a large expected value (e.g., 1/2 for the case α = 1) and which quickly
chews up the stick. To obtain a larger number of new tables, or a slower decay in the size
of the sticks, we need to let α grow as the process proceeds. The issue is how to do this
while retaining exchangeability.

The Pitman-Yor process (PYP) achieves this growth in the rate of generating new tables
via a third parameter σ, known as the discount parameter, in addition to the concentration
parameter α and the base distribution G0. The discount parameter σ takes values in the
range [0, 1), while the range of the concentration parameter α is expanded to (−σ,∞).
When σ = 0 the PYP reduces to the DP.

Let us first consider a generalized form of the Chinese restaurant process that makes
use of the discount parameter. As before, let π[n] denote a partition based on the first n
customers, and consider the probabilities associated with customer n+1. In the Pitman-Yor

35



generalization we replace the conditional probabilities in Eq. (3) with:

P (customer n+ 1 joins table c |π[n]) =















|c| − σ

α+ n
if c ∈ π[n],

α+ σKn

α+ n
otherwise,

(76)

where Kn is the number of clusters in the partition π[n]. Note that the probability of
joining an existing table is reduced by an amount proportional to σ relative to the CRP.
The reductions are added to the probability of starting a new table, leading to an overall
increase proportional to σKn. This shift in probabilities allows the resulting number of
occupied tables in the generalized CRP to increase, with the amount of increase larger for
larger values of σ. Moreover, the reduction of the probabilities for sitting at existing tables
is the same (proportional to σ) for all tables. This affects smaller tables more than large
ones, so that in the generalized CRP there is a preponderance of more tables of smaller
sizes, since these have a smaller chance of growing large. As we discuss in Section 7.3, this
leads to the power law behavior of the PYP.

This Pitman-Yor CRP (PYCRP) retains the exchangeability property of the original
CRP. To see this, we again calculate the probability of a partition π[N ] under the PYCRP
by multiplying together the conditional probabilities Eq. (76) for n = 1, . . . , N , giving:

P (π[N ]) =
α(α + σ) · · · (α+ σ(KN − 1))

α(N)

∏

c∈π[N]

(1− σ)(2 − σ) · · · (|c| − 1− σ) (77)

Comparing to Eq. (6), the factor α(N) := α(α + 1) · · · (α + N − 1) again arises from the
denominators in the table assignment probabilities, incrementing by one irrespective of
whether an old table or a new table is selected. The factor (1 − σ)(2 − σ) · · · (|c| − 1 − σ)
corresponds to the factor (|c| − 1)! from before, arising from the probabilities of customers
sitting at table c, and the factor α(α + σ) · · · (α + σ(KN − 1)) corresponds to the factor
αKN from before, arising from the decisions to start new tables. We see that the overall
probability of a partition under the PYCRP depends only on the number of clusters and
on the cluster sizes; thus the PYCRP defines an exchangeable distribution on partitions.

We can also develop a Blackwell-MacQueen urn model from the PYCRP in the same
way as before, associating an iid sequence of random vectors {φc} with the tables in the
PYCRP, where φc ∼ G0. This defines a sequence (θ1, θ2, . . . , θN ), where θi = φc if customer
i sits at table c. From this construction we obtain an infinitely exchangeable sequence of
random variables. We can therefore invoke de Finetti’s theorem, and we can conclude that
there exists a unique random probability measure G such that each θi is independently and
identically distributed according to G. It is this random probability measure that we refer
to as the Pitman-Yor process, which we denote as PYP(α, σ,G0).

Finally, we can also develop a stick-breaking representation of the random probability
measure G. By analogy with the earlier derivation of a stick-breaking representation for
the DP in Section 5, suppose that the first customer has just been seated at a table and
define a Pólya urn scheme for subsequent customers in which “one” denotes sitting at that
table, and “zero” denotes sitting at some other table. Let Zi denote the binary indicator
associated with the ith subsequent customer. At the outset the two alternatives have weight
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1−σ and α+ σ, and thus the normalization is initially α+1. The probability of observing
a sequence of N ones under this Pólya urn is thus as follows:

P (Z1 = 1, Z2 = 1, . . . , ZN = 1) =
(1− σ)(2 − σ) · · · (N − σ)

(α+ 1)(α+ 2) · · · (α +N)
. (78)

Now recall Eq. (26), where the de Finetti mixing measure is a Beta(α1, α2) distribution.
Substituting s = N , and letting α1 = 1 − σ and α2 = α + σ, we match the probability in
Eq. (78). This holds for all N , and thus the first stick-breaking weight is a Beta(1−σ, α+σ)
random variable.

Next, suppose that k− 1 tables have been occupied and consider the moment just after
the kth table has been occupied. We focus only on customers that do not sit at one of the
first k− 1 tables, and define a Pólya urn in which {Zi = 1} denotes sitting at the kth table,
and {Zi = 0} denotes sitting at some subsequent table. The initial weights associated with
these two events are 1− σ and α+ kσ, where the latter reflects the additional boost given
to selecting a new table given that k tables are currently occupied. The normalization is
thus initially α+ 1 + (k − 1)σ. The probability of observing a sequence of N ones is thus:

P (Z1 = 1, Z2 = 1, . . . , ZN = 1) =
(1− σ)(2 − σ) · · · (N − σ)

(α+ 1 + (k − 1)σ)(α + 2 + (k − 1)σ) · · · (α+N + (k − 1)σ)
.

(79)

This probability is matched by choosing s = N , α1 = 1 − σ and α2 = α + kσ in Eq. (26).
Thus the kth stick-breaking weight is obtained by multiplying the remaining stick length
after the first k − 1 breaks by a Beta(1− σ, α+ σk) random variable.

Summarizing, the stick-breaking representation for the PYP is given as follows:

βk
ind
∼ Beta(1− σ, α+ σk) for k = 1, 2, . . . (80)

wk = βk

k−1
∏

j=1

(1− βj) for k = 1, 2, . . . (81)

φk
iid
∼ G0 for k = 1, 2, . . . (82)

G =

∞
∑

k=1

wkδφk . (83)

This representation, described by Perman et al. (1992) and Pitman and Yor (1997), is the
analog of the GEM distribution for the case of the PYP. We refer to it as the Perman-
Pitman-Yor (PPY) distribution:

w ∼ PPY(α, σ), (84)

where w = (w1, w2, . . .). We can now write an explicit formula for a draw from the Pitman-
Yor process. Letting φ = (φ1, φ2, . . .) denote an iid sequence of draws from the base measure
G0, we have:

G =

∞
∑

k=1

wkδφk , (85)

as the random probability measure promised by de Finetti’s theorem for the PYCRP.

37



7.1 Posterior Pitman-Yor process

As in the case of the DP, our ability to make use of the Pitman-Yor process as an ingredient
in Bayesian models requires an understanding of the posterior posterior distribution over
the random probability measure given observations. We thus consider the following familiar
hierarchical model:

G ∼ PYP(α, σ,G0)

θi |G
iid
∼ G for i = 1, . . . , N . (86)

Since G is an atomic probability measure, it is possible for multiple θi’s to take on the same
value; again let θ∗1, . . . , θ

∗
K be the K unique observed values with n1, . . . , nK being their

frequencies among θ = (θ1, . . . , θN ). Conditioned on θ, we again expect G to contain an
atom at each of the observed values θ∗1, . . . , θ

∗
K . In addition, it still has an infinite number

of atoms located elsewhere in the space Θ, hence we are led to write the posterior G as:

G | θ =
K
∑

k=1

wkδθ∗
k
+ w′G′ (87)

for some random probability vector (w1, . . . , wK , w
′) and random atomic probability mea-

sure G′. The vector (w1, . . . , wK , w
′) and G′ can be shown to be independent with the

following conditional distributions:

(w1, . . . , wK , w
′) | θ ∼ Dir(n1 − σ, . . . , nK − σ, α+ σK) (88)

G′ | θ ∼ PYP(α+ σK, σ,G0) (89)

This posterior representation directly extends the posterior representation in Eq. (60) for
the DP. The distribution over the vector (w1, . . . , wK , w

′) is Dirichlet, with parameter nk−σ
for the component associated with θ∗k, while the parameter for the component associated
with the other atoms in G′ is α + σK. These parameters are the exactly those appearing
in the numerator of the probabilities of the PYCRP in Eq. (76), and indeed can be derived
from the PYCRP.

In particular, the clustering structure for the observations θ correspond to a state of the
PYCRP in which the first N customers in the restaurant sit at K tables, with n1, . . . , nK
being the numbers of customers at these tables. Subsequently, consider an infinite sequence
of customers enter the restaurant, and their occupancy is captured by the atoms in G′.

Define an urn scheme with K+1 possible colors, where the first K colors correspond to
the K extant tables with initial weights n1−σ, . . . , nK −σ, while the last color corresponds
to the event that a subsequent customer sits at some table other than the firstK. With each
subsequent customer one of these events occur, and the corresponding weight is incremented
by one: for the first K colors the increment corresponds to an additional customer at the
table, while for the last color either an extant table beyond the first K gets an additional
customer, or a new table is occupied; in the latter case the initial weight is 1 − σ but the
weight associated with occupying new tables is incremented by σ, so that the total weight
for the last color is incremented by one also in this case. This urn scheme generalizes the
binary Pólya urn scheme, and it is unsurprising that its de Finetti measure is the Dirichlet
distribution with parameters given by its initial weights, as shown in Eq. (88).
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We can also understand the distribution of G′ in Eq. (89) via the PYCRP, specifically
by relating it to the distribution of seating arrangements of customers around the tables of
the Chinese restaurant beyond the first K tables. In particular, consider the subsequence of
customers that do not sit at the first K tables. The initial probability of one such customer
sitting at a new table is proportional to α+ σK. With each new table occupied, its initial
probability of being picked again is proportional to 1 − σ, and this is incremented by one
with each subsequent customer sitting at the table. Further, with each new table occupied,
the weight of sitting at new tables is incremented by σ. Hence the seating arrangement
among these tables is described precisely by a PYCRP with parameters α+σK and σ, and
so the corresponding random probability measure G′ must have the distribution in Eq. (89)
given by PYP(α+ σK, σ,G0).

7.2 Posterior sampling algorithms for PYP mixture models

The characterizations of the PYP and its posterior distribution that we have presented lead
to a variety of Markov chain Monte Carlo algorithms for inference in PYP-based models.
For example, Ishwaran and James (2001) developed a Gibbs sampler for the PYP mixture
model based on the truncated stick-breaking construction, while the PYCRP representation
leads to a direct generalization of the Gibbs sampler of Section 3.3. In this section we present
a third example of a posterior inference algorithm, one that extends the conditional slice
sampler of Section 6.4 to the PYP mixture model.

We consider the following model:

G ∼ PYP(α, σ,G0) (90)

θi |G
iid
∼ G for i = 1, . . . , N , (91)

xi | θi
ind
∼ F (θi) for i = 1, . . . , N . (92)

As before, we augment the state space with additional slice variables s = (s1, . . . , sN ), which
are conditionally independent with si uniformly distributed between 0 and G({θi}):

si |G, θi ∼ U [0, G({θi})]. (93)

Let θ∗1, . . . , θ
∗
K be the unique values among θ = (θ1, . . . , θN ), with each unique value cor-

responding to a component in the mixture model. Let zi denote the component that xi
belongs to; i.e., θi = θ∗zi . The component parameters can be updated individually using any
ergodic MCMC update with invariant distribution given by:

p(θ∗k |x, z) ∝ g0(θ
∗
k)
∏

i:zi=k

f(xi | θ
∗
k). (94)

As we have seen in Sec. (7.1), given θ, the posterior G can be represented as follows:

G | θ =
K
∑

k=1

wkδθ∗
k
+ w′G′, (95)
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where

(w1, . . . , wK , w
′) | θ ∼ Dir(n1 − σ, . . . , nK − σ, α+Kσ) (96)

G′ | θ ∼ PYP(α+Kσ, σ,G0) (97)

As in Section 6.4, we can simulate G′ using the stick-breaking construction for the PYP:

G′ | θ =
∞
∑

ℓ=1

uℓδθ′
ℓ

(98)

(u1, u2, . . .) | θ ∼ PPY(α+Kσ, σ) (99)

θ′ℓ | θ
iid
∼ G0 for ℓ = 1, 2, . . ., (100)

with the simulation truncated, after say L atoms, once all remaining atoms can be guaran-
teed to have mass less than the slice variables, 1−

∑L
ℓ=1 uℓ < mini si/w

′.
Finally, conditioned on G and s, we can sample the parameters θ individually, using the

conditional distributions:

p(θi |G, si, xi) ∝











f(xi | θ
∗
k) for θi = θ∗k, for some k = 1, . . . ,K with wk > si,

f(xi | θ
′
ℓ) for θi = θ′ℓ, for some ℓ = 1, 2, . . . with w′uℓ > si,

0 otherwise.

(101)

7.3 Power law properties

As alluded to in the beginning of this section, when σ > 0 the PYP yields power-law be-
havior (Pitman, 2002). Due to these power law properties, the PYP has had numerous ap-
plications, in particular in the modeling of various linguistic phenomena (Goldwater et al.,
2006a; Teh, 2006; Cohn et al., 2010), image segmentation (Sudderth and Jordan, 2009),
and PET analysis (Fall et al., 2009). The power-law nature of the PYP can be expressed
in several ways, all of which depend crucially on the discount parameter σ. In this section
we discuss these power laws; see Figure 5 for an illustration.

To begin, we show that under the PPY stick-breaking representation in Eq. (81) we
have E[wk] ∈ O(k−1/σ) if σ > 0, which indicates that cluster sizes decay slowly according
to a power law, with a slower decay when σ is larger. Indeed, noting that wk is the product
of independent beta random variables, we have:

E[wk] =E[βk]
k−1
∏

i=1

E[1− βi] =
1− σ

α+ 1 + (k − 1)σ

k−1
∏

i=1

(

1−
1− σ

α+ 1 + (i− 1)σ

)

(102)

logE[wk] = log
1− σ

α+ 1 + (k − 1)σ
+
k−1
∑

i=1

log

(

1−
1− σ

α+ 1 + (i− 1)σ

)

≍− log k +

k−1
∑

i=1

1− 1/σ

α/σ + 1/σ + i− 1
≍ − log k + (1− 1/σ) log k = −1/σ log k

(103)
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Figure 5: Power law behaviors of the Pitman-Yor process. Left: E[wk] vs. k. Middle:
number of tables vs. number of customers at each table. Right: total number of tables in
restaurant vs. number of customers in restaurant. Each plot shows the results of 10 draws
(small black dots) and their mean (large blue dots). The log-log plots are well approximated
by straight lines, indicating power laws.

Thus E[wk] ∈ O(k−1/σ). By way of comparison, in the case of the DP, where σ = 0, we
have E[wk] =

1
1+α(

α
1+α )

k−1, which decays exponentially quickly in k.
The Pitman-Yor process also yields Heaps’ Law (Heaps, 1978), which, in the language

of the CRP, states that the total number of tables in a restaurant with N customers scales
as O(Nd). Denoting this number as KN , let us derive E[KN ]. Note that the expected
number of tables when there are N + 1 customers is the expected number when there are
N customers, plus the probability that the N +1st customer sits at a new table. This gives
a recursion relating E[KN+1] to E[KN ] which can be solved. Specifically,

E[KN+1] =E[KN ] + E

[

α+ σKN

α+N

]

=
α+ σ +N

α+N
E[KN ] +

α

α+N
. (104)

When σ = 0, this equation simplifies to

E[KN ] = α
N−1
∑

i=0

1

α+ i
≍ α logN. (105)

On the other hand, when σ > 0 it is easy to show by induction that

E[KN ] =
Γ(N + α+ σ)Γ(α + 1)

σΓ(α+ σ)Γ(N + α)
−
α

σ
. (106)

Using Stirling’s formula for large values of N ,

E[KN ] ≍
Γ(α+ 1)

σΓ(α+ σ)

√

2π(N + α+ σ − 1)(N+α+σ−1
e )N+α+σ−1

√

2π(N + α− 1)(N+α−1
e )N+α−1

(107)

≍
Γ(α+ 1)

σΓ(α+ σ)
Nσ. (108)
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Finally, the power law known as Zipf’s law (Zipf, 1932) can be derived from the PYCRP
as well. This law states that the proportion of tables with m customers scales as O(m−1−σ),
such that most tables contain only a small number of customers. This conforms to our
previous observation that the discounting by σ of the probabilities of customers joining
existing tables affects smaller tables more than larger ones, so that smaller tables have less
chance at growing large when σ > 0. The derivation of Zipf’s law is somewhat involved and
we defer it to Appendix F.

8 Hierarchical Dirichlet Processes

Our treatment of the Dirichlet process has culminated in the notion of a random measure.
Such an object is very natural from a Bayesian perspective—a Bayesian assumes that a
probability measure underlies the data that one observes, and when the measure is unknown
it should be treated as random. While classical Bayesian modeling is based on treating
probability measures as being indexed with finite-dimensional parameters that are then
treated as random, it is quite natural to dispense with the intermediate notion of a parameter
and treat the measures themselves as random. For this perspective to be useful in practice,
it is necessary that random measures can be used as ingredients in building more elaborate
models; in particular, it is necessary that random measures can be readily integrated with
hierarchical modeling ideas.

Hierarchical modeling is a fundamental concept in Bayesian statistics. The basic idea
is that parameters are endowed with distributions which may themselves introduce new
parameters, and this construction recurses. We have already seen an example of hierarchical
modeling in Sec. (3.2) and Sec. (6), where we discussed conditional independence hierarchies.
In the conditional independence motif a set of parameters are coupled by making their
distributions depend on a shared underlying parameter. These distributions are often taken
to be identical, based on an assertion of exchangeability and an appeal to de Finetti’s
theorem. Intuitively, the rationale for introducing such coupling is to “share statistical
strength”—it allows the sharpening of the posterior distribution for one parameter to be
transferred to other parameters. In the Bayesian nonparametric setting, we wish to share
statistical strength among multiple random measures.

Let us consider a concrete example of such sharing. We return to the clustering setting
that motivated our development of the Dirichlet process, and consider the design of a fraud
detection system, where the data take the form of a set of transactions and the goal is to
discover “patterns” in the transaction data that may be instances of fraud and which should
be flagged. It is natural to treat such a problem as a clustering problem, where a cluster
corresponds to a particular type of transaction. But it is also often the case in practice that
there are additional “contextual” variables available that can help sharpen the inference
of clusters; for example, seasonal variables, geographic variables, etc. Conditioning on the
contextual variables, it may be possible to obtain a higher-quality clustering, leading to
fewer false positives in subsequent usage of the fraud detection system. Thus, instead of
thinking in terms of a single clustering problem, it is natural to think in terms of multiple,
context-dependent clustering problems. However, by breaking the data down in this way,
some of the individual clustering problems may be associated with very few data points.
Thus, while lumping the data together loses precision, separating the data can increase
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variance. The goal then is to develop a method that compromises between lumping and
splitting, a method in which clusters can be shared among multiple context-dependent
clustering problems.9

We could attempt to develop such a method by starting with K-means and inventing
a mechanism to share clusters across multiple instances of K-means clustering problems.
But we would again encounter the problem of determining K; indeed, we would need to
determine a value of K for each clustering problem. Moreover, the appropriate value should
somehow reflect the sharing pattern among the clustering problems. It seems unclear as to
how to develop such a method. In this section we show that the problem can instead be
approached in an elegant way using the tools of Bayesian nonparametrics. In particular, we
consider a simple conditional independence hierarchy in which a set of random measures
are coupled via an underlying random measure. It is the atoms of the underlying random
measure that are shared due to this coupling; these atoms correspond to clusters and thus
we obtain the desired sharing of clusters.

Let us formalize the hierarchical model that we have just alluded to. We imagine that
the data can be subdivided in a countable collection of groups. We model the groups of
data by considering a collection of DPs, {Gj : j ∈ J }, defined on a common space Θ, where
J indexes the groups. We define a hierarchical Dirichlet process (HDP) as follows:

G0 | γ,H ∼ DP(γ,H) (109)

Gj |α,G0 ∼ DP(α,G0) for j ∈ J , (110)

where H and γ are the global base measure and concentration parameter. This hierarchical
model induces sharing of atoms among the random measures Gj since each inherits its set
of atoms from the same G0. Thinking in terms of the stick-breaking construction, when a
new atom is to be drawn in forming the random measure Gj , this atom is drawn from the
base measure G0, but this base measure is itself composed of atoms, being a draw from the
Dirichlet process. Thus each atom in Gj is an atom of G0, and the atoms that form G0 are
shared among all the random measures Gj .

We complete the model by generating the data in the jth group by drawing parameters
from Gj and then drawing data points from a distribution indexed by these parameters:

θjn |Gj ∼ Gj for n = 1, . . . , Nj , (111)

xjn | θjn ∼ F (θjn) for n = 1, . . . , Nj ,

where Nj is the number of data points in the jth group. Recalling that two data points are
treated as belonging to the same cluster if they are associated with the same underlying
atom, we see that not only can data points within a single group belong the same cluster,
(i.e., θjn = θjn′), but data points between two different groups can also be assigned to the
same cluster (i.e., θjn = θj′n′). See Figure 6 for a graphical representation of the overall
HDP mixture model.

9We have chosen this example given that no specialized domain knowledge is needed to understand the
problem. For a full development of a real-world application of this kind in the domain of protein structural
modeling, see Ting et al. (2010). Another real-world application is the modeling of document collections via
topic models; see Teh et al. (2006) and Sec. (8.4).
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Figure 6: A graphical model representation of the HDP mixture model.

Note that the recursive construction of the HDP can be generalized to arbitrary hier-
archies in the obvious way. Each Gj is given a DP prior with base measure Gpa(j), where
pa(j) is the parent index of j in the hierarchy. As in the two-level hierarchy in Eq. (109),
the set of atoms at the top level is shared throughout the hierarchy, while the multi-level
hierarchy allows for a richer dependence structure on the weights of the atoms. Such rep-
resentations are often natural in applications, arising when the contextual variables that
define the groups of data have a nested structure.

Other ways to couple multiple Dirichlet processes have been proposed in the literature;
in particular the dependent Dirichlet process of MacEachern et al. (2001) provides a general
formalism based on the stick-breaking representation. Ho et al. (2006) gives a complemen-
tary view of the HDP and its Pitman-Yor generalizations in terms of coagulation operators.

To understand the precise nature of the sharing induced by the HDP it is helpful to
consider representations akin to the stick-breaking and Chinese restaurant representations
of the DP. We consider these representations in the remainder of this section.

8.1 Stick-breaking representation

In this section we develop a stick-breaking construction for the HDP. This representation
provides a concrete representation of draws from an HDP and it provides insight into the
sharing of atoms across multiple DPs.

We begin with the stick-breaking representation for the random base measure G0. Given
that this base measure is distributed according to DP(γ,H), we have:

G0 =

∞
∑

k=1

τkδψk
, (112)
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Figure 7: The HDP stick-breaking construction. The left panel depicts a draw of τ , and
the remaining panels depict draws of w1, w2 and w3 conditioned on τ .

where

vk | γ ∼ Beta(1, γ), τk = vk

k−1
∏

l=1

(1− vl), for k = 1, 2, . . . , (113)

ψk |H ∼ H, for k = 1, 2, . . . .

The random measures Gj are also (conditionally) distributed according to a DP. More-
over, the support of each Gj is contained within the support of its base distribution G0.
Thus the stick-breaking representation for Gj is a reweighted sum of the atoms in G0:

Gj =

∞
∑

k=1

wjkδψk
. (114)

The problem reduces to finding a relationship between the global weights τ = (τ1, τ2, . . .)
and the group-specific weights wj = (wj1, wj2, . . .). Let us interpret these weight vectors as
probability measures on the discrete space of natural numbers {1, 2, . . .}. Each partition on
Θ induces a partition on the atoms of G0, which in turn induces a partition on the natural
numbers. Hence the fact that the DP has Dirichlet marginal distributions, as shown in
Eq. (49), implies

wj |α, τ ∼ DP(α, τ). (115)

Some algebra then readily yields the following explicit construction for wj conditioned on
τ :

βjk |α, τ1, . . . , τk ∼ Beta

(

ατk, α

(

1−
k
∑

l=1

τl

))

, for k = 1, 2, . . . , (116)

wjk = βjk

k−1
∏

l=1

(1− βjl).

Figure 7 shows a sample draw of τ along with draws from w1, w2 and w3 given τ .
From Eq. (113) we see that the mean of τk is E[τk] = γk−1(1 + γ)−k which decreases

exponentially in k. The mean for wj is simply its base measure τ ; thus E[wjk] = E[τk] =
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γk−1(1+γ)−k as well. However the law of total variance shows that wjk has higher variance

than τk: Var[wjk] = E[ τk(1−τk)1+α ] + Var[τk] > Var[τk]. The higher variance is reflected in
Figure 7 by the sparser nature of wj relative to τ .

8.2 Chinese restaurant franchise

Recall that the Chinese restaurant process (CRP) describes the marginal probabilities of
the DP in terms of a random partition obtained from a sequence of customers sitting at
tables in a restaurant. There is an analogous representation for the HDP which we refer to
as a Chinese restaurant franchise (CRF). In a CRF the metaphor of a Chinese restaurant is
extended to a set of restaurants, one for each DP Gj indexed by j ∈ J . The customers in the
jth restaurant sit at tables in the same manner as the CRP, and this is done independently in
the restaurants, reflecting the fact that each Gj is a conditionally independent DP given G0.
The coupling among restaurants is achieved via a franchise-wide menu. The first customer
to sit at a table in a restaurant chooses a dish from the menu and all subsequent customers
who sit at that table share that dish. Dishes are chosen with probability proportional to
the number of tables (franchise-wide) which have previously served that dish.

More formally, label the nth customer in the jth restaurant with a random variable θjn
that is distributed according to Gj . Similarly, let φjt denote a random variable correspond-
ing to the tth table in the jth restaurant; these variables are independently and identically
distributed (iid) according to G0. Finally, the dishes are iid variables ψk distributed accord-
ing to the base measure H. We couple these variables as follows. Each customer sits at one
table and each table serves one dish; let customer n in restaurant j sit at table tjn, and let
table t serve dish kjt. Then let θjn = φjtjn = ψkjtjn . Let Njtk be the number of customers in

restaurant j seated around table t and being served dish k, let Mjk be the number of tables
in restaurant j serving dish k, and let K be the number of unique dishes served in the entire
franchise. We denote marginal counts with dots; e.g., Nj·k is the number of customers in
restaurant j served dish k.

To show that the CRF captures the marginal probabilities of the HDP, we integrate out
the random measures Gj and G0 in turn from the HDP. We start by integrating out the
random measure Gj ; this yields a set of conditional distributions for θj1, θj2, . . . described
by a Blackwell-MacQueen urn scheme:

θj,n+1 | θj1, . . . , θjn, α,G0 ∼

Mj·
∑

t=1

Njt·

α+Nj··
δφjt +

α

α+Nj··
G0. (117)

A draw from this mixture can be obtained by drawing from the terms on the right-hand
side with probabilities given by the corresponding mixing proportions. If a term in the first
summation is chosen then the customer sits at an already occupied table: we increment
Njt·, set θjn = φjt and let tjn = t for the chosen table with index t. If the second term
is chosen then the customer sits at a new table, associated with a new draw from G0: We
increment Mj· by one, set NjMj·· = 1, draw φjMj·

∼ G0, set θjn = φjMj·
and tjn =Mj·.

Notice that each φjt is drawn iid from G0 in the Blackwell-MacQueen urn scheme in
Eq. (117), and this is the only reference to G0 in that generative process. Thus we can
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readily integrate out G0 as well, obtaining a Blackwell-MacQueen urn scheme for the φjt’s:

φj,t+1 |φ11, . . . , φ1M1· , . . . φj1, . . . , φjt, γ,H ∼
K
∑

k=1

M·k

γ +M··
δψk

+
γ

γ +M··
H, (118)

where we have presumed for ease of notation that J = {1, . . . , |J |}, and we have imposed
an ordering among the tables of the franchise. As promised at the beginning of this section,
we see that the kth dish is chosen with probability proportional to the number of tables
franchise-wide that previously served that dish (M·k).

The above approach of integrating out the random measures in turn is a hierarchical
generalization of the Blackwell-MacQueen urn scheme from the DP to the HDP. Each draw
from each random probability measure is associated with a parameter vector ultimately
associated with draws from the global base measure H. We can map this representation
back to a partition-based one by ignoring the vector values themselves and concentrating
on the partitions described by the indexing variables tjn’s and kjt’s. Specifically, for each j
we have a partition πj of [Nj ], while the base distribution G0 is associated with a partition
of the disjoint union10 ⊔j∈Jπj . In practice, we do not make a distinction between these
two representations of the HDP.

The CRF is useful in understanding scaling properties of the clustering induced by an
HDP. Recall that in a DP the number of clusters scales logarithmically (see Sec. (7.3)).
Thus Mj· ∈ O(α logNj) where Mj· and Nj are respectively the total number of tables
and customers in restaurant j. Since G0 is itself a draw from a DP, we have that K ∈
O(γ log

∑

jMj·) = O(γ log(α
∑

j logNj)). If we assume that there are J groups and that
the groups (the customers in the different restaurants) have roughly the same size N ,
Nj ∈ O(N), we see that K ∈ O(γ logαJ logN) = O(γ logα + γ log J + γ log logN). Thus
the number of clusters scales doubly logarithmically in the size of each group, and logarith-
mically in the number of groups. The HDP thus expresses a prior belief that the number
of clusters grows very slowly in N .

8.3 Posterior structure of the HDP

The Chinese restaurant franchise is obtained by integrating out the random measures Gj
and then integrating out G0. Integrating out the random measures Gj yields a Chinese
restaurant for each group as well as a sequence of iid draws from the base measure G0,
which are used recursively in integrating out G0. Having obtained the CRF, it is of interest
to derive the conditional distributions for the random measures given the CRF. This not
only illuminates the combinatorial structure of the HDP but it also prepares the ground
for a discussion of posterior inference algorithms (see Sec. (??)), where it can be useful to
instantiate the CRF and the random measures explicitly.

The state of the CRF consists of the dish labels ψ = (ψ1, . . . , ψK), the table tjn at
which the nth customer sits, and the dish kjt served at the tth table in the jth restaurant.
As functions of the state of the CRF, we also have the numbers of customers N = (Njtk),
the numbers of tables M = (Mjk), the customer labels θ = (θjn) and the table labels

10A disjoint union is one where elements from distinct sets are considered distinct.
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φ = (φjt). The relationship between the customer labels and the table labels is given as
follows: φjt = ψjkjt and θjn = φjtjn .

Consider the distribution of G0 conditioned on the state of the CRF. G0 is independent
from the rest of the CRF when we condition on the iid draws φ, because the restaurants
interact with G0 only via the iid draws. The posterior thus follows from the usual posterior
for a DP given iid draws:

G0 | γ,H,φ ∼ DP

(

γ +M··,
γH +

∑K
k=1M·kδψk

γ +M··

)

. (119)

Note that values for M and ψ are determined given φ, since they are simply the unique
values and their counts among φ11. A draw from Eq. (119) can be constructed using the
posterior DP Eq. (60):

(β1, . . . , βK , β
′) | γ,G0,φ ∼ Dir(M·1, . . . ,M·K , γ) (120)

G′
0 | γ,H ∼ DP(γ,H)

G0 =
K
∑

k=1

βkδψk
+ β′G′

0.

We see that the posterior for G0 is a mixture of atoms corresponding to the dishes and an
independent draw from DP(γ,H).

Conditioning on this draw of G0 as well as the state of the CRF, the posterior distri-
butions for the Gj ’s are independent. In particular, the posterior for each Gj follows from
the usual posterior for a DP as well, given its base measure G0 and iid draws θj:

Gj |α,G0,θj ∼ DP

(

α+Nj··,
αG0 +

∑K
k=1Nj·Kδψk

α+Nj··

)

. (121)

Note that Nj and ψ are simply the unique values and their counts among the θj. Making
use of the decomposition of G0 into G′

0 and atoms located at the dishes ψ, a draw from
Eq. (121) can thus be constructed following Eq. (60):

(wj1, . . . , wjK , w
′
j) |α,θj ∼ Dir(αβ1 +Nj·1, . . . , αβK +Nj·K , αβ

′) (122)

G′
j |α,G0 ∼ DP(αβ′, G′

0)

Gj =

K
∑

k=1

wjkδψk
+ w′

jG
′
j .

We see that Gj is a mixture of atoms at ψ and an independent draw from a DP, where the
concentration parameter is αβ′. The posterior over the entire HDP is obtained by averaging
the conditional distributions of G0 and Gj over the posterior state of the Chinese restaurant
franchise given θ.

This derivation shows that the posterior for the HDP can be split into a “discrete part”
and a “continuous part.” The discrete part consists of atoms at the unique values ψ, with

11Here we make the simplifying assumption that H is a continuous distribution so that draws from H are
unique. If H is not continuous then additional bookkeeping is required.
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different weights on these atoms for each DP. The continuous part is a separate draw from an
HDP with the same hierarchical structure as the original HDP and global base distribution
H, but with altered concentration parameters, and consists of an infinite series of atoms at
locations drawn iid from H. Although we have presented this posterior representation for
a two-level hierarchy, the representation extends immediately to general hierarchies.

8.4 Nonparametric topic modeling

To provide a concrete example of the HDP we present an application to the problem of topic
modeling. A topic model, also known as a mixed membership model or an admixture model,
is a generalization of a finite mixture model in which each data point is associated with
multiple draws from a mixture model instead of a single draw (Blei et al., 2003; Erosheva,
2003; Pritchard et al., 2000). As we will see, while the DP is the appropriate tool to extend
finite mixture models to the nonparametric setting, the appropriate tool for nonparametric
topic models is the HDP.

To motivate the topic model formulation, consider the problem of modeling the word
occurrences in a set of newspaper articles (e.g., for the purposes of classifying future articles).
A simple clustering methodology might attempt to place each article in a single cluster.
But it would seem more useful to be able to cross-classify articles according to “topics”; for
example, an article might be mainly about Italian food, but it might also refer to health,
history and the weather. Moreover, as this example suggests, it would be useful to be able
to assign numerical values to the degree to which an article treats each topic.

Topic models achieve this goal as follows. Define a topic to be a probability distribution
across a set of words taken from some vocabulary W . A document is modeled as a proba-
bility distribution across topics. In particular, let us assume the following generative model
for the words in a document. First choose a probability vector π from the K-dimensional
simplex, and then repeatedly (1) select one of the K topics with probabilities given by the
components of π and (2) choose a word from the distribution defined by the selected topic.
The vector π thus encodes the expected fraction of words in a document that are allocated
to each of the K topics. In general a document will be associated with multiple topics.

To fully specify a topic model we require a distribution for π. Taking this distribution to
be symmetric Dirichlet, we obtain the latent Dirichlet allocation (LDA) model, developed
by Blei et al. (2003) and Pritchard et al. (2000) as a model for documents and admixture in
genetics, respectively. This model has been widely used not only in the fields of information
retrieval and statistical genetics, but also across many other fields. For example, in machine
vision, a “topic” is a distribution across visual primitives, and an image can be modeled as
a distribution across topics (Fei-Fei and Perona, 2005), while in network analysis, a “topic”
indicates a social role and an individual’s interactions with others can be modeled as a
distribution over the roles that the individual plays (Airoldi et al., 2006).

Let us now turn to the problem of developing a Bayesian nonparametric version of LDA
in which the number of topics is allowed to be open-ended. As we have alluded to, this
requires the HDP, not merely the DP. To see this, consider the generation of a single word
in a given document. According to LDA, this is governed by a finite mixture model, in
which one of K topics is drawn and then a word is drawn from the corresponding topic
distribution. Generating all of the words in a single document requires multiple draws
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from this finite mixture. If we now consider a different document, we again have a finite
mixture, with the same mixture components (the topics), but with a different set of mixing
proportions (the document-specific vector π). Thus we have multiple finite mixture models
with the same components shared across the mixture models.

In the nonparametric setting, a näıve approach is to replace each finite mixture model
with an independent DP mixture model. As the atoms in a DP are iid draws from the base
distribution, if the base distribution is smooth then the atoms across different DP mixture
models will be distinct. As these correspond to the components of the mixture models, this
implies that the components are not shared across different mixture models. To enforce the
sharing of mixture components, we can allow the DPs to share a common base distribution
G0, which is itself DP distributed and so will be discrete. The discreteness of G0 then
implies that its atoms are shared across all the individual DPs, so that we now have the
desired property that the mixture components are shared across the mixture models. We
are thus led to the following model, which we refer to as HDP-LDA:

G0 | γ,H ∼ DP(γ,H), (123)

Gj |α,G0 ∼ DP(α,G0), for each document j ∈ J ,

θjn |Gj ∼ Gj , for each word n = 1, . . . , Nj ,

xjn | θjn ∼ F (θjn),

where xjn is the nth word in document j, H is the prior distribution over topics and F (θjn)
is the distribution over words in the topic parametrized by θjn. The model is presented as
a graphical model in Fig. (6). Note that the atoms present in the random distribution G0

are shared among the random distributions Gj . Thus, as desired, we have a collection of
tied mixture models, one for each document.

8.5 Hidden Markov models with infinite state spaces

Hidden Markov models (HMMs) are widely used to model sequential data and time series
data (Rabiner, 1989). An HMM is a doubly-stochastic Markov chain in which a state
sequence, θ1, θ2, . . . , θτ , is drawn according to a Markov chain on a discrete state space.
A corresponding sequence of observations, x1, x2, . . . , xτ , is drawn conditionally on the
state sequence, where for all t the observation xt is conditionally independent of the other
observations given the state θt, with “emission distribution” parametrized by θt.

In this section we describe how to use the HDP to obtain an “infinite HMM”—an HMM
with a countably infinite state space (Beal et al., 2002; Teh et al., 2006). The idea is similar
in spirit to the passage from a finite mixture model to a DP mixture model. However, as
we show, the appropriate nonparametric tool is again the HDP, not the DP. The resulting
model is thus referred to as the hierarchical Dirichlet process hidden Markov model (HDP-
HMM). We present both the HDP formulation and a stick-breaking formulation in this
section; the latter is particularly helpful in understanding the relationship to finite HMMs.
It is also worth noting that a Chinese restaurant franchise (CRF) representation of the
HDP-HMM can be developed, and indeed Beal et al. (2002) presented a precursor to the
HDP-HMM that was based on an urn model akin to the CRF.

To understand the need for the HDP rather than the DP, note first that a classical
HMM specifies a set of finite mixture distributions, one for each value of the current state
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Figure 8: HDP hidden Markov model.

θt. Indeed, given θt, the observation xt+1 is chosen by first picking a state θt+1 and then
choosing xt+1 conditional on that state. Thus the probabilities of transiting from θt to θt+1

play the role of the mixing proportions and the emission distributions play the role of the
mixture components. It is natural to consider replacing this finite mixture model by a DP
mixture model. In so doing, however, we must take into account the fact that we obtain
a set of DP mixture models, one for each value of the current state. If these DP mixture
models are not tied in some way, then the set of states accessible in a given value of the
current state will be disjoint from those accessible for some other value of the current state.
We would obtain a branching structure rather than a chain structure. The solution to this
problem is as for topic models—we use the HDP to tie the DPs.

More formally, let us consider a collection of random transition kernels, {Gθ : θ ∈ Θ},
drawn from an HDP:

G0 | γ,H ∼ DP(γ,H), (124)

Gθ |α,G0 ∼ DP(α,G0), for θ ∈ Θ,

where H is a base measure on the probability space Θ. As for topic models, the random
base measure G0 allows the transitions out of each state to share the same set of next states.
Let θ0 = ψ0 ∈ Θ be a predefined initial state. The conditional distributions of the sequence
of latent state variables θ1, . . . , θτ and observed variables x1, . . . , xτ are:

θt | θt−1, {Gθ : θ ∈ Θ} ∼ Gθt−1 for t = 1, . . . , τ , (125)

xt | θt ∼ F (θt).

A graphical model representation for the HDP-HMM is shown in Figure 8.
We have defined a probability model consisting of an uncountable number of DPs,

which should raise concerns among the more measure-theoretically minded readers. These
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concerns can be dealt with, however, essentially due to the fact that the sample paths of
the HDP-HMM only ever encounter a finite number of states. To see this more clearly, and
to understand the relationship of the HDP-HMM to the parametric HMM, it is helpful to
consider a stick-breaking representation of the HDP-HMM. This representation is obtained
directly from the stick-breaking representation of the underlying HDP:

G0 =
∞
∑

k=1

βkδψk
, (126)

Gψℓ
=

∞
∑

k=1

wℓkδψk
, for ℓ = 0, 1, 2, . . .,

where

ψk |H ∼ H, for k = 1, . . . ,∞, (127)

β | γ ∼ GEM(γ),

wk |α, β ∼ DP(α, β),

where wk = (wk1, wk2, . . .) are the atom masses in Gψk
. The atoms ψk are shared across

G0 and the transition kernels Gψℓ
. Since all states visited by the HMM are drawn from

the transition kernels, the states possibly visited by the HMM with positive probability
(given G0) will consist only of the initial state ψ0 and the atoms ψ1, ψ2, . . .. Relating to the
parametric HMM, we see that the transition probability from state ψℓ to state ψk is given
by wℓk and the distribution on the observations given the current state being ψk is F (ψk).

This relationship to the parametric HMM can be seen even more clearly if we identify the
state ψk with the integer k, for k = 0, 1, 2, . . ., and if we introduce integer-valued variables
zt to denote the state at time t. In particular, if θt = ψk is the state at time t, we let zt
take on value k. The HDP-HMM can now be expressed as:

zt | zt−1, {wk : k = 0, 1, 2, . . .} ∼ wzt−1 , for t = 1, . . . , τ , (128)

xt | zt, {ψk : k = 1, 2, . . .} ∼ F (ψzt),

with priors on the parameters and transition probabilities given by Eq. (128). This construc-
tion shows explicitly that the HDP-HMM can be interpreted as an HMM with a countably
infinite state space.

A difficulty with the HDP-HMM as discussed thus far is that it tends to be poor at
capturing state persistence; it has a tendency to create redundant states and rapidly switch
among them. This may not be problematic for applications in which the states are nuisance
variables and it is overall predictive likelihood that matters, but it can be problematic for
segmentation or parsing applications in which the states are the object of inference and
when state persistence is expected. This problem can be solved by giving special treatment
to self-transitions. In particular, let Gθ denote the transition kernel associated with state
θ. Fox et al. (2011) proposed the following altered definition of Gθ (compare to Eq. (124)):

Gθ |α, κ,G0, θ ∼ DP

(

α+ κ,
αG0 + κδθ
α+ κ

)

, (129)
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where δθ is a point mass at θ and where κ is a parameter that determines the extra mass
placed on a self-transition. To see in more detail how this affects state persistence, consider
the stick-breaking weights wk associated with one of the countably many states ψk that
can be visited by the HMM. The stick-breaking representation of Gψk

is altered as follows
(compare to Eq. (128)):

wk |α, β, κ ∼ DP

(

α+ κ,
αβ + κδψk

α+ κ

)

. (130)

Fox et al. (2011) further place a vague gamma prior on α+κ and a beta prior on κ/(α+κ).
The hyperparameters of these distributions allow prior control of state persistence. See also
Beal et al. (2002), who develop a related prior within the framework of their hierarchical
urn scheme.

Teh and Jordan (2010) review several applications of the HDP-HMM. These include the
problem of speaker diarization, where the task is that of segmenting the audio recording
into time intervals associated with individual speakers (Fox et al., 2011) and the problem
of word segmentation, where the task if that of identifying coherent segments of words and
their boundaries in continuous speech (Goldwater et al., 2006b).

9 Completely Random Measures

Although we began our treatment of the Dirichlet process with a discussion of Chinese
restaurants and urn models—concrete representations that are closely tied to the clustering
problem—subsequent sections have hopefully made clear that there can be advantages to
identifying the abstract objects underlying the urn models. As we have seen, random
measures can play a role akin to random variables in classical Bayesian analysis, most
notably forming hierarchies that allow statistical strength to be shared across components
of a model.

Our repertoire of random measures is limited at present, however; the only procedure
that we have discussed for construction random measures is the stick-breaking process. In
the current section we show how to overcome this limitation. We do so by taking a further
step in the direction of abstraction, showing how the Dirichlet process can be obtained
from a relatively simple underlying object—the Poisson random measure. Once we gain
the perspective provided by the Poisson random measure, it will be possible to construct a
wide variety of other random measures.

To motivate the constructions that we will soon present, let us return to the Dirich-
let process and reflect upon the key property identified in Sec. (6.1): for any partition,
(A1, A2, . . . , AK), of the space Θ, the vector of marginals, (G(A1), G(A2), . . . , G(AK)), has
a finite-dimensional Dirichlet distribution. Given that the Dirichlet distribution can be ob-
tained by normalizing a set of K independent gamma random variables (see Appendix B),
this suggests that we investigate the possibility of constructing a “gamma process,” which
should presumably be a random measure G that assigns a gamma-distributed mass to any
subset A ⊆ Θ. That is, G(A) should have a gamma distribution. Moreover, for a partition
(A1, A2, . . . , AK), the random variables (G(A1), G(A2), . . . , G(AK)) should be independent,
so that we obtain a Dirichlet-distributed vector once they are normalized by the total mass
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G(Θ). In other words, the normalized random measure G/G(Θ) should have the Dirichlet
marginals of the Dirichlet process.

Given the hint that the Poisson random measure is involved in this construction, we
might consider something like the following: Use a Poisson random measure to generate
a set of atoms on the space Θ according to a base measure. Associate to each atom a
weight that is an independent draw from a gamma random variable (yielding a “marked
Poisson process”) and define the weighted sum across these atoms to be our putative gamma
process. While this construction is not too far off the mark, there are two issues that we
must face that are tricky. The first is that we require a infinite number of atoms (given our
interest in nonparametric models). This would seem to require that the base measure have
infinite mass, which is somewhat incommensurate with its role as a prior for parameters in
Bayesian models. Moreover, even if we are able to generate an infinite number of atoms,
we face the second issue, which is that the sum of the resulting gamma masses needs to be
finite (so that we can normalize the gamma process, and thereby construct the Dirichlet
process). The construction that we describe in the remainder of this section surmounts
these problems in an elegant way.

9.1 Completely random measures

We begin with a definition:

Definition 1. A completely random measure (CRM) G defined on a space Θ is a random
measure whose marginals, G(A1), G(A2), . . . , G(AK), are independent for any sequence of
disjoint subsets, A1, A2, . . . , AK , of Θ.

This definition is non-constructive, and the natural questions here are: what types of
mathematical objects are completely random measures, and can we characterize all com-
pletely random measures?

Before exploring these general questions, we give a first archetypal example of a com-
pletely random measure (henceforth a CRM)—the Poisson random measure. Let µ be a
diffuse measure on the space Θ (not a random measure, just a measure). That is, for each
subset A ⊂ Θ, µ(A) ≥ 0 is simply a constant, and µ({θ}) = 0 for each θ ∈ Θ. We say
that N is a Poisson random measure if it is a CRM and the marginal N(A) has the distri-
bution Poisson(µ(A)). That such a random measure exists is a classical fact of probability
theory that we will simply accept.12 The simplest Poisson random measure takes µ to be
the uniform measure on Θ, in which case the intuition is of a process that randomly drops
atoms in Θ with no preference for any particular region. Letting µ be non-uniform makes
it possible to obtain higher density of atoms in some regions rather than others (as shown
in Fig. (9)).

Given that a random variable drawn from the Poisson(λ) distribution has mean λ, we
see that E[N(A)] = µ(A). We will therefore refer to µ as the mean measure associated

12Note, by the way, that a “Poisson point process” and a “Poisson random measure” are different (although
closely related) mathematical objects. A realization of a Poisson point process on a space Θ is a set of points
in Θ, whereas a realization of a Poisson random measure is an atomic measure over Θ where each atom has
mass one. Given a realization of a Poisson point process, we can construct a realization of a Poisson random
measure by placing an atom with mass one at each point in the point set. Similarly, we can obtain a Poisson
point process via the locations of the atoms of a Poisson random measure.
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Figure 9: A depiction of a realization of a Poisson point process on the real line. Each cross
is a point in the realization of the Poisson point process. The corresponding Poisson random
measure places atoms of unit mass at each of the points forming the Poisson point process.
The function shown is the density function f(x) corresponding to the mean measure µ, that
is, µ(A) is obtained as an integral, µ(A) =

∫

A f(x)dx, for each A ⊂ Θ.

with the Poisson random measure N . Since N is an atomic measure where each atom has
unit mass, N(A) is the number of atoms lying in A, and µ(A) corresponds to the expected
number of such atoms. Further, as N is completely random, the random numbers of atoms
lying in disjoint subsets are independent. In fact, a straightforward argument shows that
the measures formed as restrictions of N to the disjoint subsets are themselves independent.

We now turn to the construction of general completely random measures. We first
note that any deterministic measure is completely random (in a trivial sense). Apart
from a deterministic component, it can be shown that completely random measures are
discrete (Kingman, 1967). We will be interested in the atoms that form these discrete
measures, which are of two types. The first are the fixed atoms. These have non-random
locations and random masses that are mutually independent and independent of the other
randomness in the construction. The remaining, non-fixed atoms vary randomly both in
location and in mass. We can treat these two types of atoms separately, due to the complete
randomness of the measure. A beautiful and somewhat surprising fact is that all of the non-
fixed atoms can be obtained from an underlying Poisson random measure (Kingman, 1967).
In the remainder of this section we present the general construction of these non-fixed atoms
from a Poisson random measure, to be followed by a concrete example in Sec. (9.2).

The goal is to construct a CRM consisting only of non-fixed atoms on a space Θ. We
do this by considering an augmented space, in particular the product space Ξ = Θ ⊗ R

+,
where R

+ denotes the nonnegative real numbers. On this product space Θ ⊗ R
+ we will

place a Poisson random measure N , and construct the CRM on Θ as a function of N .
Suppose that the mean measure of N on Θ⊗R

+ can be written in the following product
form:13

µ = G0 ⊗ ν, (131)

where G0 is a diffuse probability measure on Θ and ν is a diffuse measure on R
+. What

this notation means is that for sets A ⊂ Θ and E ⊂ R
+, we have µ(A⊗ E) = G0(A)ν(E).

We refer to the probability measure G0 on Θ as the base (probability) measure, and to the
component ν of the overall mean measure as the Lévy measure of the CRM.

We will also use the suggestive notation µ(dφ, dw) = G0(dφ)ν(dw) when we are thinking
of taking integrals with respect to the measure µ.

13A CRM constructed using such a product mean measure is referred to as homogeneous. Non-
homogeneous CRMs can also be constructed, using a mean measure which does not decompose as a product.
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Figure 10: The construction of a completely random measure on Θ from a Poisson random
measure on Θ⊗ R

+.

Given a Poisson random measure N on Θ ⊗ R
+, denote by {(φk, wk)} the set of atoms

in a particular realization of N . That is, let us write the realization as follows:

N =
∑

k

δφk ,wk
, (132)

where δφk,wk
is an atom at location (φk, wk) in the product space. Given these atoms, we

construct a measure G on Θ as a weighted sum of atoms, where φk specifies the location of
the kth atom and wk is its mass:

G =
∑

k

wkδφk . (133)

Note that we have not specified the range of k as being finite or infinite, but in fact we
will be able to achieve an infinite range (as desired) via the choice of ν. A depiction of this
construction is shown in Fig. (10).

Clearly G is a random measure, with G(A) corresponding to the total sum of masses
for those atoms φk that fall in A:

G(A) =
∑

k

wkδφk(A) =
∑

k:φk∈A

wk. (134)

Moreover, because the underlying Poisson random measure N is completely random, G is
completely random as well. To see this, suppose that A1, A2, . . . , AK are disjoint subsets
of Θ. Then the collection of subsets {Aj ⊗R

+} are disjoint as well, so that the restrictions
of N to these subsets are mutually independent. Since each G(Aj) is a function only of
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the atoms in {Aj ⊗ R
+}, we see that the masses G(A1), G(A2), . . . , G(AK) are mutually

independent too.
Having formed a CRM G from the Poisson random measure, we are free to add to G a

set of fixed atoms (where the locations of the fixed atoms are determined prior to generating
G) with mutually independent masses which are independent of N as well. We can also
add to this CRM a deterministic measure; the resulting object remains a CRM. In fact this
fully characterizes CRMs—all CRMs can be constructed as a sum of three components in
this way (Kingman, 1967).

9.2 The gamma process

To illustrate the general construction of CRMs provided in the previous section, we now
define the gamma process, which is a CRM consisting only of non-fixed atoms. To do so,
we consider the following mean measure defined on Θ⊗R

+:

µ(dφ, dw) = G0(dφ)αw
−1e−βwdw. (135)

where α > 0 and β > 0 parameterize the Lévy measure ν. (Recall that this notation is
simply a suggestive way to indicate how to use the product measure to compute integrals; in
particular, for A ⊆ Θ and E ⊆ R

+, we have µ(A,E) = G0(A)
∫

E w
−1e−βwdw.) We denote

the resulting CRM—the gamma process—as follows:

G ∼ GaP(α, β,G0), (136)

where the parameters α, β and G0 are known as the concentration parameter, the inverse
scale parameter and the base measure respectively.

Note that the Lévy measure for the gamma process is defined in terms of a density,
αw−1e−βw. Recalling that the density of a gamma random variable is proportional to
wa−1e−bw, we see that the gamma process is based on a Lévy measure whose density has
the form of the gamma density but where the shape parameter a is set equal to zero and
there is an additional multiplicative constant. For this value of a the integral over R

+

is equal to infinity. This implies that the total mean measure of the underlying Poisson
random measure is infinite:

µ(Θ⊗ R
+) = G0(Θ)

∫ ∞

0
αw−1e−βwdw = ∞. (137)

This is as desired—it yields a countably infinite number of atoms under the Poisson random
measure and under G as well. We note that the base measure G0 is normalized, and the
infinity is placed in the Lévy measure ν instead.

What remains for us to show is that the CRM that we have defined has gamma
marginals; i.e., that G(A) is distributed as a gamma random variable for a fixed subset
A ⊆ Θ. Note in particular that this result will show that introducing an infinite mass into
the Lévy measure has not caused trouble by yielding an infinite value for G(A). The deriva-
tion of the marginal probability under a CRM requires a general result from probability
theory known as the Lévy-Khinchin formula. Given the importance of this formula, we will
provide a derivation of the formula (in the generality that we require) in the next section.
A reader already knowing this formula may skip ahead to Sec. (9.4).
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9.3 The Lévy-Khinchin formula

The Laplace transform of a positive random variable X is the expectation E[e−tX ] treated
as a function of t ≥ 0. The Laplace transform is related to the moment generating function
of X, and all moments of X can be computed from the derivatives (with respect to t) of
the Laplace transform. Consequently, we can establish that two positive random variables
have the same distribution by showing that they have the same Laplace transform. In our
circumstance we can show that G(A) has a gamma distribution by computing its Laplace
transform, and recognizing that it is the same as that for gamma random variables.

The way we can compute the Laplace transform is via a device called the Lévy-Khinchin
formula, which allows us to compute the Laplace transform of random variables obtained
from integrals of Poisson random measures. Deriving this formula will require the com-
putation of the Laplace transform of the Poisson distribution. Moreover, applying the
Lévy-Khinchin formula to the special case of the gamma process will require the Laplace
transform of the gamma distribution. See Appendix E for the derivation of these Laplace
transforms.

To work up to the Lévy-Khinchin formula, we first focus on the somewhat easier calcula-
tion of the expected value of G(A). If G(A) is to have a gamma distribution, Gamma(a, b),
for given shape parameter a and inverse scale parameter b, then E[G(A)] should be equal
to a/b. We begin by rewriting G(A) in a slightly more convenient form. Recall that G is
defined in terms of an underlying Poisson random measure N . Recalling Eq. (132), we can
write the sum in the definition of G as an integral over the discrete measure N :

G(A) =
∑

k

wkδφk(A) =

∫

w1A(φ)N(dφ, dw), (138)

where 1A(φ) denotes an indicator function that is equal to one if φ ∈ A and zero otherwise.
Writing f(φ,w) = w1A(φ), we see thatG(A) is an integral of the form

∫

f(φ,w)N(dφ, dw).
Simplifying the notation further, let ξ = (φ,w) and we can write the integral as follows:

G(A) =

∫

f(ξ)N(dξ), (139)

which is an integral under the Poisson random measure N of a function on the space
Ξ = Θ⊗ R

+. To compute the expectation of such an integral, we focus first on computing
the expectation of integrals of step functions and work our way towards more complex
functions. Consider first a function of the form c1C(ξ), for a fixed set C ⊂ Ξ and a constant
c > 0. For this choice of f , we have:

E

[∫

f(ξ)N(dξ)

]

= E

[∫

c1C(ξ)N(dξ)

]

= cE [N(C)]

= cµ(C),

where in the last equality we have used the fact that N is a Poisson random measure with
mean measure µ.
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We now carry out the same computation for a general step function, f(ξ) =
∑

j∈J cj1Cj
(ξ),

where J is a finite index set, where the Cj’s are non-overlapping and where each cj is a
positive constant. We have:

E

[∫

f(ξ)N(dξ)

]

= E





∫

∑

j∈J

cj1Cj
(ξ)N(dξ)





=
∑

j∈J

E

[∫

cj1Cj
(ξ)N(dξ)

]

=
∑

j∈J

cjµ(Cj)

=

∫

f(ξ)µ(dξ),

where the last equality is by the definition of the integral under µ of the step function
f . Finally, we appeal to a classical result from real analysis—the monotone convergence
theorem (Kallenberg, 2002)—to extend the result to general positive functions using the
fact that it is possible to approximate general positive functions via an increasing sequence
of step functions. Thus, for general positive functions we have:

E

[
∫

f(ξ)N(dξ)

]

=

∫

f(ξ)µ(dξ). (140)

In particular, this result holds for our target function f(φ,w) = w1A(φ). It also extends
to a general function f(ξ) by writing it as the difference between two positive functions f+
and f−, f(ξ) = f+(ξ) − f−(ξ). This result allows us to compute the first moments of a
Poisson random measure, and restates the fact that the mean measure is indeed the mean
of the Poisson random measure. It is referred to as Campbell’s theorem, or the first moment
formula for Poisson random measures.

Applying the general result in Eq. (140) to the special case of the gamma process, we
compute:

E [G(A)] = E

[∫

w1A(φ)N(dφ, dw)

]

=

∫

w1A(φ)µ(dφ, dw)

=

∫

w1A(φ)G0(dφ)αw
−1e−βwdw

= αG0(A)

∫ ∞

0
e−βwdw

=
αG0(A)

β
. (141)

This result is consistent with G(A) being a gamma random variable, with shape parameter
αG0(A) and inverse scale parameter β.
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Moreover, if we partition a set A into A = A1 ∪A2 for disjoint subsets A1 and A2, then
we obtain

E [G(A)] =
αG0(A)

β
=
αG0(A1) + αG0(A2)

β
(142)

=
αG0(A1)

β
+
αG0(A2)

β
, (143)

which is consistent with the fact that the sum of independent gamma random variables with
the same inverse scale parameter is a gamma random variable, with a shape parameter that
is the sum of the individual shape parameters.

Although we could continue to check moments of G(A) against the moments of the
gamma distribution, the right thing to do at this point is to take aim at all of the moments
via the Laplace transform. We thus want to compute the Laplace transform E

[

e−tG(A)
]

,
which is the same as the Laplace transform of

∫

f(ξ)N(dξ), for f(ξ) = w1A(φ). Our
strategy is once again to perform the calculation for indicator functions and general step
functions, and then to appeal to the monotone convergence theorem. We thus start with
f(ξ) = c1C(ξ) and compute:

E

[

e−t
∫
f(ξ)N(dξ)

]

= E

[

e−tcN(C)
]

= exp
(

−µ(C)
(

1− e−ct
))

,

where we have used the fact that N(C) is Poisson and plugged in the form of the Laplace
transform for Poisson random variables (see Appendix E).

Now for step functions f(ξ) =
∑

j∈J cj1Cj
(ξ), we compute:

E

[

e−t
∫
f(ξ)N(dξ)

]

= E

[

e−t
∑

j∈J cjN(Cj)
]

=
∏

j∈J

E

[

e−tcjN(Cj)
]

=
∏

j∈J

exp
(

−µ(Cj)(1 − e−cjt)
)

= exp



−
∑

j∈J

µ(Cj)(1 − e−cjt)





= exp

(

−

∫

(1− e−tf(ξ))µ(dξ)

)

,

where the second equality used the complete randomness of N , and the final equality used
the definition of the integral of the function (1− e−tf(ξ)) with respect to µ.

The monotone convergence theorem allows us to conclude that for general positive func-
tions f(ξ) the Laplace transform can be computed as follows:

E

[

e−t
∫
f(ξ)N(dξ)

]

= exp

(

−

∫

(1− e−tf(ξ))µ(dξ)

)

. (144)

This result is known as the Lévy-Khinchin formula. It highlights the key role played by the
mean measure in computing probabilities under Poisson random measures.
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9.4 The gamma process and the Dirichlet process

We return to the problem of computing the distribution of G(A) for the special case of
the gamma process. Letting f(ξ) = w1A(φ), we appeal to the Lévy-Khinchin formula in
Eq. (144) and compute:

E

[

e−tG(A)
]

= exp

(

−

∫

(1− e−tf(ξ))µ(dξ)

)

= exp

(

−

∫

Θ

∫ ∞

0

(

1− e−tw1A(φ)
)

αG0(dφ)ν(dw)

)

= exp

(

−

∫

Θ

∫ ∞

0
1A(φ)(1 − e−tw)αG0(dφ)ν(dw)

)

= exp

(

−αG0(A)

∫ ∞

0
(1− e−tw)ν(dw)

)

, (145)

where the third equality can be verified by noting that the indicator is either one or zero
and that equality holds in both cases.

The problem thus reduces to computing an integral under the Lévy measure:

∫ ∞

0
(1− e−tw)ν(dw) =

∫ ∞

0
(1− e−tw)αw−1e−βwdw

= α

∫ ∞

0

e−βw − e−(β+t)w

w
dw

= α

∫ ∞

0

∫ β+t

β
e−swdsdw

= α

∫ β+t

β

∫ ∞

0
e−swdwds

= α

∫ β+t

β

1

s
ds

= α log

(

β + t

β

)

. (146)

Plugging this result back in Eq. (145) we obtain:

E

[

e−tG(A)
]

= exp

(

−αG0(A) log

(

β + t

β

))

=

(

β

β + t

)αG0(A)

. (147)

Referring to Appendix E for the Laplace transform of the gamma distribution, we see that
the marginal G(A) has the gamma distribution with shape parameter αG0(A) and inverse
scale parameter β.

Finally, we return to our original motivation for this development, the Dirichlet process.
Let (A1, A2, . . . , AK) denote a partition of the space Θ, and let G ∼ GaP(α, β,G0) denote a
gamma process on Θ. We now know that the marginals G(Ak) are gamma random variables,
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and, given that the gamma process is a CRM, these random variables are independent. We
can thus form the normalized marginals:

G̃(Ak) =
G(Ak)

∑K
j=1G(Aj)

, (148)

which have the Dirichlet distribution with parameters (αG0(A1), . . . , αG0(AK)) (by def-
inition; see Appendix B). Given that this result holds for an arbitrary partition, we see
that the Dirichlet process, DP(α,G0), can be represented as a normalization of the gamma
process, GaP(α, β,G0). It is also worth noting that the inverse scale parameter β of the
gamma process has no impact on the Dirichlet process. This is to be expected since the
normalization of the gamma process removes the effect of the overall scale of the gamma
process.

Although we have engaged in a rather considerable effort to obtain this further represen-
tation of the Dirichlet process, the payoff is quite significant. Indeed, the framework that we
have introduced yields a variety of interesting new random measures beyond the Dirichlet
process, including random measures that are CRMs and random measures obtained from
CRMs via normalization. The rest of the article will take CRMs as the point of departure.

10 Discussion

Review the various representations.
Note that each of the representations can be used as a point of departure for variations.

The CRM framework will be our main tool going forward.
There are a *lot* of issues that we haven’t addressed. Our treatment should be viewed

as a jumping-off point rather than a review.
* how to set alpha * empirical Bayes for alpha, and for G0 * DDP * conditional stick-

breaking (logistic, kernel, probit) * variational inference * posterior checking (or put this
later) * theory (or put this later)

product partition models: BARRY, D. & HARTIGAN, J. A. (1992). Product partition
models for change point problems. Ann. Statist. 20, 26079. QUINTANA, F. A. & IGLE-
SIAS, P. L. (2003). Bayesian clustering and product partition models. J. R. Statist. Soc.
B 65, 55774.
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Part II: The Beta Process
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11 The Beta Process and the Indian Buffet Process

The DP mixture model embodies the assumption that the data can be partitioned or clus-
tered into discrete classes. This assumption is made particularly clear in the Chinese restau-
rant representation, where the table at which a data point sits indexes the class (the mixture
component) to which it is assigned. If we represent the restaurant as a binary matrix in
which the rows are the data points and the columns are the tables, we obtain a matrix with
a single one in each row and all other elements equal to zero.

A different assumption that is natural in many settings is that objects can be de-
scribed in terms of a collection of binary features or attributes. For example, we might
describe a set of animals with features such as diurnal/nocturnal, avian/non-avian,
cold-blooded/warm-blooded, etc. Forming a binary matrix in which the rows are the
objects and the columns are the features, we obtain a matrix in which there are multiple
ones in each row. We will refer to such a representation as a featural representation.

A featural representation can of course be converted into a set of clusters if desired:
if there are K binary features, we can place each object into one of 2K clusters. In so
doing, however, we lose the ability to distinguish between classes that have many features
in common and classes that have no features in common. Also, if K is large, it may be
infeasible to consider models with 2K parameters. Using the featural representation, we
might hope to construct models that use on the order of K parameters to describe 2K

classes.
In this section we discuss a Bayesian nonparametric approach to featural representations.

In essence, we replace the Dirichlet/multinomial probabilities that underlie the Dirichlet
process with a collection of beta/Bernoulli draws. This is achieved via the beta process, a
stochastic process whose realizations provide a countably infinite collection of coin-tossing
probabilities. We also discuss some other representations of the beta process that parallel
those for the DP. In particular we describe a stick-breaking construction as well as an analog
of the Chinese restaurant process known as the Indian buffet process.

11.1 The beta process and the Bernoulli process

The beta process is an instance of a general class of stochastic processes known as com-
pletely random measures, which was described in Sec. (9). The key property of completely
random measures is that the random variables obtained by evaluating a random measure on
disjoint subsets of the probability space are mutually independent. Moreover, draws from
a completely random measure are discrete (up to a fixed deterministic component). Thus
we can represent such a draw as a weighted collection of atoms on some probability space,
as we do for the DP.

Applications of the beta process in Bayesian nonparametric statistics have mainly fo-
cused on its use as a model for random hazard functions (Hjort, 1990). In this case, the
probability space is the real line and it is the cumulative integral of the sample paths that
is of interest (yielding a random, nondecreasing step function). In the application of the
beta process to featural representations, on the other hand, it is the realization itself that
is of interest and the underlying space is no longer restricted to be the real line.

Following Thibaux and Jordan (2007), let us thus consider a general probability space Θ
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Figure 11: (a) A draw B ∼ BP(1, U [0, 1]). The set of blue spikes is the sample path and
the red curve is the corresponding cumulative integral

∫ x
−∞B(dφ). (b) 100 samples from

BeP(B), one sample per row. Note that a single sample is a set of unit-weight atoms.

endowed with a finite base measure B0 (note that B0 is not a probability measure; it does not
necessarily integrate to one). Intuitively we wish to partition Θ into small regions, placing
atoms into these regions according to B0 and assigning a weight to each atom, where the
weight is a draw from a beta distribution. A similar partitioning occurs in the definition of
the DP, but in that case the aggregation property of Dirichlet random variables immediately
yields a consistent set of marginals. Because the sum of two beta random variables is not a
beta random variable, the construction is somewhat less straightforward in the beta process
case.

The general machinery of completely random processes deals with this issue in an elegant
way. Consider first the case in which B0 is diffuse and define the Lévy measure on the
product space Θ⊗ [0, 1] in the following way:

µ(dφ, dw) = cw−1(1− w)c−1dwB0(dφ), (149)

where c > 0 is a concentration parameter. Now let N be a Poisson random process with µ
as its mean measure. This yields a set of atoms at locations {(φ1, w1), (φ2, w2), . . .}. Define
a realization of the beta process as:

B =
∞
∑

k=1

wkδφk , (150)

where δφk is an atom at φk with wk its mass in B. We denote this stochastic process as
B ∼ BP(c,B0). Figure 11(a) provides an example of a draw from BP(1, U [0, 1]), where
U [0, 1] is the uniform distribution on [0, 1].

We obtain a countably infinite set of atoms from this construction because the Lévy
measure in Eq. (149) has infinite mass. Further, the sum of the atom masses is finite with
probability one, since

∫

wµ(dφ, dw) <∞.
IfB0 contains atoms, then these are treated separately. In particular, denote the measure

of the kth atom as qk (assumed to lie in (0, 1)). The realization B necessarily contains that
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atom, with the corresponding weight wk defined as an independent draw from Beta(cqk, c(1−
qk)). The overall realization B is a sum of the weighted atoms coming from the continuous
component and the discrete component of B0.

Let us now define a Bernoulli process BeP(B) with an atomic base measure B as a
stochastic process whose realizations are collections of atoms of unit mass on Θ. Atoms can
only appear at the locations of atoms of B. Whether or not an atom appears is determined
by independent tosses of a coin, where the probability of success is the corresponding weight
of the atom in B. After n draws from BeP(B) we can fill a binary matrix that has n rows
and an infinite number of columns (corresponding to the atoms of B arranged in some
order). Most of the entries of the matrix are zero while a small (finite) number of the
entries are equal to one. Figure 11(b) provides an example.

The beta process and the Bernoulli process are conjugate. Consider the specification:

B | c,B0 ∼ BP(c,B0) (151)

Zi |B ∼ BeP(B), for i = 1, . . . , n,

where Z1, . . . , Zn are conditionally independent given B. The resulting posterior distribu-
tion is itself a beta process, with updated parameters:

B |Z1, . . . , Zn, c, B0 ∼ BP

(

c+ n,
c

c+ n
B0 +

1

c+ n

n
∑

i=1

Zi

)

. (152)

This formula can be viewed as an analog of standard finite-dimensional beta/Bernoulli
updating. Indeed, given a prior Beta(a, b), the standard update takes the form a→ a+

∑

i zi
and b→ b+ n−

∑

i zi. In Eq. (152), c plays the role of a+ b and cB0 is analogous to a.

11.2 The Indian buffet process

Recall that the Chinese restaurant process can be obtained by integrating out the Dirichlet
process and considering the resulting distribution over partitions. In the other direction,
the Dirichlet process is the random measure that is guaranteed (by exchangeability and De
Finetti’s theorem) to underlie the Chinese restaurant process. In this section we discuss the
analog of these relationships for the beta process.

We begin by defining a stochastic process known as the Indian buffet process (IBP).
The IBP was originally defined directly as a distribution on (equivalence classes of) binary
matrices by Griffiths and Ghahramani (2006) and Ghahramani et al. (2007). The IBP is
an infinitely exchangeable distribution on these equivalence classes, thus it is of interest to
discover the random measure that must underlie the IBP according to De Finetti’s Theorem.
Thibaux and Jordan (2007) showed that the underlying measure is the beta process; that
is, the IBP is obtained by integrating over the beta process B in the hierarchy in Eq. (151).

The IBP is defined as follows. Consider an Indian buffet with a countably-infinite
number of dishes and customers that arrive in sequence in the buffet line. Let Z∗ denote a
binary-valued matrix in which the rows are customers and the columns are the dishes, and
where Z∗

nk = 1 if customer n samples dish k. The first customer samples Poisson(α) dishes,
where α = B0(Θ) is the total mass of B0. A subsequent customer n samples dish k with
probability mk

c+n−1 , where mk is the number of customers who have previously sampled dish
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k; that is, Z∗
nk ∼ Bernoulli( mk

c+n−1). Having sampled from the dishes previously sampled by
other customers, customer n then goes on to sample an additional number of new dishes
determined by a draw from a Poisson( c

c+n−1α) distribution.
To derive the IBP from the beta process, consider first the distribution Eq. (152) for

n = 0; in this case the base measure is simply B0. Drawing from B ∼ BP(B0) and
then drawing Z1 ∼ BeP(B) yields atoms whose locations are distributed according to a
Poisson process with rate B0; the number of such atoms is Poisson(α). Now consider the
posterior distribution after Z1, . . . , Zn−1 have been observed. The updated base measure is

c
c+n−1B0 +

1
c+n−1

∑n−1
i=1 Zi. Treat the discrete component and the continuous component

separately. The discrete component, 1
c+n−1

∑n−1
i=1 Zi, can be reorganized as a sum over the

unique values of the atoms; let mk denote the number of times the kth atom appears in one
of the previous Zi. We thus obtain draws wk ∼ Beta((c+n−1)qk, (c+n−1)(1−qk)), where
qk = mk

c+n−1 . The expected value of wk is mk

c+n−1 and thus (under Bernoulli sampling) this
atom appears in Zn with probability mk

c+n−1 . From the continuous component, c
c+n−1B0,

we generate Poisson( c
c+n−1α) new atoms. Equating “atoms” with “dishes,” and rows of Z∗

with draws Zn, we have obtained exactly the probabilistic specification of the IBP.

11.3 Stick-breaking constructions

The stick-breaking representation of the DP is an elegant constructive characterization
of the DP as a discrete random measure (Sec. (5)). This construction can be viewed in
terms of a metaphor of breaking off lengths of a stick, and it can also be interpreted
in terms of a size-biased ordering of the atoms. In this section, we consider analogous
representations for the beta process. Draws B ∼ BP(c,B0) from the beta process are
discrete with probability one, which gives hope that such representations exist. Indeed,
we will show that there are two stick-breaking constructions of B, one based on a size-
biased ordering of the atoms (Thibaux and Jordan, 2007), and one based on a stick-breaking
representation known as the inverse Lévy measure (Wolpert and Ickstadt, 1998).

The size-biased ordering of Thibaux and Jordan (2007) follows straightforwardly from
the discussion in Section 11.2. Recall that the Indian buffet process is defined via a sequence
of draws from Bernoulli processes. For each draw, a Poisson number of new atoms are
generated, and the corresponding weights in the base measure B have a beta distribution.
This yields the following truncated representation:

BN =

N
∑

n=1

Kn
∑

k=1

wnkδφnk
, (153)

where

Kn | c,B0 ∼ Poisson( c
c+n−1α) for n = 1, . . . ,∞ (154)

wnk | c ∼ Beta(1, c+ n− 1) for k = 1, . . . ,Kn

φnk |B0 ∼ B0/α.

It can be shown that this size-biased construction BN converges to B with probability one.
The expected total weight contributed at step N is cα

(c+N)(c+N−1) , while the expected total
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w1

w2

w3

w4

Figure 12: Stick-breaking construction for the one-parameter beta process. A stick of length
1 is recursively broken into pieces of sticks (dashed lines) whose lengths sum to one. These
lengths are the atom masses in the DP, while the lengths of the left-over piece of stick after
each break form the atom masses for the BP.

weight remaining, in B − BN , is
cα
c+N . The expected total weight remaining decreases to

zero as N → ∞, but at a relatively slow rate. Note also that we are not guaranteed that
atoms contributed at later stages of the construction will have small weight—the sizes of
the weights need not be in decreasing order.

The stick-breaking construction of Teh et al. (2007) can be derived from the inverse
Lévy measure algorithm of Wolpert and Ickstadt (1998). This algorithm starts from the
Lévy measure of the beta process, and generates a sequence of weights of decreasing size
using a nonlinear transformation of a one-dimensional Poisson process to one with uniform
rate. In general this approach does not lead to closed forms for the weights; inverses of the
incomplete Beta function need to be computed numerically. However for the one-parameter
beta process (where c = 1) we do obtain a simple closed form:

BK =

K
∑

k=1

wkδφk , (155)

where

vk |α ∼ Beta(1, α) for k = 1, . . . ,∞ (156)

wk =

k
∏

l=1

(1− vl)

φk |B0 ∼ B0/α.

Again BK → B as K → ∞, but in this case the expected weights decrease exponentially to
zero. Further, the weights are generated in strictly decreasing order, so we are guaranteed
to generate the larger weights first.

The stick-breaking construction for the one-parameter beta process has an intriguing
connection to the stick-breaking construction for the DP. In particular, both constructions
use the same beta-distributed breakpoints vk; the difference is that for the DP we use the
lengths of the sticks just broken off as the weights while for the beta process we use the
remaining lengths of the sticks. This is depicted graphically in Fig. (12).
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11.4 Hierarchical beta processes

Recall the construction of the hierarchical Dirichlet process: a set of Dirichlet processes are
coupled via a random base measure. A similar construction can be carried out in the case
of the beta process: let the common base measure for a set of beta processes be drawn from
an underlying beta process (Thibaux and Jordan, 2007). Under this hierarchical Bayesian
nonparametric model, the featural representations that are chosen for one group will be
related to the featural representations that are used for other groups.

We accordingly define a hierarchical beta process (HBP) as follows:

B0 |κ,A ∼ BP(κ,A) (157)

Bj | c,B0 ∼ BP(c,B0) for j ∈ J

Zji |Bj ∼ BeP(Bj) for i = 1, . . . , nj,

where J is the set of groups and there are nj individuals in group j. The hyperparameter
c controls the degree of coupling among the groups: larger values of c yield realizations Bj
that are closer to B0 and thus a greater degree of overlap among the atoms chosen in the
different groups.

As an example of the application of the HBP, Thibaux and Jordan (2007) considered
the problem of document classification, where there are |J | groups of documents and where
the goal is to classify a new document into one of these groups. In this case, Zji is a
binary vector that represents the presence or absence in the ith document of each of the
words in the vocabulary Θ. The HBP yields a form of regularization in which the group-
specific word probabilities are shrunk towards each other. This can be compared to standard
Laplace smoothing, in which word probabilities are shrunk towards a fixed reference point.
Such a reference point can be difficult to calibrate when there are rare words in a corpus,
and Thibaux and Jordan (2007) showed empirically that the HBP yielded better predictive
performance than Laplace smoothing.

11.5 Applications of the beta process

In the following sections we describe a number of applications of the beta process to hier-
archical Bayesian featural models. Note that this is a rather different class of applications
than the traditional class of applications of the beta process to random hazard functions.

11.5.1 Sparse latent variable models

Latent variable models play an essential role in many forms of statistical analysis. Many
latent variable models take the form of a regression on a latent vector; examples include
principal component analysis, factor analysis and independent components analysis. Par-
alleling the interest in the regression literature in sparse regression models, one can also
consider sparse latent variable models, where each observable is a function of a relatively
small number of latent variables. The beta process provides a natural way of construct-
ing such models. Indeed, under the beta process we can work with models that define a
countably-infinite number of latent variables, with a small, finite number of variables being
active (i.e., non-zero) in any realization.
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Consider a set of n observed data vectors, x1, . . . , xn. We use a beta process to model a
set of latent features, Z1, . . . , Zn, where we capture interactions among the components of
these vectors as follows:

B | c,B0 ∼ BP(c,B0) (158)

Zi |B ∼ BeP(B) for i = 1, . . . , n.

As we have seen, realizations of beta and Bernoulli processes can be expressed as weighted
sums of atoms:

B =
∞
∑

k=1

wkδφk (159)

Zi =
∞
∑

k=1

Z∗
ikδφk .

We view φk as parametrizing feature k, while Zi denotes the features that are active for
item i. In particular, Z∗

ik = 1 if feature k is active for item i. The data point xi is modeled
as follows:

yik |H ∼ H for k = 1, . . . ,∞ (160)

xi |Zi,θ,yi ∼ F{φk ,yik}k:Z∗

ik
=1
,

where yik is the value of feature k if it is active for item i, and the distribution F{φk ,yik}k:Z∗

ik
=1

depends only on the active features, their values, and their parameters.
Note that this approach defines a latent variable model with an infinite number of sparse

latent variables, but for each data item only a finite number of latent variables are active.
The approach would often be used in a predictive setting in which the latent variables
are integrated out, but if the sparseness pattern is of interest per se, it is also possible to
compute a posterior distribution over the latent variables.

There are several specific examples of this sparse latent variable model in the literature.
One example is an independent components analysis model with an infinite number of
sparse latent components (Knowles and Ghahramani, 2007; Teh et al., 2007), where the
latent variables are real-valued and xi is a noisy observation of the linear combination
∑

k Z
∗
ikyikφk. Another example is the “noisy-or” model of Wood et al. (2006), where the

latent variables are binary and are interpreted as presence or absence of diseases, while the
observations xi are binary vectors indicating presence or absence of symptoms.

11.5.2 Relational models

The beta process has also been applied to the modeling of relational data (also known as
dyadic data). In the relational setting, data are relations among pairs of objects (Getoor and Taskar,
2007); examples include similarity judgments between two objects, protein-protein interac-
tions, user choices among a set of options, and ratings of products by customers.

We first consider the case in which there is a single set of objects and relations are
defined among pairs of objects in that set. Formally, define an observation as a relation xij
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between objects i and j in a collection of n objects. Each object is modeled using a set of
latent features as in Eq. (158) and Eq. (159). The observed relation xij between objects i
and j then has a conditional distribution that is dependent only on the features active in
objects i and j. For example, Navarro and Griffiths (2007) modeled subjective similarity
judgments between objects i and j as normally distributed with mean

∑∞
k=1 φkZ

∗
ikZ

∗
jk; note

that this is a weighted sum of features active in both objects. Chu et al. (2006) modeled
high-throughput protein-protein interaction screens where the observed binding affinity of
proteins i and j is related to the number of overlapping features

∑∞
k=1 Z

∗
ikZ

∗
jk, with each

feature interpreted as a potential protein complex consisting of proteins containing the
feature. Görür et al. (2006) proposed a nonparametric elimination by aspects choice model
where the probability of a user choosing object i over object j is modeled as proportional
to a weighted sum,

∑∞
k=1 φkZ

∗
ik(1 − Z∗

jk), across features active for object i that are not
active for object j. Note that in these examples, the parameters of the model, φk, are the
atoms of the beta process.

Relational data involving separate collections of objects can be modeled with the beta
process as well. Meeds et al. (2007) modeled movie ratings, where the collections of objects
are movies and users, and the relational data consists of ratings of movies by users. The
task is to predict the ratings of movies not yet rated by users, using these predictions to
recommend new movies to users. These tasks are called recommender systems or collabo-
rative filtering. Meeds et al. (2007) proposed a featural model where movies and users are
modeled using separate IBPs. Let Z∗ be the binary matrix of movie features and Y ∗ the
matrix of user features. The rating of movie i by user j is modeled as normally distributed
with mean

∑∞
k=1

∑∞
l=1 φklZ

∗
ikY

∗
jl. Note that this dyadic model cannot be represented using

two independent beta processes, since there is a parameter φkl for each combination of
features in the two IBPs. The question of what random measure underlies this model is an
interesting one.
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Part III: Normalized Completely Random Measures
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12 Normalized Completely Random Measures

In Sec. (9) we introduced the notion of a completely random measure, and showed the last
of many representations of the Dirichlet process, as a normalized gamma process. In this
section, we pick up on this development by extending the construction of random probability
measures to normalizing completely random measures from a wider class.

The construction is in fact straightforward. Suppose G is a completely random measure
defined as in Eq. (133), with the underlying Poisson random measure N having a mean
measure µ = G0 ⊗ ν, where G0 is the base probability measure, and ν is the Lévy intensity.
Both G0 and N are discrete measures, say with atoms

N =
∞
∑

k=1

δφk,Wk
G =

∞
∑

k=1

Wkδφk . (161)

Define

T = G(Θ) =
∞
∑

k=1

Wk (162)

to be the total mass of the atoms in G. Supposing that T is positive and finite, we can
define a random probability measure by normalizing the completely random measure as:

G̃ =
G

T
. (163)

The Dirichlet process is such an example, obtained by normalizing a gamma process. The
popularity of the Dirichlet process is partly because of the fact that besides this repre-
sentation, it also has a whole host of alternative and equivalent representations, giving
different useful perspectives and better understanding, and leading to alternative inference
algorithms. In this section we will endeavor to derive similar levels of understanding for the
larger class of normalized completely random measures.

As a running example, we will consider an important class of normalized completely
random measures called normalized generalized gamma processes (NGGPs). Generalized
gamma processes are completely random measures where the Lévy measure,

να,β,σ(dw) =
α

Γ(1− σ)
w−1−σe−βwdw, (164)

is parameterized by a concentration parameter α > 0, a rate parameter β ≥ 0 and an index
parameter 0 ≤ σ < 1. We recover the gamma process when σ = 0 and β > 0, whence
in this case the normalized generalized gamma process encompasses the Dirichlet process.
Another subclass, called the normalized stable process, is obtained by setting β = 0 and
α = σ > 0. This class is also a subclass of the Pitman-Yor process, obtained when the
concentration parameter of the Pitman-Yor process is set to 0. A third subclass, called
the normalized inverse Gaussian process, is obtained by setting σ = 1/2. In the following,
quantities subscripted by α, β, σ will refer to the normalized generalized gamma process,
while those without will refer to the whole class of normalized completely random measures.

Note that there is in fact a degree of redundancy in the parameterization of the NGGP.
Specifically, if we rescale all the atom masses Wk 7→ cWk by a positive constant c, the
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resulting random measure is still completely random. The transformed Lévy measure can
be obtained by a change of variable,

α

Γ(1− σ)
(w/c)−1−σe−βw/c

1

c
dw, (165)

which can be seen as the Lévy measure for a generalized gamma process with parameter
(αcσ , β/c, σ). Rescaling the atom masses does not affect the distribution of the normalized
measure, so that G̃α,β,σ and G̃αcσ ,β/c,σ have the same distribution for each c > 0. In other
words the space of NGGPs is two-dimensional. In the above we used a parameterization
with three parameters to make the connections to other random probability measures more
explicit.

12.1 Lévy Measures for Completely Random Measures

A first question we seek an answer to is the following: What conditions do the Lévy measure
ν have to satisfy in order for our construction to be valid, and what conditions will guarantee
that the total mass T is positive and finite, so that the normalization operation is well-
defined? Firstly, for the CRM to not be degenerate, we require the Laplace transform of
the total mass to be well-defined. In particular, the integral in the Lévy-Khinchin formula
Eq. (144) should be finite when f(ξ) = w:

∫

Θ

∫ ∞

0
(1− e−sw)µ(dξ) =

∫ ∞

0
(1− e−sw)ν(dw) <∞, (166)

for each s > 0. In fact, it is easy to see that if the integral is finite for any s, it is finite for
all r > 0: Suppose that r is another real number with r > s. Then,

1− e−sw < 1− e−rw <
s

r
(1− e−sw) (167)

so that both integrals are finite simultaneously.
For positiveness, it is sufficient to guarantee that there is at least one atom in G, since

this atom will have positive mass. The number of atoms in G is the same as that for N,
which is Poisson distributed with mean given by:

µ(Θ⊗ R
+) = G0(Θ)

∫ ∞

0
ν(dw) =

∫ ∞

0
ν(dw), (168)

the mass of the Lévy measure ν. If this is finite, then there is positive probability for N

to have no atoms. On the other hand, if this is infinite, then N will almost surely have an
infinite number of atoms. Thus the second condition on ν is for it to have infinite mass,

∫ ∞

0
ν(dw) = ∞. (169)

For finiteness of T , one possibility is to require that T has a finite expectation, which is
sufficient to guarantee finiteness. Referring to Eq. (140),

E [T ] =

∫

wµ(dξ) = G0(Θ)

∫ ∞

0
wν(dw) =

∫ ∞

0
wν(dw) <∞, (170)

74



which gives the condition on ν for T to have finite expectation. However, it is possible
for a random variable to be finite while at the same time have an infinite expectation.
For example, when ν(dw) = (1 + w)−1.5dw, we have

∫∞
0 ν(dw) < ∞ so that G has a

finite number of atoms and hence T is finite. But
∫∞
0 wν(dw) = ∞ and T has infinite

expectation. This example shows that a small (finite) number of atoms with very large
masses could contribute significantly to the total mass T , such that the expectation of T
becomes infinite.

For a more precise condition on ν for T to be finite, we can thus treat the atoms with
large masses separately from those with small masses. Let r be a positive number, for
example, r = 1. The total mass T is the sum of the total mass T>r of those atoms with
mass larger than r, and of the total mass T≤r among those with mass below r, and T is
finite if and only if both T>r and T≤r are. Since each atom whose mass contributes to T>r
has mass at least r > 0, a necessary and sufficient condition for T>r to be finite is for the
number of contributing atoms to be finite. This is equivalent to the condition:

∫ ∞

0
1(r,∞)(w)ν(dw) <∞. (171)

On the other hand, since the total number of atoms has to be infinite, the number below r
has to be infinite. Following previous discussion, a sufficient condition for T≤r to be finite
is for its expectation to be, which is equivalent to the condition:

∫ ∞

0
w1(0,r)(w)ν(dw) <∞. (172)

We can combine both conditions together into one by adding r times Eq. (171) to Eq. (172),
which simplifies to:

∫ ∞

0
min(w, r)ν(dw) <∞. (173)

This gives a third condition on the Lévy measure ν. Up to a multiplicative constant, the
function min(w, r) has the same asymptotic behavior as 1−e−tw in Eq. (166): it asymptotes
to a constant for large w, and linear in w as w → 0, and it can be shown that Eq. (166) is
finite exactly when Eq. (173) is, so that this third condition is in fact the same as for the
first condition Eq. (166).

In summary, we require that the Lévy measure ν satisfy the two conditions Eq. (166)
and Eq. (169). We will write G̃ ∼ NRM(ν,G0) for the random probability measure G̃
constructed as in Eq. (163), and call it a normalized random measure (NRM). We will also
write G ∼ CRM(ν,G0) for the completely random measure whose normalization gives G̃.

It is straightforward to verify that the Lévy measure of the generalized gamma process
given in Eq. (164) satisfies the two conditions set out above. Firstly, να,β,σ has infinite
mass since its density grows at a scale of w−1−σ as w → 0. Secondly, the integral in the
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Lévy-Khinchin formula can be calculated by integration by parts,
∫ ∞

0
(1− e−sw)

α

Γ(1− σ)
w−1−σe−βwdw

=
α

Γ(1− σ)

∫ ∞

0
(e−βw − e−(s+β)w)w−1−σdw

=
α

Γ(1− σ)

(

[

e−βw − e−(s+β)w)(−σ)−1w−σ
]∞

0
−

∫ ∞

0
(−βe−βw + (s+ β)e−(s+β)w)(−σ)−1w−σdw

)

=
α

Γ(1− σ)

(

s+ β

σ

∫ ∞

0
e−(s+β)ww−σdw −

β

σ

∫ ∞

0
e−βww−σdw

)

=
α

Γ(1− σ)

(

s+ β

σ

Γ(1− σ)

(s+ β)1−σ
−
β

σ

Γ(1− σ)

(β)1−σ

)

=
α

σ
((s + β)σ − βσ), (174)

which we see is finite. Using L’Hopital’s rule, we also see that the integral approaches that
of the gamma process in Eq. (146) as σ → 0. The above gives the Laplace transform of the
total mass Tα,β,σ of the generalized gamma process,

E[e−sTα,β,σ ] = exp
(

−
α

σ
((s + β)σ − βσ)

)

, (175)

which will be an oft-used result in the following.

13 The Posterior Normalized Random Measure

Suppose G is a CRM with diffuse base distribution G0 and Lévy measure ν satisfying the
two integral conditions (166) and (169), and G̃ is the random probability measure defined
by normalizing G via Eq. (163). Just as for the DP, we can elucidate the properties of the
NRM by treating it as a distribution from which we can draw iid samples,

θn | G̃
iid
∼ G̃ for n = 1, 2, . . . , N . (176)

As G̃ is discrete by construction, there will be repeated values among θ1, . . . , θN , which
induces a random exchangeable partition of [N ]. Let us denote the random partition by π,
and denote the unique value corresponding to each cluster c in π by φc. We will now study
the structure of these random objects as a way to understand the NRM.

The starting point of our study will be in understanding the posterior distribution over
both the normalized random measure G̃ and the unnormalized measure G conditioned on
the iid draws from it, using the calculus we have developed for Poisson random measures
in Sec. (9). We will need an additional tool for Poisson random measures called the Palm
formula, which we will develop along the way. In the next section, using our newfound
understanding, we can construct a mixture model where the mixing measure has a NRM
prior, and discuss posterior inference schemes in this NRM mixture model.

We start with the conditional distribution of π and (φc)c∈π given the random measure.
Let ϕc ∈ Θ be a value for each c ∈ π. We can write the conditional distribution as follows:

P (π = π, and φc ∈ dϕc for c ∈ π |G) =
∏

c∈π

G̃(dϕc)
|c| = T−N

∏

c∈π

G(dϕc)
|c|, (177)
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where for a value ϕ ∈ Θ, dϕ denotes a small neighbourhood around ϕ, and φ ∈ dϕ denotes
the event that φ is in the neighbourhood. Since G̃ is a discrete probability measure, we
have that G̃(dϕ) equals 0 if none of its atoms equal ϕ, and equals the mass of the atom if
an atom is located precisely at ϕ.

Consider the problem of determining the posterior distribution of G given an observation
that π = π and φc ∈ dϕc for c ∈ π. Intuitively, we can compute a posterior by “multiplying
a prior with a likelihood and renormalizing”. The likelihood, given in Eq. (177), consists of
K + 1 terms, a term for each of the K = |π| unique values and T−N . The T−N term turns
out to be the more difficult term to work with as T is a sum of the masses of all the atoms
in G, so that the term couples all the atoms of G in the posterior in a non-trivial manner.

Fortunately, we can perform an uncoupling by augmenting the system with an additional
positive-valued random variable, which we denote by U . Specifically, let U be a gamma
random variable with shape parameter N and rate parameter T which is conditionally
independent of π and (φc)c∈π given G. The conditional distribution of U given G is:

P (U ∈ du |G) =
TN

Γ(N)
uN−1e−Tudu, (178)

and so the joint conditional distribution becomes,

P (π = π, φc ∈ dϕc for c ∈ π,U ∈ du |G) =
1

Γ(N)
uN−1e−Tudu

∏

c∈π

G(dϕc)
|c| (179)

Given π = π, φc ∈ dϕc for c ∈ π, and U ∈ du, we will now attempt to determine the
posterior distribution of G. For smooth real-valued random variables we can often deter-
mine the distribution by calculating the density. G is a random measure and it seems less
clear whether we can proceed by calculating its density. For real-valued random variables,
there are other quantities that we can calculate to determine the distribution instead. For
example, in Sec. (9.3) we used the Laplace transform to determine the marginal distribution
of G(A) when G is the gamma process.

For random measures, a generalization of the Laplace transform which we can use to
determine the distribution is called the Laplace functional. Instead of being a function of a
positive real number s, the Laplace functional is a function of a function f(φ):

f 7→ E

[

e−
∫
f(φ)G(dφ)

]

(180)

If two random measures G and G′ have the same Laplace functional, that is, Eq. (180) takes
the same value for both G and G′, for all functions f in a large enough class, then G and
G′ will have the same distribution.

For a completely random measure G, we can compute its Laplace functional by using
the fact that its atoms are constructed from the atoms of a Poisson random measure N, and
using the Lévy-Khinchin formula Eq. (144) in Sec. (9.3). Using Eq. (161), we have,

∫

f(φ)G(dφ) =
∑

k

Wkf(φk) =

∫

wf(φ)N(dφ, dw). (181)
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Evaluating the Lévy-Khinchin formula at the function (φ,w) 7→ wf(φ) and at t = 1, we can
write Eq. (180) as:

E

[

e−
∫
f(φ)G(dφ)

]

= exp

(

−

∫

Θ

∫ ∞

0
(1− e−wf(φ))ν(dw)G0(dφ)

)

. (182)

Returning to the computation of the posterior random measure given observations, we
would like to compute the Laplace functional of the posterior G. This can be achieved by
calculating the posterior expectation,

E

[

e−
∫
f(φ)G(dφ)

∣

∣

∣

∣

π = π, φc ∈ dϕc for c ∈ π,U ∈ du

]

=
E

[

e−
∫
f(φ)G(dφ)P (π = π, φc ∈ dϕc for c ∈ π,U ∈ du |G)

]

E [P (π = π, φc ∈ dϕc for c ∈ π,U ∈ du |G)]
(183)

If we can compute the numerator, the denominator can be obtained by just setting f(φ) = 0.
Plugging in Eq. (179), the numerator becomes,

E

[

e−
∫
f(φ)G(dφ) 1

Γ(N)
uN−1e−Tudu

∏

c∈π

G(dϕc)
|c|

]

(184)

=
1

Γ(N)
uN−1duE

[

e−
∫
(f(φ)+u)G(dφ)

∏

c∈π

G(dϕc)
|c|

]

,

where the expectation is with respect to the completely random measure G. We can rewrite
it in terms of the underlying Poisson random measure N as follows,

=
1

Γ(N)
uN−1duE

[

e−
∫
(f(φ)+u)wN(dξ)

∏

c∈π

∫

δφ(dϕc)w
|c|
N(dξ)

]

, (185)

which is the expectation of a somewhat complicated functional of a Poisson random mea-
sure. We can attempt to evaluate this expectation using the two useful formulas derived in
Sec. (9.3). The first, Eq. (140), allows us to compute the mean of a functional of a Poisson
random measure which can be written in the form,

∫

q(ξ)N(dξ), (186)

while Eq. (144) allows us to compute the Laplace transform of Eq. (186) instead, which is
the mean of a functional of the form,

e
∫
−g(ξ)N(dξ). (187)

Unfortunately, the functional in Eq. (185) is a product of terms of both forms, and neither
formula is applicable. To evaluate this expectation we will have to derive a third formula
called the Palm formula.
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13.1 Palm Formula

Suppose g(ξ) and q(ξ) are two functions over a measure space and N is a Poisson random
measure defined over the same space with mean measure µ. We would like to compute an
expectation of the form,

E

[

e−
∫
g(ξ)N(dξ)

∫

q(ξ)N(dξ)

]

. (188)

We can derive this expectation using the Lévy-Khinchin formula Eq. (144) as follows. Sup-
pose s ≥ 0. Then,

E

[

e−
∫
−sq(ξ)+g(ξ)N(dξ)

]

=exp

(

−

∫

1− esq(ξ)−g(ξ)µ(dξ)

)

. (189)

Differentiating both sides with respect to s,

E

[

e−
∫
−sq(ξ)+g(ξ)N(dξ)

∫

q(ξ)N(dξ)

]

=exp

(

−

∫

1− esq(ξ)−g(ξ)µ(dξ)

)
∫

q(ξ)esq(ξ)−g(ξ)µ(dξ).

Finally, setting s = 0 and rearranging the integrals,

E

[

e−
∫
g(ξ)N(dξ)

∫

q(ξ)N(dξ)

]

=exp

(

−

∫

1− e−g(ξ)µ(dξ)

)
∫

q(ξ)e−g(ξ)µ(dξ)

=

∫

q(ξ) exp

(

−g(ξ) −

∫

1− e−g(ξ
′)µ(dξ′)

)

µ(dξ),

(190)

which is the desired formula.
It is worthwhile pausing here to give an interpretation to the above result. Using the

Lévy-Khinchin formula, we can identify the terms involving g(x) on the RHS as the expec-
tation of a functional of N + δξ, a random measure constructed by adding a single fixed
atom δξ to the Poisson random measure N,

E

[

e−
∫
g(ξ)N(dξ)

∫

q(ξ)N(dξ)

]

=

∫

E

[

e−
∫
g(ξ′)(N+δξ)(dξ

′)
]

q(ξ)µ(dξ). (191)

Writing the exponential term on the LHS as simply a functional g′ : N 7→ e−
∫
g(ξ)N(dξ) and

denoting by P the distribution of N, we have,

∫ ∫

g′(N)q(ξ)N(dξ)P(dN) =

∫ ∫

g′(N+ δξ)q(ξ)P(dN)µ(dξ). (192)

The LHS is an integral of g′(N)q(ξ) with respect to a measure associated with first drawing
N from P, followed by integrating ξ with respect to N. On the other hand, the RHS is an
integral with respect to a measure whereby we first integrate ξ with respect to the mean
measure µ, followed by a conditional measure given by a Poisson random measure with an
additional fixed atom at ξ. Loosely speaking, both sides describe the same expectation over
a pair of random elements N and ξ, one a Poisson random measure, and the other a random
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atom chosen from the measure. The RHS states loosely that conditioned on there being an
atom at ξ, the conditional structure of N on the rest of the space is precisely the same as
its prior, a Poisson random measure with the same mean measure µ. This structure follows
from the fact that N is completely random, so knowing that there is an atom at ξ tells us
precisely no information about the measure on the rest of the space.

Generally, the theory of Palm distributions studies the distribution of a point pro-
cess (not necessarily Poisson) conditioned on there being an atom at some location ξ, and
Eq. (192) is sometimes known as the Palm formula. As before, we can construct pro-
gressively more complex functions from simpler ones, and show that the Palm formula for
Poisson processes holds for general functions g(ξ,N) of both ξ and N:

∫ ∫

g(ξ,N)q(ξ)N(dξ)P(dN) =

∫ ∫

g(ξ,N + δξ)q(ξ)P(dN)µ(dξ). (193)

Further, this formula characterizes the Poisson random measure, that is, it holds precisely
when N is a Poisson random measure.

13.2 Deriving the Posterior of a Normalized Random Measure

Equipped with knowledge of the Palm formula, we can now tackle the expectation in
Eq. (185) with a slight generalization. Specifically, let g(ξ) = (f(φ) + u)w and for each
c ∈ π let qc(ξ) = δφ(dϕc)w

|c| and sc ≥ 0. Then the Lévy-Khinchin formula gives,

E

[

e−
∫
g(ξ)−

∑
c∈π scqc(ξ)N(dξ)

]

= exp

(

−

∫

1− e−(g(ξ)−
∑

c∈π scqc(ξ))µ(dξ)

)

(194)

Differentiating with respect to each sc, and evaluating the derivative at sc = 0 for all c ∈ π,
we get,

E

[

e−
∫
(f(φ)+u)wN(dξ)

∏

c∈π

∫

δφ(dϕc)w
|c|
N(dξ)

]

=

∫

· · ·

∫

E

[

e−
∫
(f(φ)+u)w(N+

∑
c∈π δφc,wc )(dφ,dw)

]

∏

c∈π

δφc(dϕc)w
|c|
c µ(dφc, dwc)

=E

[

e−
∫ ∫

(f(φ)+u)wN(dφ,dw)
]

∏

c∈π

G0(dϕc)

∫

e−(f(ϕc)+u)wcw|c|
c ν(dwc)

= exp

(

−

∫ ∫

1− e−(f(φ)+u)wG0(dφ)ν(dw)

)

∏

c∈π

G0(dϕc)

∫

e−(f(ϕc)+u)wcw|c|
c ν(dwc).

(195)

Setting f(φ) = 0 in the above gives the denominator in Eq. (183), which is the marginal
probability of the observations:

P (π = π, φc ∈ dϕc for c ∈ π,U ∈ du)

=E [P (π = π, φc ∈ dϕc for c ∈ π,U ∈ du |G)]

=
1

Γ(N)
uN−1du exp

(

−

∫

1− e−uwν(dw)

)

∏

c∈π

G0(dϕc)

∫

e−uwcw|c|
c ν(dwc). (196)
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Finally, substituting both results for numerator and denominator back into Eq. (183), we
get,

E

[

e−
∫
f(φ)G(dφ)

∣

∣

∣

∣

π = π, φc ∈ dϕc for c ∈ π,U ∈ du

]

=
exp

(

−
∫ ∫

1− e−(f(φ)+u)wG0(dφ)ν(dw)
)
∏

c∈π G0(dϕc)
∫

e−(f(ϕc)+u)wcw
|c|
c ν(dwc)

exp
(

−
∫

1− e−uwν(dw)
)
∏

c∈π G0(dϕc)
∫

e−uwcw
|c|
c ν(dwc)

= exp

(

−

∫ ∫

1− e−f(φ)wG0(dφ)e
−uwν(dw)

)

∏

c∈π

∫

e−f(ϕc)wce−uwcw
|c|
c ν(dwc)

∫

e−uwcw
|c|
c ν(dwc)

(197)

The Laplace functional above is a product of terms, so the posterior G can be expressed as a
sum of independent random elements, one corresponding to each term. The first term is in
the form of the Laplace functional for a completely random measure with an exponentially
tilted Lévy measure. Specifically, the mean measure of the underlying Poisson random
measure is given by G0⊗ν

′ where ν ′(dw) = e−uwν(dw). For each c ∈ π, the cth term above
corresponds to the Laplace functional of a random measure consisting of a single fixed atom
at ϕc, with random mass distribution given by,

P (Wc ∈ dwc|π = π, φc ∈ dϕc for c ∈ π,U ∈ du) =
e−uwcw

|c|
c ν(dwc)

∫

e−uvcv
|c|
c ν(dvc)

. (198)

In summary, the posterior unnormalized random measure G can be written as follows:

G|{π = π, φc ∈ dϕc for c ∈ π,U ∈ du} = G′ +
∑

c∈π

Wcδϕc

G′ ∼ CRM(ν ′, G0) ν ′(dw) = e−uwν(dw)

Wc ∼ pc pc(dwc) =
e−uwcw

|c|
c ν(dwc)

∫

e−uvcv
|c|
c ν(dvc)

(199)

The posterior normalized random measure is then obtained by normalizing the posterior G.
Note that the posterior G is still a completely random measure, albeit one with fixed atoms.
The fixed atoms correspond to locations where we have observed draws from G̃, while the
non-fixed atoms in the smooth component G′ correspond to other atoms in the discrete
random measure which do not correspond to observed draws. The exponential tilting to
the Lévy measure of G′ encourages atoms in G′ to have lower masses than those in the prior
distribution, and is due to the observation that there are no drawn values elsewhere besides
the observed values {ϕc}c∈π.

The actual posterior of G given only θ = (θ1, . . . , θN ) can now be obtained by integrating
over the auxiliary variable U . We can achieve this by noting that the posterior distribution
of U given θ can be obtained analytically by normalizing Eq. (196) with respect to u, though
this posterior is not of a standard form. However it is straightforward, within a Markov
chain Monte Carlo framework, to derive an algorithm for sampling from the joint posterior
of both U and G given θ, which we shall see in a later section.
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Returning to the normalized generalized gamma process running example, the posterior
G has Lévy measure given in Eq. (164), so that the posterior smooth component G′ has
Lévy measure,

ν ′(dw) =
α

Γ(1− σ)
w−1−σe−(β+u)wdw = να,β+u,σ(dw), (200)

that is, G′ is also a generalized gamma process, with an updated rate parameter β + u. On
the other hand, the mass of the fixed atom at ϕc has density,

pc(Wc ∈ dwc) ∝ e−uwcw|c|
c

α

Γ(1− σ)
w−1−σ
c e−βwcdwc ∝ w|c|−σ−1

c e−(β+u)wcdwc, (201)

that is, Wc is gamma distributed with shape |c| − σ and rate β + u.
When σ = 0, we see that the posterior smooth component G′ is a gamma process while

the fixed atoms have gamma distributed masses. Both the gamma process and the gamma
distributions of the masses of the fixed atoms have the same rate parameter β + u, so that
the posterior normalized random measure G̃ is still a DP, recovering the posterior DP result
we derived in Eq. (60). Note that in normalizing this random measure, the effect of the
rate parameter is normalized away so that the posterior DP does not depend on β nor on
U . In particular, G̃ and U are conditionally independent in the posterior given θ. This is
one of the simplifying properties which is unique to the DP.

13.3 Random Partitions Induced by a Normalized Random Measure

As noted previously, the discrete nature of the normalized random measure G̃ naturally
induces an exchangeable random partition π of [N ], where the clusters in π correspond

to the unique values in the iid draws θ1, . . . , θN
iid
∼ G̃. The probability distribution of

the random partition can be obtained by integrating out the unique values and U from
Eq. (196),

P (π = π) =
1

Γ(N)

∫ ∞

0
uN−1 exp

(

−

∫

1− e−uwν(dw)

)

∏

c∈π

∫ ∞

0
e−uwcw|c|

c ν(dwc)du.

(202)

For the normalized generalized gamma process, plugging in the Lévy measure and the
Laplace transform of the total mass Eq. (175),

P (πα,β,σ = π) =
1

Γ(N)

∫ ∞

0
uN−1e−

α
σ
((u+β)σ−βσ)

∏

c∈π

∫ ∞

0
e−uwcw|c|

c

α

Γ(1− σ)
w−1−σ
c e−βwcdwcdu

=
1

Γ(N)

∫ ∞

0
uN−1e−

α
σ
((u+β)σ−βσ)

∏

c∈π

α
Γ(|c| − σ)

Γ(1− σ)
(u+ β)σ−|c|du

=
α|π|

Γ(N)

∫ ∞

0
uN−1(u+ β)σ|π|−Ne−

α
σ
((u+β)σ−βσ)du

∏

c∈π

(1− σ)(|c|−1), (203)

where (1− σ)(|c|−1) = (1− σ)(2 − σ) · · · (|c| − 1− σ).
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Comparing Eq. (203) to Eq. (77) for the Pitman-Yor process, the terms involving the
clusters of πα,β,σ are exactly the same, with the main difference between the two being
the first term which involves the number of clusters in πα,β,σ. This similarity begets an
underlying relationship between the two processes, which we will explore in Sec. (16).

Recall also the power law properties of the Pitman-Yor process, the origins of which
can be traced to the effect a positive value for σ has on the probabilities of data items
(customers) joining clusters (tables) of varying sizes. Specifically, it reduces the relative
probabilities of joining small clusters much more than large clusters, and as a result there
is a predilection for a large number of small clusters and a small number of large ones. An
effect of this is in the form of the cluster terms in Eq. (77). Since Eq. (203) has the same
cluster terms, we expect similar power law properties are in effect in the random partition
induced by the normalized generalized gamma process, which is indeed the case.

14 Sampling Algorithms for NRM Mixture Model

Equipped with an understanding of the distribution of the exchangeable random partition
induced by a normalized randommeasure, and of the posterior distribution of the normalized
random measure, we can now specify a mixture model using a normalised random measure
as its mixing measure, and derive sampling algorithms for posterior simulation. The full
specification of the model is as follows,

G ∼ CRM(ν,G0) T = G(Θ) G̃ =
G

T
U |G ∼ Gamma(N,T )

θi|G
iid
∼ G̃ for i = 1, . . . , N,

xi|θi
ind
∼ F (θi) for i = 1, . . . , N. (204)

For completeness, we have included the auxiliary variable U as well. In the following we
will describe both a marginal sampler and a conditional sampler.

14.1 Marginal Gibbs Sampling for NRM Mixture Model

Integrating out the random measure G and introducing the induced random partition π of
[N ], (196) leads to the joint probability over π, U , the component parameters φ = (φc)c∈π,
and the observations x = (xi)i∈[N ],

p(π, φ, U, x) = UN−1 exp

(

−

∫

1− e−Uwν(dw)

)

∏

c∈π

κν(|c|, U)g0(φc)
∏

i∈c

f(xi|φc) (205)

where g0 and f are the densities for the base measure G0 and component distribution F
respectively, and κν(m,u) is the gamma integral,

κν(m,u) =

∫ ∞

0
e−uwwmν(dw) (206)
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For simplicity, we assume we can further marginalise out the component parameters, leading
to,

p(π, U, x) = UN−1 exp

(

−

∫

1− e−Uwν(dw)

)

∏

c∈π

κν(|c|, U)f(xc), (207)

where

f(xc) =

∫

g0(ϕc)
∏

i∈c

f(xi|ϕc)dϕc (208)

At this point it is now straightforward to derive a Gibbs sampler which alternately
updates U and π. The conditional distribution of U given π is not of standard form, but
a variety of techniques can be straightforwardly used as U is a one-dimensional random
variable, for example slice sampling or Metropolis-within-Gibbs. For updating π, consider
updating the cluster assignment of data point i. Let π−i denote the partition of [N ]\{i}
with i removed from π, and π+ be the partition resulting once i is assigned to either a
cluster c ∈ π+ or a new cluster. From Eq. (207), the conditional probabilities of the two
cases are,

p(π+ |x,U) ∝

{

κν(|c|+1,U)
κν(|c|,U) f(xi |xc) for π+ = π−i − c+ (c ∪ {i}), c ∈ π−i,

κν(1, U)f(xi) for π+ = π−i + {i},
(209)

where f(xi|xc) = f(xc∪{i})/f(xc) is the conditional probability of xi under cluster c which
currently contains data points xc. This sampler is a direct generalisation of the Gibbs
sampler for the CRP mixture model in Sec. (3.3)

Returning to our running example, for the normalised generalised gamma process, the
gamma integral is,

κα,β,σ(m,u) =

∫ ∞

0

α

Γ(1− σ)
w−1−σe−βwwme−uwdw

=
α

(β + u)m−σ

Γ(m− σ)

Γ(1− σ)
(210)

and the conditional probabilities for assigning data point xi to the various clusters simplify
to:

p(π+ |x,U) ∝

{

(|c| − σ)f(xi |xc) for π+ = π−i − c+ (c ∪ {i}), c ∈ π−i,

α(β + u)σf(xi) for π+ = π−i + {i}.
(211)

When σ = 0, we see that the above reduces to the Gibbs sampling update for the DP
mixture model in Sec. (3.3).

For the DP mixture model, besides the marginal Gibbs sampler described here, other
samplers based on alternative representations of the Dirichlet process can also be derived.
These can be extended to the normalised random measures as well. In the next section,
we will derive a stick-breaking representation for normalized random measures which is a
direct generalisation of that for Dirichlet processes. Before that, we derive a conditional
slice sampler for NRM mixture models that uses the represention of the posterior NRM
given in Eq. (199).
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14.2 Conditional Slice Sampler for NRM Mixture Model

The structure of the sampler follows closely the analogous sampler in Sec. (6.4) for the DP
mixture model. Recall that the NRM mixture model Eq. (204) consists of a completely
random measure G and parameters θ = (θ1, . . . , θN ) corresponding to observations x =
(x1, . . . , xN ). In addition, there is an auxiliary variable U used in the characterization of
the posterior NRM. We also introduce slice variables s = (s1, . . . , sN ) with

si |G, θi ∼ U [0, G({θi})]. (212)

The conditional sampler consists mainly of two phases: sampling G, U and s given θ,
and Gibbs sampling θ given G, U and s. Let π be the partition of [N ] induced by θ, with
(φc)c∈π being the unique values, corresponding to the parameters of the clusters.

In the first phase, we update G, U and s given θ. We first update U , with G and s
marginalized out, then sample both G and s from their joint conditional distribution given
U and θ. As in Sec. (14.1), U can be updated using either slice sampling or Metropolis-
within-Gibbs. The conditional distribution of G given θ is given by Eq. (199). In particular,

G | θ = G′ +
∑

c∈π

Wcδφc , (213)

where G′ consists of the atoms in G besides those corresponding to the values in θ. We first
simulate the masses Wc of each atom φc, which are mutually independent, with distribution

Pc(dwc) ∝ e−Uwcw
|c|
c ν(dwc). Given these masses, the slice variables can be simulated inde-

pendently, with si having distribution U [0,Wc] where ∈ π is the cluster index containing
i. Finally, the smooth component G′ can be simulated, with atoms drawn iid from G0 and
masses distributed according to a Poisson process with mean measure v′(dw) = e−Uwν(dw).
The smooth component has infinitely many atoms, however only the finitely many with
masses above smin = mini si are needed in the second phase. We denote these L ≥ 0 atoms
in G′ by φ′1, . . . , φ

′
L, with masses W ′

1, . . . ,W
′
L > smin. A direct approach is to first simulate

the number L of such atoms from a Poisson with rate
∫ ∞

smin

ν ′(dw) (214)

then to draw the masses W ′
1, . . . ,W

′
L by sampling iid from the distribution supported on

[smin,∞) with density proportional to ν ′ (Griffin and Walker, 2011). This approach re-
quires computation of the integral Eq. (214) as well drawing samples from the non-standard
distribution. Another approach which avoids both uses an adaptive thinning procedure
(Favaro and Teh, 2013).

In the second phase, θ is updated given G and s. For each i = 1, . . . , N , the values that
θi can take on are those corresponding to the (finitely many) atoms in G with mass above
si. As in Sec. (6.4), the probability that θi takes on the value of one of these atoms in G is
simply proportional to the probability of observation xi given θi:

p(θi |G, si, xi) ∝











f(xi |φc) for θi = φc for some c ∈ π with Wc > si,

f(xi |φ
′
ℓ) for θi = φ′ℓ for some ℓ = 1, . . . , L with W ′

ℓ > si,

0 otherwise.

(215)
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Finally, the cluster parameters φc for each cluster c ∈ π can be updated using a MCMC
kernel with invariant distribution

p(φc |x,π) ∝ g0(φc)
∏

i∈c

f(xi |φc) (216)

15 Stick-breaking Representation for Normalized Random

Measure

In this section we will derive a stick-breaking representation for normalized random mea-
sures. As for the Dirichlet and Pitman-Yor processes, this gives a generative procedure for
an enumeration of the atoms of the random measure. We will start with a discussion of the
order in which the atoms of the random measure are enumerated, before using the Palm
formula to derive the required generative procedure.

15.1 Size-biased Sampling

We start by recalling the derivation of the stick-breaking representation for Dirichlet pro-
cesses in Sec. (5). The construction was derived starting with the Chinese restaurant pro-
cess, with the mass of each atom being derived as the limiting proportion of customers
sitting at the corresponding table. The first table is distinguished as being the table at
which the first customer sat, and the limiting proportion of customers sitting at the table is
derived to be β1 ∼ Beta(1, α), by identifying the sequence of whether subsequent customers
sit at the table with a Pólya urn scheme with initial parameters 1 and α. For the second
table, its proportion of customers is derived similarly, but now with the argument limited
to the subsequence of customers who did not sit at the first table (which has asymptotic
proportion 1−β1). Among these, the second table is distinguished as the one that the first
customer sits at, and the sequence of whether subsequent customers sit at the table is again
described by a Pólya urn scheme with initial parameters 1 and α, so that the proportion of
customers (among those who did not sit at the first table) who sat at the second table is
β2 ∼ Beta(1, α). Among all customers, the proportion who sat at the second table is thus
β2(1 − β1). This process is repeated for each subsequent table to form the stick-breaking
representation for the Dirichlet process.

There is a natural permutation of the atoms of the DP associated with the stick-breaking
representation, known as a size-biased permutation. Suppose that instead of starting with
the Chinese restaurant process, we start with a discrete probability measure G̃ distributed
according to DP(α,G0), with the collection of atoms and their associated masses in G̃
being {(φk, W̃k) : k = 1, 2, . . .}, where the indexing by k is arbitrary. For example, we may
simulate the atoms and their masses according to a gamma process (Sec. (9.2)), normalizing,
and index the atoms by decreasing mass: W̃1 ≥ W̃2 ≥ · · · . The Chinese restaurant process
corresponds to the partition induced by a sequence θ1, θ2, . . . of iid draws from G̃, with
the first table simply corresponding to the atom of G̃ picked by θ1. This atom is φk with
probability W̃k, for each k ∈ N. In other words it is a size-biased draw from among the
atoms of G̃, with atoms with larger masses having higher chances of being drawn. Let 1∗ be
the index of the atom corresponding to the first table. Continuing the process, the second

86



table corresponds to the next distinct atom of G̃ encountered along the sequence θ1, θ2, . . .,
and it equals φk with probability W̃k/

∑

ℓ 6=1∗ W̃ℓ for each k ∈ N\{1∗}. In other words, it

is a size-biased draw from the atoms of G̃ other than φ1∗ . Let the index of the second
atom be 2∗. In a similar fashion, we get 3∗, 4∗, . . ., with each index k∗ being drawn without
replacement, and equalling k with probability proportional to W̃k. The sequence 1∗, 2∗, . . .
is a permutation of {1, 2, . . .}, as each k = 1, 2, . . . will appear exactly once in the sequence.
It is size-biased in the sense that indices with larger masses tend to appear earlier in the
sequence.

15.2 The Stick-breaking Construction

Returning now to the normalized random measure, we can write the underlying unnormal-
ized completely random measure as

G =
∞
∑

k=1

Wkδφk (217)

where Wk > 0 are the masses of the atoms φk. Let the Lévy measure be ν and base
distribution be G0, and let the total mass be denoted T =

∑∞
k=1Wk, which we assume is

positive and finite almost surely, and has a density fT (which depends on ν).
Let θ1, θ2, . . . be a sequence of iid draws from the normalized random measure G/T . As

above, this sequence induces a size-biased permutation 1∗, 2∗, . . . of the atoms of G, where
for each k = 1, 2, . . ., we define k∗ to be the index of the kth unique atom among those in G
appearing in the sequence θ1, θ2, . . .. In the case of the DP, this corresponds exactly to the
kth table in the Chinese restaurant process. We shall use this size-biased permutation to
construct a stick-breaking representation. In particular, let W ∗

k = Wk∗ be the mass of the
kth size-biased atom of G. Our aim is to derive the joint distribution of W ∗

1 ,W
∗
2 , . . . as a

sequential process, in which we can first draw W ∗
1 , followed by W ∗

2 , W
∗
3 and so forth. This

enumerates all the atoms of G in a different order than that in Eq. (217):

G =

∞
∑

k=1

W ∗
k δφk∗ . (218)

We will derive the joint distribution of the size-biased masses along with the total mass
T , starting with the joint distribution of T and the first size-biased mass W ∗

1 . For each
k = 1, 2, . . ., the index 1∗ is equal to k with probability proportional to Wk, so that the
joint distribution of W ∗

1 and T is,

P (W ∗
1 ∈ dw1, T ∈ dt|G) =

∞
∑

k=1

Wk

T
δWk

(dw1)δT (dt) (219)

P (W ∗
1 ∈ dw1, T ∈ dt) = E

[

∞
∑

k=1

Wk

T
δWk

(dw1)δT (dt)

]

= E

[∫

w

T
δw(dw1)δT (dt)N(dξ)

]
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where N =
∑∞

k=1 δφk ,Wk
denotes the Poisson random measure underlying the CRM G, and

ξ = (φ,w). Using the Palm Formula and the fact that the mean measure of N is G0 ⊗ ν,

=

∫

E

[

w

T + w
δw(dw1)δT+w(dt)

]

ν(dw)

=
w1

t
fT (t− w1)dt ν(dw1) (220)

Normalizing the joint distribution, we get the conditional distribution of W ∗
1 given T ,

P (W ∗
1 ∈ dw1 |T ∈ dt) =

w1

t

fT (t− w1)

fT (t)
ν(dw1) (221)

The joint distribution above can roughly be interpreted as follows: ν(dw1) is the “rate” of
observing that an atom of mass w1 exists in G, fT (t−w1) is the density that the total mass
of all other atoms is t − w1 (so that the total mass is t), and w1/t is the probability that
the atom of mass w1 was picked during size-biased sampling. Notice that the distribution
of the total mass of all other atoms, given that there is an atom of mass w1, is precisely
the same as the distribution of the total mass of all atoms without knowledge of the atom
with mass w1. This is a consequence of the theory of the Palm distributions of the Poisson
random measure described in Sec. (13.1), which implies that the distribution of the other
atoms in G given the atom of mass w1 is still as before and given by CRM(ν,G0).

We can apply the same argument to determine the distribution of the subsequent size-
biased masses W ∗

2 ,W
∗
3 , . . .. One approach is to derive, for each k ≥ 1, the joint probability

P (W ∗
1 ∈ dw1, . . . ,W

∗
k ∈ dwk, T ∈ dt) (222)

using the same technique as above, by first writing down the probability conditioned on G,
then integrating out G using repeated applications of the Palm formula. Another, simpler
but more indirect, way is to make use of the theory of Palm distributions. In particular,
given W ∗

1 ∈ dw1, . . . ,W
∗
k−1 ∈ dwk−1, the distribution of the masses of all other atoms in G

is precisely given by CRM(ν,G0). The difference is that while originally we condition on
the total mass being t, now the total mass is reduced to t−

∑k−1
j=1 wj necessarily. Thus the

conditional distribution of W ∗
k is analogous to Eq. (221) with a reduced total mass,

P (W ∗
k ∈ dwk |T ∈ dt,W ∗

1 ∈ dw1, . . . ,W
∗
k−1 ∈ dwk−1) =

wk

t−
∑k−1

j=1 wj

fT (t−
∑k

j=1wj)

fT (t−
∑k−1

j=1 wj)
ν(dwk)

(223)

This completes our derivation for the distribution of the atom masses of G in size-biased
order. It has a stick-breaking metaphor as follows: We start by drawing the total mass T
from its distribution given ν (with density fT ). This presents a stick of length T . We
now iteratively break pieces of the stick off, with the first piece being of length W ∗

1 , with
conditional distribution Eq. (221), and for each k > 1, the kth subsequent stick is obtained
by breaking a length of W ∗

k off the stick, which has reduced length T −
∑k−1

j=1 W
∗
j , with W

∗
k

having conditional distribution Eq. (223).
Returning again to our running example of the normalized generalized gamma process,

the only unknown quantity here is the form of the distribution of its total mass Tα,β,σ. When
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β = 0, the NGGP reduces to a normalized stable process, and Tα,0,σ has a positive stable
distribution, a well-studied distribution with known characteristic function, efficient simula-
tion algorithms, but no closed analytically tractable density. When β > 0, the distribution
becomes an exponentially-tilted (or Esscher-transformed) positive stable distribution. This
was studied by Devroye (2009) who gave an algorithm for efficiently simulating from such
distributions. While methods for numerically computing the density of stable distributions
exist, they tend to be computationally expensive, so that the stick-breaking construction
does not lead directly to practically relevant inference algorithms. The only special cases
for which the density is known are when σ = 0, in which case the NGGP reduces to a DP,
and when σ = 1/2, in which case it reduces to a normalized inverse Gaussian process.

15.3 Back to the Induced Random Partition

We started this section by relating a sequence of iid draws from the normalized random
measure G/T , via size-biased sampling, to the stick-breaking construction. Using the results
for the stick-breaking construction derived above, we can now return to the setting of iid
draws, in particular to giving an explicit generative procedure for simulating the sequence
θ1, θ2, . . . which does not require simulating the whole random measure G.

We start with simulating the total mass T of G, which has distribution given by fT .
For the first draw θ1, its marginal distribution is simply given by the base distribution
G0. The value of θ1 thus generated corresponds to the first size-biased sample φ∗1 from G.
Further, the distribution of the corresponding mass W ∗

1 of the atom in G, conditioned on
the simulated value of T , is given by Eq. (221).

For the second draw θ2, this can either take on the value φ∗1, with probability W ∗
1 /T , or

the value of the second size-biased atom φ∗2 of G, with probability (T−W ∗
1 )/T . In case of the

latter, the atom φ∗2 can be simulated from the base distribution G0, while the corresponding
mass can be simulated using Eq. (223) with k = 2. For subsequent draws, say θn for n ≥ 3,
suppose at this point that there were k−1 unique values among θ1, . . . , θn−1, corresponding
to the first k− 1 size-biased samples φ∗1, . . . , φ

∗
k−1 from the atoms of G, with corresponding

masses W ∗
1 , . . . ,W

∗
k−1. Then θn will take on value φ∗ℓ , for ℓ = 1, . . . , k − 1, with probability

W ∗
ℓ /T , or the value of the kth size-biased atom φ∗k of G, with probability (T−

∑k−1
ℓ=1 W

∗
ℓ )/T .

In the latter case the atom φ∗k is again simulated from the base distribution G0 and the
corresponding mass simulated using the stick-breaking formula Eq. (223). The above gives
an explicit procedure to simulate the sequence θ1, θ2, . . . along with the corresponding atoms
φ∗1, φ

∗
2, . . . and their masses W ∗

1 ,W
∗
2 , . . . in G in size-biased order.

Suppose that once the total mass T and θ1, . . . , θN are all simulated, there are K unique
values φ∗1, . . . , φ

∗
K with corresponding masses W ∗

1 , . . . ,W
∗
K in G. Further, let π be the

random partition of [N ] induced by θ1, . . . , θN , and n1, . . . , nK be the number of occurrences
of each unique value. The joint distribution of all the simulated random variables is then
given by multiplying all the probabilities and densities involves in each step of the above
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procedure, giving,

P (T ∈ dt,π = π, φ∗k ∈ dψk,W
∗
k ∈ dwk for k = 1, . . . ,K)

=fT (t)

K
∏

k=1

t−
∑k−1

j=1 wj

t

wk

t−
∑k−1

j=1 w − j

fT (t−
∑k

j=1wj)

fT (t−
∑k−1

j=1 wj)
ν(dwk)G0(dψk)

(wk
t

)nk−1

=fT (t−
∑K

k=1wk)t
−Ndt

K
∏

k=1

wnk

k ν(dwk)G0(dψk) (224)

Notice although the generative procedure introduces a particular size-biased order among
the unique values (and particularly that the masses W ∗

1 , . . . ,W
∗
K are size-biased), the joint

distribution above is in fact invariant to this order. This is down to the fact that the
sequence θ1, . . . , θN is exchangeable.

We conclude this section by noting that the above joint distribution, which describes
both the induced random partition π as well as the masses of the associated atoms and
the total mass, is consistent with the EPPF derived in Eq. (202). To see this, introduce an
auxiliary variable U ∼ Gamma(n, T ) and a change of variable T ′ = T −

∑K
k=1W

∗
k , which

can be interpreted as the total mass among all other atoms except the K associated with
θ1, . . . , θN . The resulting joint distribution becomes,

P (T ′ ∈ dt′, U ∈ du,π = π, φ∗k ∈ dψk,W
∗
k ∈ dwk for k = 1, . . . ,K)

=fT (t
′)

1

Γ(N)
uN−1e−u(t

′+
∑K

k=1 wk)
K
∏

k=1

wnk

k ν(dwk)G0(dψk) (225)

=
1

Γ(N)
uN−1fT (t

′)e−ut
′

K
∏

k=1

e−uwkwnk

k ν(dwk)G0(dψk)

Marginalizing out T ′ and W ∗
1 , . . . ,W

∗
K , and using the fact that fT is the distribution of the

total mass of the CRM with Lévy measure ν,

P (U ∈ du,π = π, φ∗k ∈ dψk for k = 1, . . . ,K)

=
1

Γ(N)
uN−1 exp

(

−

∫

1− e−uwν(dw)

) K
∏

k=1

G0(dψk)

∫

e−uwkwnk

k ν(dwk) (226)

which exactly agrees with Eq. (196), modulo a few notational differences. Specifically, the
number of clusters is K = |π|, and here the sizes of the clusters are given by n1, . . . , nK ,
with the clusters ordered according to the stick-breaking construction. More precisely,
the clusters are ordered in increasing order of their least elements. Note that the first
exponential term is the Laplace transform of the total mass of a CRM with Lévy measure
ν, and follows from the Lévy-Khinchin formula Eq. (144).

16 Poisson-Kingman Processes

Over the last few sections, we have developed the various useful techniques and repre-
sentations for working with normalized completely random measures. These form a large
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class of random probability measures including the Dirichlet process, the normalized stable
process, the normalized inverse Gaussian process and the normalized generalized gamma
process. Unfortunately, the Pitman-Yor process, which is the second random probability
measure studied in Part I, does not fall into this class. In this section we will elucidate the
relationship between these two classes, by introducing a small generalization of normalized
random measures. We refer to this class as the Poisson-Kingman processes (PKPs), in view
of the study by Pitman (2003) on the exchangeable random partitions induced by random
probability measures in this class, which he called the Poisson-Kingman partitions.

Let G be a completely random measure with Lévy measure ν and base distribution
G0, and let T = G(Θ) be its total mass. For simplicity, suppose that T is positive and
finite almost surely, and has a density fT . The Poisson-Kingman processes are obtained
by imposing a different distribution, say γ, over the total mass T . For each positive value
t > 0 such that fT (t) > 0, denote the conditional distribution of the random measure
G, given that its total mass is T ∈ dt, by PK(ν,G0, δt). The general construction of a
Poisson-Kingman process PK(ν,G0, γ) is then obtained by mixing the total mass over the
alternative distribution γ:

T ∼ γ

G|T ∼ PK(ν,G0, δT ). (227)

In other words, we require that the total mass T has distribution γ, and otherwise G is
completely random with Lévy measure ν and base distribution G0.

Based on Sec. (15), both the stick-breaking construction and the induced random par-
tition of normalized random measures can be extended to the Poisson-Kingman process
directly. Consider first the stick-breaking representation, which was derived by first draw-
ing the total mass T from its distribution fT , then by breaking off pieces of a stick with
initial length T . In the case of the Poisson-Kingman process, we simply replace the initial
distribution of T by γ. The resulting joint distribution over the total mass T , random
partition π, and associated size-biased draws is, following from Eq. (224),

P (T ∈ dt,π = π, φ∗k ∈ dψk,W
∗
k ∈ dwk for k = 1, . . . ,K)

=γ(dt)
fT (t−

∑K
k=1wk)

fT (t)
t−Ndt

K
∏

k=1

wnk

k ν(dwk)G0(dψk), (228)

where all the terms except γ(dt) constitute the conditional distribution of the other random
variables given T ∈ dt.

A subclass consists of the σ-stable Poisson-Kingman processes, which is obtained when
the underlying completely random measure is a σ-stable process with Lévy measure

νσ,0,σ(dw) =
σ

Γ(1− σ)
w−σ−1dw. (229)

This subclass is particularly mathematical tractable, as the form of the Lévy measure allows
for the atom masses W ∗

k ’s in the above joint distribution to be marginalized out. Define a

change of variables with S =
∑K

k=1W
∗
k and Vk = W ∗

k /S for each k = 1, . . . ,K − 1. Then,
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noting that the Jacobian is SK−1 (see Appendix B), we have,

P (T ∈ dt, S ∈ ds,π = π, Vk ∈ dvk for k = 1, . . . ,K − 1)

=γ(dt)
fσ,0,σ(t− s)

fσ,0,σ(t)
t−NsK−1dt ds

K
∏

k=1

σ

Γ(1− σ)
(vks)

nk−σ−1dvk

=γ(dt)
fσ,0,σ(t− s)

fσ,0,σ(t)
t−NsN−Kσ−1dt ds

σK

Γ(1− σ)K

K
∏

k=1

vnk−σ−1
k dvk,

where we defined vK = 1 −
∑K−1

k=1 vk, and fσ,0,σ is the density of the total mass Tσ,0,σ of
Gσ,0,σ , a positive σ-stable random variable. The terms containing the vk’s are proportional
to the density for a Dirichlet distribution with parameters (n1 − σ, . . . , nK − σ), so that
marginalizing out V1, . . . , VK−1 gives,

P (T ∈ dt, S ∈ ds,π = π) =
σK

Γ(N −Kσ)
γ(dt)

fσ,0,σ(t− s)

fσ,0,σ(t)
t−NsN−Kσ−1dt ds

K
∏

k=1

Γ(nk − σ)

Γ(1− σ)
.

Integrating out T and S,

P (π = π) =
σK

Γ(N −Kσ)

∫ ∞

0

∫ t

0
γ(dt)

fσ,0,σ(t− s)

fσ,0,σ(t)
t−NsN−Kσ−1ds dt

K
∏

k=1

(1− σ)(nk−1),

(230)

and we see that the EPPF factorizes into a term which depends only upon the number of
clusters K, and terms of the form (1− σ)(nk−1), which are the same as for the Pitman-Yor
process Eq. (77) and the normalized generalized gamma process Eq. (203). In fact, both are
special cases of the σ-stable Poisson-Kingman process for specific choices of the distribution
γ over the total mass.

16.1 Back to the Normalized Generalized Gamma Process

For the normalized generalized gamma process, the total mass distribution γ is an exponentially-
tilted stable distribution, with density

γNGGP
β,σ (dt) = eβ

σ−βtfσ,0,σ(t)dt, (231)

where eβ
σ
is the normalization constant, as can be observed from the Laplace transform

Eq. (175) for a stable random variable:
∫∞
0 e−βtfσ,0,σ(t)dt = E[e−βTσ,0,σ ] = e−β

σ
. Some

algebra allows us to verify that Eq. (230) reduces to the EPPF of a NGGP Eq. (203),

P (π = π)

=
σK

Γ(N −Kσ)

∫ ∞

0

∫ t

0
eβ

σ−βtfσ,0,σ(t− s)t−NsN−Kσ−1ds dt

K
∏

k=1

(1− σ)(nk−1).
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With a change of variable from t to t′ = t− s,

=
σKeβ

σ

Γ(N −Kσ)

∫ ∞

0

∫ ∞

0
e−β(t

′+s)fσ,0,σ(t
′)(t′ + s)−NsN−Kσ−1ds dt′

K
∏

k=1

(1− σ)(nk−1)

=
σKeβ

σ

Γ(N −Kσ)

∫ ∞

0

∫ ∞

0
e−β(t

′+s)fσ,0,σ(t
′)

1

Γ(N)

∫ ∞

0
uN−1e−(t′+s)udu sN−Kσ−1ds dt′

K
∏

k=1

(1− σ)(nk−1)

=
σKeβ

σ

Γ(N −Kσ)Γ(N)

∫ ∞

0
uN−1

(∫ ∞

0
e−(u+β)t′fσ,0,σ(t

′)dt′
)(∫ ∞

0
e−(u+β)ssN−Kσ−1ds

)

du

K
∏

k=1

(1− σ)(nk−1)

=
σKeβ

σ

Γ(N −Kσ)Γ(N)

∫ ∞

0
uN−1e−(u+β)σΓ(N −Kσ)(u+ β)Kσ−Ndu

K
∏

k=1

(1− σ)(nk−1)

=
σK

Γ(N)

∫ ∞

0
uN−1(u+ β)Kσ−Ne−((u+β)σ−βσ)du

K
∏

k=1

(1− σ)(nk−1). (232)

We see that the EPPF agrees with that for a NGGP with parameters (σ, β, σ). Noting
that an NGGP with parameters (α, β, σ) is equivalent to one with parameters (αcσ , β/c, σ)
obtained by rescaling the underlying CRM by c, for any c > 0, we see that any NGGP is
equivalent to one with parameters (σ, β, σ), for some σ and β, and in turn to the σ-stable
Poisson-Kingman process with γNGGP

β,σ as its total mass distribution.

16.2 Back to the Pitman-Yor Process

For the Pitman-Yor process, the total mass distribution is given by,

γPYP
α,σ (dt) =

σΓ(α)

Γ(α/σ)
t−αfσ,0,σ(t)dt, (233)

where α > −σ is the concentration parameter of the Pitman-Yor process. The distribution
γPYP
α,σ is a polynomially-tilted positive stable distribution (Devroye, 2009), as it is obtained

by tilting the positive stable distribution by a polynomial factor t−α. The leading fraction is
the normalization constant. This can be seen most easily when the concentration parameter
α > 0, using the Gamma identity t−α = 1

Γ(α)

∫∞
0 uα−1e−utdu. To also include the case when

−σ < α ≤ 0, we make use of the Laplace transform for the stable distribution, which is
obtained as a special case of Eq. (175),

E[e−uTσ,0,σ ] =

∫ ∞

0
e−utfσ,0,σ(t)dt = e−u

σ

(234)

Differentiating both sides with respect to u, we see that,

∫ ∞

0
te−utfσ,0,σ(t)dt = σuσ−1e−u

σ

. (235)
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Now,

∫ ∞

0
t−αfσ,0,σ(t)dt =

∫ ∞

0
t−(α+1)tfσ,0,σ(t)dt

=

∫ ∞

0

1

Γ(α+ 1)

∫ ∞

0
uαe−utdu tfσ,0,σ(t)dt using the Gamma identity,

=
1

Γ(α+ 1)

∫ ∞

0
uα
∫ ∞

0
te−utfσ,0,σ(t)dt du

=
1

Γ(α+ 1)

∫ ∞

0
uασuσ−1e−u

σ

du using Eq. (235),

=
1

Γ(α+ 1)

∫ ∞

0
vα/σe−vdv using a change of variable v = uσ,

=
Γ(α/σ + 1)

Γ(α+ 1)
=

Γ(α/σ)

σΓ(α)
. (236)

To see that this choice of γPYP
α,σ leads to the Pitman-Yor process, we again check that the

σ-stable Poisson-Kingman EPPF Eq. (230) reduces to that for the Pitman-Yor process:

P (π = π)

=
σK

Γ(N −Kσ)

∫ ∞

0

∫ t

0

σΓ(α)

Γ(α/σ)
t−αfσ,0,σ(t− s)t−NsN−Kσ−1ds dt

K
∏

k=1

(1− σ)(nk−1)

=
σK+1Γ(α)

Γ(α/σ)Γ(N −Kσ)

∫ ∞

0

∫ t

0
t−α−Nfσ,0,σ(t− s)sN−Kσ−1ds dt

K
∏

k=1

(1− σ)(nk−1).

Again introducing a change of variable from t to t′ = t− s, and using the Gamma identity,

=
σK+1Γ(α)

Γ(α/σ)Γ(N −Kσ)

∫ ∞

0

∫ ∞

0

∫ ∞

0

1

Γ(α+N)
uα+N−1e−u(t

′+s)dufσ,0,σ(t
′)sN−Kσ−1ds dt′

K
∏

k=1

(1 − σ)(nk−1)

=
σK+1Γ(α)

Γ(α/σ)Γ(N −Kσ)Γ(α+N)

∫ ∞

0
uα+N−1

∫ ∞

0
e−ut

′

fσ,0,σ(t
′)dt′

∫ ∞

0
e−ussN−Kσ−1dsdu

K
∏

k=1

(1− σ)(nk−1)

=
σK+1Γ(α)

Γ(α/σ)Γ(N −Kσ)Γ(α+N)

∫ ∞

0
uα+N−1e−u

σ

Γ(N −Kσ)uKσ−Ndu

K
∏

k=1

(1− σ)(nk−1)

=
σK+1Γ(α)

Γ(α/σ)Γ(α +N)

∫ ∞

0
uα+Kσ−1e−u

σ

du

K
∏

k=1

(1− σ)(nk−1).
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Introducing a change of variable v = uσ,

=
σK+1Γ(α)

Γ(α/σ)Γ(α +N)

∫ ∞

0

1

σ
vα/σ+K−1e−vdv

K
∏

k=1

(1− σ)(nk−1)

=
σKΓ(α)

Γ(α/σ)Γ(α +N)
Γ(α/σ +K)

K
∏

k=1

(1− σ)(nk−1)

=
α(α+ σ) · · · (α+ σ(K − 1))

α(N)

K
∏

k=1

(1− σ)(nk−1) (237)

which is precisely the Pitman-Yor EPPF derived in Eq. (77).
The normalized generalized gamma process and the Pitman-Yor process are special

cases of Poisson-Kingman processes where all the integrals above just work out analytically,
simplifying the derivations significantly. Generally, they do not simplify in such a fashion.
However, armed with the joint distribution Eq. (228) or the EPPF Eq. (230), it is possible
to derive tractable inference algorithms and work with the general class of Poisson-Kingman
processes.

17 Gibbs-Type Exchangeable Random Partitions

Poisson-Kingman processes can be thought of as extensions of normalized random mea-
sures where the total mass is allowed to have any arbitrary marginal distribution γ. One
may question why this particular form of extension makes mathematical sense, besides the
observation that the Pitman-Yor process is a particular example. In this section, we will
discuss a class of exchangeable random partitions that are in a sense natural, and how these
lead to a number of natural classes of random probability measures, including the σ-stable
Poisson-Kingman processes.

Recall that an exchangeable random partition is a distribution over partitions that is
invariant to the ordering of its elements. That is, for each N , the probability of a partition
π[N ] of [N ] depends only on the number of clusters and the sizes of the clusters. Mathe-
matically, there is a function p such that the exchangeable partition probability function
(EPPF) is,

P (π[N ] = π[N ]) = p(K,n1, . . . , nK) (238)

where K = |π[N ]| is the number of clusters and n1, . . . , nK are the sizes of the clusters in
π[N ]. The function p is symmetric in all but the first argument, that is, it is invariant to
the ordering of the clusters.

We have seen examples of EPPFs for the random partitions induced by the Dirichlet
process Eq. (6), by the Pitman-Yor process Eq. (77), by the normalized generalized gamma
process Eq. (203) and most generally for the σ-stable Poisson-Kingman processes Eq. (230).
All of them take the form of a product of factors,

p(K,n1, . . . , nK) = VNK

K
∏

k=1

Wnk
(239)
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where Vnk and Wm are both positive functions for positive integers n, k and m. This form
for the EPPF is sensible, and reminiscent of Gibbs distributions or exponential families,
which define distributions over a collection of random variables as products of factors, each
factor being a function of a sufficient statistic of the random variables. We can think of the
above as an exponential family distribution over exchangeable partitions, with the sufficient
statistics being the number of clusters K and the sizes of the clusters n1, . . . , nK (N is a
fixed constant here and it is not necessary to include it as a sufficient statistic).

Given de Finetti’s Theorem which gives a direct correspondence between random par-
titions and random probability measures, a natural question to ask is: What classes of
random probability measures will induce exchangeable random partitions whose EPPFs
are of the form Eq. (239)? Gnedin and Pitman (2006) gave a complete characterization of
the classes of random probability measures inducing Gibbs-type EPPFs. Specifically, they
showed that the Wm factors can always be written in the form

Wm = (1− σ)(m−1) (240)

where σ ∈ [−∞, 1]. When σ = −∞, the random partition is degenerate and always consist
of a single cluster, while in the other extreme when σ = 1, the random partition is also
degenerate, with all items belonging to their own singleton clusters. In between, when
σ ∈ (−∞, 1), the random partition can be non-trivial, and the corresponding random
probability measures break into three distinct classes, each corresponding to a disjoint
range of σ:

• σ = 0. This includes the one-parameter CRP Eq. (6) induced by the DP. It was
shown that the class of Gibbs-type exchangeable random partitions corresponds to
these, but with a randomized concentration parameter:

p(K,n1, . . . , nK) =

∫

αK

α(α+ 1) · · · (α+N − 1)
γ(dα)

K
∏

k=1

1(nk−1), (241)

where γ is some distribution over R+ and can be interpreted as a prior for α.

• 0 < σ < 1. This corresponds precisely to the σ-stable Poisson-Kingman processes.
From Eq. (230), we already see that these are of Gibbs-type. The converse is true
as well: any Gibbs-type exchangeable random partition with index σ ∈ (0, 1) is the
induced random partition of some σ-stable Poisson-Kingman process.

• σ < 0. This corresponds precisely to Bayesian finite mixtures. Let K∗ be the number
of components and W1, . . . ,WK∗ be the mixing proportions. The finite mixture can
be represented succinctly as a random probability measure,

G =

K∗

∑

k=1

Wkδφ∗
k

(242)

where φ∗1, . . . , φ
∗
K∗ are the component parameters. Suppose that out ofN observations,

n∗k are assigned to component k, for each k = 1, . . . ,K∗, and denote these assignments
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by z∗. A typical prior for the mixing proportions is a symmetric Dirichlet distribution.
If this has parameters (|σ|, . . . , |σ|), then the marginal distribution of z∗ is,

P (z∗|K∗) =
Γ(K∗|σ|)

Γ(N −K∗σ|)

K∗

∏

k=1

Γ(n∗k − σ)

Γ(|σ|)
=

|σ|K
∗

Γ(K∗|σ|)

Γ(N −K∗σ|)

K∗

∏

k=1

(1− σ)(n
∗

k
−1) (243)

For a partition π[N ] of [N ] consisting of K clusters, with sizes n1, . . . , nK , the proba-
bility of π[N ] under the finite mixture model is then,

P (π[N ] = π[N ]|K
∗) =

|σ|K
∗

Γ(K∗|σ|)

Γ(N −K∗σ|)
K∗(K∗ − 1) · · · (K∗ −K + 1)

K∗

∏

k=1

(1− σ)(nk−1).

(244)
The additional factors are due to the fact that the clusters in π[N ] are unlabelled, while
those in z∗ are labelled by numbers in [K∗]. As a result, for the partition π[N ], there
are K∗(K∗ − 1) · · · (K∗ −K +1) corresponding assignments, all the same probability.
Note that whenK > K∗ the resulting probability is 0, which is due to the fact that the
finite mixture cannot represent more than K∗ clusters. Now if we use a prior γ over
the number of components of the finite mixture, we will have a marginal distribution
over partitions,

P (π[N ] = π[N ]) =

∞
∑

K∗=1

γ(K∗)
|σ|K

∗

Γ(K∗|σ|)

Γ(N −K∗σ|)
K∗(K∗−1) · · · (K∗−K+1)

K∗

∏

k=1

(1−σ)(nk−1),

(245)
which is of Gibbs-type with a negative index σ. The converse is true as well: any
Gibbs-type exchangeable random partition with index σ < 0 is the induced random
partition of a Bayesian finite mixture.

A discussion of the framework of Gibbs-type exchangeable random partitions and their use
in Bayesian nonparametrics is provided by (De Blasi et al., 2015).
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Part IV: A Few Final Words
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For a more in-depth review of various constructions for random measures based on
completely random measures, see Lijoi and Pruenster (2010).

Again mention DDPs and cite some literature.
Cite something by Lancelot.
Theory.
Variational approaches.
Hjort et al book.
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Appendix A Some Background on Measure Theory

The purpose of this section is to provide some comfort to readers who may find the following
notation mysterious:

∫

f(x)µ(dx), (246)

where µ is a measure, not to mention the notation:

∫

f(ω, p)N(dω, dp), (247)

where N is a discrete random measure.
Probability theory reposes on measure theory, and any serious user of probability theory

will eventually need to master some measure theory; this is particularly true for a user work-
ing in an area such as Bayesian nonparametrics in which the principal objects are random
measures. That said, in this monograph we have assumed little prior exposure to measure
theory on the part of the reader (and we have accordingly skirted several opportunities to
make rigorous statements that would require some measure theory). The main exception
to this statement is that we have made use of the basic idea that a measure can be used to
define an integral.

To give an interpretation to the object
∫

f(x)µ(dx), which is known as a Lebesgue
integral, let us recall the interpretation given to the classical Riemann integral,

I =

∫

f(x)dx, (248)

where x ranges over the real line R. Note first that such integrals are generally specified
with lower and upper limits:

I =

∫ b

a
f(x)dx, (249)

but it can be useful to lighten our notation by writing

I =

∫ b

a
f(x)dx =

∫

1A(x)f(x)dx, (250)

where the indicator function 1A(x) is equal to one if x lies in the interval A, and zero
otherwise, and where A = [a, b]. We then redefine f(x) to include the factor 1A(x); this
allows us to avoid having to write out lower and upper limits explicitly.

The integral
∫

f(x)dx is defined in elementary calculus as a limit of sums over partitions
of the interval [a, b]. For example, consider the partition (a = x0, x1, . . . , xm−1, xm = b),
where the length of each subinterval, |xi−xi−1|, for i = 1, . . . ,m, is equal to 1/m. Evaluating
the function f(x) somewhere in each subinterval, for example at the right boundary of the
subinterval, we form the finite sum:

Im =
m
∑

i=1

f(xi)|xi − xi−1|, (251)
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and define I as the limit of Im as m goes to infinity. While such a limit won’t exist for
arbitrary f , it does exist for certain classes of f , and with attention paid to ensuring that
the limit is independent of the choice of evaluation point in the subinterval, as well as the
choice of partition, one can obtain a basic theory of integration. (The full development of
such theoretical results can consume several months of a young student’s life.)

Note that the symbol “dx” doesn’t have an interpretation all by itself (in particular,
it does not mean a “small interval”). Rather, “dx” has a meaning in the context of the
notation

∫

f(x)dx, simply as a reminder that the size of subintervals in the approximating
sums Im is obtained by using the classical notion of length.

Turning to the Lebesgue integral
∫

f(x)µ(dx), the change to the notation is that “dx”
is replaced with “µ(dx).” Again, the latter symbols do not have an interpretation all by
themselves; rather, they are meant to suggest that a different notion of the length is being
used in the approximating sums. In particular, let µ be a measure on R; this is a function
that assigns a real number to intervals and other subsets of the real line, doing so in a
coherent way (e.g., such that the measure of a union of disjoint subsets is the sum of
the measures of the subsets). Let µ(C) denote the measure assigned to the subset C; in
particular, µ((xi−1, xi)) is the measure assigned by µ to the subinterval (xi−1, xi). This
suggests that we define the following approximating sequence,

Im =

m
∑

i=1

f(xi)µ((xi−1, xi)), (252)

and take the limit as m goes to infinity as the definition of
∫

f(x)µ(dx).
This is indeed the correct intuition. The advanced student of real analysis will know

that the actual definition of a Lebesgue integral is more sophisticated than this, relying on
a better way of defining partitions and requiring a notion of “measurable function,” but
such considerations are better left to a full-blown study of real analysis. For our purposes,
interpreting

∫

f(x)µ(dx) as a limit of sums in which µ is used in place of the classical
notion of length will serve just fine. Note, moreover, that the same intuition serves when
x is allowed to range over R

k or over more general spaces. As long as we can measure the
size of subsets associated with increasingly fine partitions of sets via a measure µ, we can
define integrals over those sets.

One aspect of the generalization from “dx” to “µ(dx)” that is worthy of particular
mention in our context is that in Lebesgue integration µ is allowed to contain atoms. Recall
that if an atom is located at a point z then we have µ({z}) > 0. The classical measure of
length assigns zero length to single points and thus does not allow atoms. Let us consider
what happens when we integrate with respect to a measure that is precisely a single atom;
i.e., let µ = δz. We have µ((xi−1, xi)) = 0 for all intervals that do not contain the atom,
and µ((xi∗−1, xi∗)) = 1 for the single interval that contains the atom. Thus,

Im =

m
∑

i=1

f(xi)µ((xi−1, xi)) = f(xi∗) ≈ f(z), (253)

where the final approximation is based on an assumption about f (its continuity). Thus as
m goes to infinity we expect Im to approach f(z), yielding:

∫

f(x)µ(dx) = f(z). (254)
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Similarly, if µ =
∑J

j=1 δzj is a sum of atoms, we obtain

∫

f(x)µ(dx) =

J
∑

j=1

f(zj). (255)

Noting that a sum of atoms is known as a “counting measure,” we see that we can express
sums as Lebesgue integrals with respect to counting measure. Finally, we can also consider
weighted sums of atoms where µ =

∑J
j=1wjδzj , in which case we obtain a weighted sum:

∫

f(x)µ(dx) =

J
∑

j=1

wjf(zj). (256)

A weighted sum of atoms is also known as a “discrete measure.”
Putting these ideas together, we can now provide an interpretation of the integral

∫

f(ω, p)N(dω, dp). (257)

This is simply a Lebesgue integral on a space in which the coordinates are (ω, p) and where
N is a measure on that space. Moreover, for the case of interest to us in which N is a
counting measure, let {(ωi, pi)} denote the set of atoms forming N . We have:

∫

f(ω, p)N(dω, dp) =
∑

i

f(ωi, pi). (258)

Finally, if N is a random measure, then the integral with respect to N is a real-valued
random quantity; i.e., a random variable. Thus it makes sense to talk about quantities such
as

E

∫

f(ω, p)N(dω, dp), (259)

and
Ee−t

∫
f(ω,p)N(dω,dp), (260)

as we have done in Sec. (9).

Appendix B The Dirichlet Distribution

In this appendix, we provide some of the basic definitions and properties associated with the
Dirichlet distribution. We intend for the material to be reasonably complete, so that it can
be used as a resource not only by the beginning reader, but also by a more advanced reader
who is attempting to go beyond the material presented in the main text. The material here
does not need to be mastered before reading the main text, but it eventually should be
mastered.

The Dirichlet distribution is a distribution on a simplex—a finite-dimensional set of
nonnegative numbers that sum to one. In particular, define the simplex SK−1 as the set
of vectors v = (v1, v2, . . . , vK) that satisfy 0 < vi < 1 and

∑K
i=1 vi = 1. Note that SK−1
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has measure zero when viewed as a subset of RK ; thus, if we wish to define a probability
density we will need to view SK−1 as embedded in R

K−1. Another way to put this is to
note that v is a redundant parameterization; only K − 1 numbers are needed to specify a
point in SK−1. Let us in particular parameterize a point in SK−1 as (v1, v2, . . . , vK−1) and
define vK :=

∑K−1
i=1 vi.

The Dirichlet distribution is an exponential family distribution on the simplex. Its
density takes the following form:

p(v1, v2, . . . , vK−1) =
Γ(α·)

∏K
i=1 Γ(αi)

K
∏

i=1

vαi−1
i , (261)

where αi > 0 are parameters and where α· :=
∑K

i=1 αi. This density has its support on

the set of points (v1, v2, . . . , vK−1) such that 0 < vi < 1 and
∑K−1

i=1 vi < 1. Let us use the
symbol ΩK−1 to denote this set. Taking the exponential of the logarithm on both sides of
Eq. (261), we see that the natural parameters of the Dirichlet distribution are αi and the
sufficient statistics are log vi.

One often sees the Dirichlet distribution written using the simplified representation:

p(v1, v2, . . . , vK) =
Γ(α·)

∏K
i=1 Γ(αi)

K
∏

i=1

vαi−1
i . (262)

Although this representation is convenient in calculations, it must be kept in mind that
Eq. (262) does not define a density; it is merely a shorthand for the density defined in
Eq. (261).

To show that Eq. (261) in fact defines a density (i.e., that it integrates to one), we
establish a link between the Dirichlet distribution and the gamma distribution.

Representation in terms of normalized gamma random variables

A Dirichlet distribution has a natural representation in terms of a normalized set of inde-
pendent gamma random variables; indeed, this representation is often used as the definition
of the Dirichlet distribution. Many of the properties of the Dirichlet distribution are most
easily obtained starting from the gamma representation.

Recall that the gamma density has the following form:

p(x |α, β) =
βα

Γ(α)
xα−1e−βx, (263)

where Γ(α) =
∫

xα−1e−xdx defines the gamma function for α > 0.

Proposition 2. Let Zi ∼ Gamma(αi, β) denote independent gamma random variables for
i = 1, . . . ,K, where αi > 0 and β > 0. Let S =

∑K
i=1 Zi and define Vi = Zi/S. Then

(V1, . . . , VK) ⊥⊥ S (264)

and

(V1, . . . , VK) ∼ Dir(α1, . . . , αK). (265)
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Proof. This is an exercise in transformation of variables. Consider the transformation
(Z1, . . . , ZK) → (V1, . . . , VK−1, S). The inverse has the form

Zi = SVi, i = 1, . . . ,K − 1 (266)

ZK = S(1−
K−1
∑

i=1

Vi). (267)

This yields the following Jacobian matrix:

∂(z1, . . . , zK)

∂(v1, . . . , vK−1, s)
=











s 0 . . . v1
0 s . . . v2

0
...

. . .
...

−s −s . . . (1−
∑K−1

i=1 vi)











. (268)

Recalling that adding multiples of a given row to other rows does not change the determinant
of a matrix, add each of the first K − 1 rows to the final row; this transforms that row into
(0, 0, . . . , 1). The resulting matrix clearly has a determinant of sK−1.

We now use the change of variables theorem to obtain the joint density of (V1, . . . , VK−1, S):

p(v1, . . . , vK−1, s) = p(z1, . . . , zK)sK−1

=

(

K−1
∏

i=1

βαi

Γ(αi)
(svi)

αi−1e−sβvi

)





βαK

Γ(αK)

(

s(1−
K−1
∑

i=1

vi)

)αK−1

e−sβ(1−
∑K−1

i=1 vi)



 sK−1

=
βα·

∏K
i=1 Γ(αi)

(

K−1
∏

i=1

vαi−1
i

)(

1−
K−1
∑

i=1

vi

)αK−1

sα·−1e−sβ

=





Γ(α·)
∏K
i=1 Γ(αi)

(

K−1
∏

i=1

vαi−1
i

)(

1−
K−1
∑

i=1

vi

)αK−1




(

βα·

Γ(α·)
sα·−1e−sβ

)

.

(269)

The result is the product of a Dirichlet density and a gamma density, which proves both of
the statements in the proposition.

Moments

The derivation in the previous section establishes that Eq. (261) in fact defines a density; in
particular, it shows that the ratio of gamma functions appearing in Eq. (261) is the correct
normalization for the Dirichlet density. Let us record this fact:

∏K
i=1 Γ(αi)

Γ(α·)
=

∫

ΩK−1

(

K
∏

i=1

vαi−1
i

)

dv1 · · · dvK−1. (270)
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We can compute moments of the Dirichlet distribution as a straightforward application
of Eq. (270). For example, the mean is obtained as follows:

E(Vi) =

∫

ΩK−1

vi
Γ(α·)

∏K
i=1 Γ(αi)

(

K
∏

i=1

vαi−1
i

)

dv1 · · · dvK−1

=
Γ(α·)

∏K
i=1 Γ(αi)

∫

ΩK−1

vαi

i





∏

k 6=i

vαk−1
k



 dv1 · · · dvK−1

=
Γ(α·)

∏K
i=1 Γ(αi)

Γ(αi + 1)
∏

k 6=i Γ(αi)

Γ(α· + 1)

=
Γ(α·)

Γ(α· + 1)

Γ(αi + 1)

Γ(αi)

=
αi
α·
, (271)

where we have used Γ(α + 1) = αΓ(α). This result shows that the parameters αi specify
the mean of the Dirichlet up to scaling.

In general, the moments of the Dirichlet distribution take the form of ratios of gamma
functions. For example, plugging in V m

i in place of Vi in the previous derivation, we obtain:

E(V m
i ) =

Γ(α·)

Γ(α· +m)

Γ(αi +m)

Γ(αi)
(272)

=
αi(αi + 1) · · · (αi +m− 1)

α·(α· + 1) · · · (α· +m− 1)
(273)

=
α
(m)
i

α
(m)
·

, (274)

where a(m) := a(a+ 1) · · · (a+m− 1). In the general case we have:

E

[

K
∏

i=1

V mi

i

]

=
Γ(α·)

Γ(α· +
∑K

i=1mi)

K
∏

i=1

Γ(αi +mi)

Γ(αi)
(275)

=

∏K
i=1 α

(mi)
i

α
(
∑K

i=1mi)
·

. (276)

Finally, we use these formulas to compute the variance of the Dirichlet distribution:

Var(Vi) =
α
[2]
i

α
[2]
·

−

(

αi
α·

)2

=
E(Vi)(1− E(Vi))

α· + 1
(277)

as well as the covariance:

Cov(Vi, Vj) =
α
[1]
i α

[1]
j

α
[2]
·

−
αiαj
α2
·

= −
E(Vi)E(Vj)

α· + 1
. (278)

These formulas show that α· plays the role of a concentration parameter; an increase in α·

leads to a decrease in variance. It is also worth noting that the covariances are negative.
It is not the case in all problems involving proportions that pairs of proportions should
negatively co-vary, and if they do not, a Dirichlet assumption should be questioned.
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Further properties

In this section we collect together several additional properties of the Dirichlet distribution.
Let α and γ denote nonnegative vectors with K components: α = (α1, . . . , αK) and

γ = (γ1, . . . , γK). Note also the following notational convention: when “Dir(α)” appears in
an equation, it should be viewed as a shorthand for a random variable having the Dir(α)
distribution.

The Dirichlet distribution satisfies an important aggregation property: Summing across
subsets of Dirichlet variables yields a Dirichlet distribution in which the parameters are
sums across the corresponding subsets of parameters. The simplest case is the following:

Proposition 3. Let V ∼ Dir(α). Then

(V1, . . . , Vi + Vi+1, . . . , VK) ∼ Dir(α1, . . . , αi + αi+1, . . . , αK). (279)

Proof. Let Vi = Zi/
∑K

j=1 Zj where Zi are independent Gamma(αi, 1) variables. Now Zi +

Zi+1 is distributed as Gamma(αi + αi+1, 1). Normalizing by
∑K

j=1 Zj yields the result.

A straightforward induction yields the following general result:

Proposition 4. Let V ∼ Dir(α). Let (B1, B2, . . . , Br) be a partition of the indices (1, 2, . . . ,K).
Then





∑

i∈B1

Vi,
∑

i∈B2

Vi, . . .
∑

i∈Br

Vi



 ∼ Dir





∑

i∈B1

αi,
∑

i∈B2

αi, . . .
∑

i∈Br

αi



 . (280)

The next proposition shows that the Dirichlet distribution can be decomposed into a
random convex combination of Dirichlet distributions.

Proposition 5. Define independent random variables U ∼ Dir(α) and V ∼ Dir(γ). Let
W ∼ Beta(

∑

i αi,
∑

i γi), independently of V and W . Then

WU + (1−W )V ∼ Dir(α+ γ). (281)

Proof. Let {Zi}
K
i=1 be independent Gamma(αi, 1) variables and let {ZK+i}

K
i=1 be indepen-

dent Gamma(γi, 1) variables. Then

∑K
i=1 Zi

∑2K
i=1 Zi

(

Z1
∑K

i=1 Zi
, . . . ,

ZK
∑K

i=1 Zi

)

+

∑2K
i=K+1 Zi
∑2K

i=1 Zi

(

ZK+1
∑2K

i=K+1 Zi
, . . . ,

Z2K
∑2K

i=K+1Zi

)

(282)

has the same distribution as WU + (1−W )V . But this expression is equal to
(

Z1 + ZK+1
∑2K

i=1 Zi
, . . . ,

ZK + Z2K
∑2K

i=1 Zi

)

, (283)

which has a Dir(α+ γ) distribution.
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In the following proposition we see that a Dirichlet distribution can be expressed as a
mixture of Dirichlet distributions.

Proposition 6. Let ej denote a unit basis vector. Let βj = γj/
∑

i γi. Then

∑

j

βj Dir(γ + ej) = Dir(γ). (284)

Proof. The equality in this proposition is to be understood as equality of distributions of
random variables. The proof is a simple consequence of the general theorem E[P (U |X)] =
P (U). In particular, define random variables U and X such that

U ∼ Dir(γ) (285)

X |U = Discrete(U). (286)

From Dirichlet-multinomial conjugacy (see Sec. (??)) we have

U |X = x ∼ Dir(γ + x). (287)

Moreover, from Eq. (271) the marginal of X is given by:

E(Xj) = EE(Xj |U) = E(Uj) =
γj
∑

i γi
= βj . (288)

Thus E[P (U |X)] = P (U) implies

∑

j

βj Dir(γ + ej) = Dir(γ). (289)

Finally, the next proposition shows that subsets of entries of Dirichlet-distributed ran-
dom vectors, once normalized, are still Dirichlet.

Proposition 7. Let (V1, . . . , VK) ∼ Dir(α1, . . . , αK) and 1 ≤ L ≤ K. Let U =
∑K

ℓ=L Vℓ
and W = (VL, . . . , VK)/U . Then V ′ = (V1, . . . , VL−1, U) and W are independent with
distributions

V ′ ∼ Dir(α1, . . . , αL−1,
∑K

ℓ=L αℓ) (290)

W ∼ Dir(αL, . . . , αK) (291)

Proof. Let Vi = Zi/
∑K

j=1 Zj where Zi ∼ Gamma(αi, 1) are independent. Then U =
∑K

ℓ=L Zℓ/
∑K

j=1Zj where
∑K

ℓ=L Zℓ ∼ Gamma(
∑K

ℓ=L αℓ, 1), so both V ′ and W are ex-
pressed as a normalized vectors of independent Gamma random variables and Eq. (290)
and Eq. (291) hold. To see that V ′ and W are independent, note from Proposition 2 that
W and U are independent. Since W and (Z1, . . . , ZL−1) are independent as well, and V ′ is
a function of (Z1, . . . , ZL−1) and U , W and V ′ are independent.
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Appendix C The Sethuraman Proof

Recall the definition of a stick-breaking random measure:

G =

∞
∑

k=1

πkδφk , (292)

where the atoms φk are independent draws from G0 and the weights πk are drawn according
to a stick-breaking process:

π1 = β1

πk = βk

k−1
∏

l=1

(1− βl) k = 2, 3, . . . , (293)

where βk ∼ Beta(1, α0).
Consider a partition (B1, . . . , Br) of Θ. Let V denote the random vector obtained when

G is evaluated on this partition:

V =

( ∞
∑

k=1

πkδφk(B1) . . . ,

∞
∑

k=1

πkδφk(Br)

)

(294)

We would like to show that V has a finite-dimensional Dirichlet distribution.
We make use of the particular form of the stick-breaking representation. Breaking off

the first piece of the stick, we have:

G = π1δφ1 +
∞
∑

k=2

πkδφk (295)

G = π1δφ1 + (1− π1)
∞
∑

k=2

π′kδφk , (296)

where

π′2 = β2

π′k = βk

k−1
∏

l=1

(1− βl) k = 3, 4, . . . . (297)

But we can simply reindex the sum on the right-hand side of Eq. (296) to run from 1 to
infinity. We see from Eq. (297), and the fact that the {φk} are iid draws from G0, that this
sum has the same distribution as G itself. That is, we have:

G ∼ π1δφ1 + (1− π1)G. (298)

In words, a stick-breaking random measure can be represented as a random convex sum of
two random measures: a delta function at a random location and a stick-breaking random
measure.
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To turn this into a finite-dimensional assertion, we evaluate G on the partition (B1, . . . , Br).
This yields:

V ∼ π1X + (1− π1)V ; (299)

where X = (δφ1(B1), . . . , δφ1(Br)) is a random vector which ranges over the unit basis
vectors {ej}. That is, we obtain a distributional equation for the finite-dimensional random
vector V that parallels Eq. (298). We claim that the Dirichlet distribution satisfies this
distributional equation.

To see this, assume that V has the Dirichlet distribution Dir(α), where we define α :=
(α0G0(B1), . . . , α0G0(Br)). Condition on the event {X = ej}. For fixed X, the equation
π1X + (1 − π1)V reduces to a random convex combination of a constant and a Dirichlet
random variable. But the constant ej can be viewed as a draw from a Dirichlet distribution
that has a parameter equal to ej (and thus places all of its mass at ej). We are thus in
the setting of Prop. (6), where a random variable is a random convex combination of a
pair of Dirichlet random variables. In particular, as required by the proposition, π1 has a
Beta(1, α0) distribution. The proposition therefore yields:

V | {X = ej} ∼ Dir(α+ ej). (300)

Finally, take an expectation with respect to X. The event {X = ej} has probability G0(Bj),
which is equal to αj/

∑r
k=1 αk. We can thus appeal to Prop. (5), which implies

π1X + (1− π1)V ∼ Dir(α). (301)

This shows that the assumption V ∼ Dir(α) is consistent with Eq. (299).
It turns out that it is also possible to show that the distributional equation Eq. (299)

has a unique solution (Sethuraman, 1994). Thus, by showing that the equation is satisfied
by the Dirichlet distribution, we have in fact obtained that unique solution.

Appendix D Tail-free Property of the Dirichlet Process

In this appendix we show that the Dirichlet process has the tail-free property. The setup

is that of Sec. (??), in which we draw G ∼ DP(α,G0) and then draw θi
iid
∼ G for i =

1, . . . , N . We will only consider the case in which we have one observation θ1; the general
case follows straightforwardly given that {θi} are mutually independent given G. To lighten
the notation, define G̃ = αG0.

Let (A1, A2, . . . , AK) be a partition of Θ. Fix j ∈ {1, . . . ,K} and consider a sub-
set B such that B ⊂ Aj. We are interested in the distribution of the random vector
(G(A1), . . . , G(AK)) conditioned on θ1 ∈ B or on θ1 ∈ Aj. The tail-free property of the DP
states that (G(A1), . . . , G(AK)) depends only on whether θ1 is in Aj, and not on whether
it is in B. Since B ⊂ Aj is arbitrary, this shows that the actual location of θ1 in Aj does
not affect (G(A1), . . . , G(AK)).

To show the tail-free property, we consider the joint distribution of θ1 ∈ B and of
(G(A1), . . . , G(AK)) in terms of the finer partition (B,A1, . . . , Aj\B, . . . , AK) where Aj
is split into B and Aj\B. Let (y1, . . . , yK−1) be a vector of non-negative numbers with
∑K−1

k=1 yk ≤ 1, and define yK = 1 −
∑K−1

k=1 yk. Let x be such that 0 ≤ x ≤ yj. Using the
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fact that (G(B), G(A1), . . . , G(Aj\B), . . . , G(AK)) is Dirichlet distributed with parameters
(G̃(B), G̃(A1), . . . , G̃(Aj\B), . . . , G̃(AK)), the joint distribution can be:

P (θ1 ∈ B,G(B) ∈ dx,G(A1) ∈ dy1, . . . , G(AK−1) ∈ dyK−1)

=P (θ1 ∈ B,G(B) ∈ dx,G(A1) ∈ dy1, . . . , G(Aj\B) ∈ d(yj − x), . . . , G(AK−1) ∈ dyK−1)

=x
Γ(α)

Γ(G̃(B))Γ(G̃(Aj\B))
∏

k 6=j Γ(G̃(Ak))
xG̃(B)−1(yj − x)G̃(A1\B)−1

∏

k:1≤k≤K,k 6=j

y
G̃(Ak)−1
k dx

K−1
∏

k=1

dyk

(302)

Integrating over x,

P (θ1 ∈ B,G(A1) ∈ dy1, . . . , G(AK−1) ∈ dyK−1)

=

∫ yj

0
dx





Γ(α)

Γ(G̃(B))Γ(G̃(Aj\B))
∏

k 6=j Γ(G̃(Ak))
xG̃(B)(yj − x)G̃(A1\B)−1

∏

k 6=j

y
G̃(Ak)−1
k

K−1
∏

k=1

dyk





=
Γ(α)

Γ(G̃(B))Γ(G̃(Aj\B))
∏

k 6=j Γ(G̃(Ak))

∏

k 6=j

y
G̃(Aj)−1
k

K−1
∏

k=1

dyk

∫ 1

0
(zyj)

G̃(B)(yj(1− z))G̃(Aj\B)−1yjdz

=
Γ(α)

Γ(G̃(B))Γ(G̃(Aj\B))
∏

k 6=j Γ(G̃(Ak))

∏

k:1≤k≤K,k 6=j

y
G̃(Ak)−1
k y

G̃(Aj)
j

K−1
∏

k=1

dyk
Γ(G̃(B) + 1)Γ(G̃(Aj\B))

Γ(G̃(B) + 1 + G̃(Aj\B))

=
Γ(α)

∏K
k=1 Γ(G̃(Ak))

K
∏

k=1

y
G̃(Ak)−1
k

K−1
∏

k=1

dyk × yj
H(B)

H(Aj)
(303)

The first term in the resultant formula can be read as the density at (y1, . . . , yK) for the
Dirichlet distribution of (G(A1), . . . , G(AK)), while the second term is the probability of

θ1 being in subset Aj, G(Aj) = yj, followed by the probability H(B)
H(Aj)

of θ1 being in B

conditioned on it being in Aj already. In particular, this last probability does not depend
on (G(A1), . . . , G(AK)). Dividing by P (θ1 ∈ B) = H(B), a further conclusion is that

P (G(A1) ∈ dy1, . . . , G(AK−1) ∈ dyK−1|θ1 ∈ B)

=P (G(A1) ∈ dy1, . . . , G(AK−1) ∈ dyK−1|θ1 ∈ Aj) (304)

This demonstrates that the Dirichlet process is tail-free.

Appendix E Some Laplace Transforms

The Laplace transform provides a useful tool for establishing distributional results. By
showing that the Laplace transform of a certain distribution has a known form, one identifies
that distribution.

In this appendix we derive the Laplace transforms of the Poisson and gamma distribu-
tions. These are elementary results that can be found in introductory books on probability
theory, but we place them here to encourage the reader to be thoroughly familiar with the
Poisson and gamma distributions in approaching the main text.
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The Poisson distribution

The probability mass function of a Poisson random variable X with parameter λ is:

p(X = k |λ) =
λke−λ

k!
, (305)

for k = 0, 1, . . .. Thus the Laplace transform can be computed as follows:

E[e−tX ] =
∞
∑

k=0

λke−λ

k!
e−tk

= e−λ
∞
∑

k=0

(λe−t)k

k!

= e−λe(λe
−t)

= exp{−λ(1 − e−t)}. (306)

As a simple application of this result, the reader can verify that E[X] = λ for the Poisson
distribution by taking the negative of the first derivative of the Laplace transform and
setting t = 0.

The gamma distribution

The density of a gamma random variable X with shape parameter α and scale parameter
β is:

p(x |α, β) =
βα

Γ(α)
xα−1e−βx, (307)

for x > 0. We compute the Laplace transform as follows:

E[e−tX ] =

∫ ∞

0

βα

Γ(α)
xα−1e−βxe−txdx

=
βα

Γ(α)

∫ ∞

0
xα−1e−(β+t)xdx

=
βα

Γ(α)

Γ(α)

(β + t)α

=

(

β

β + t

)α

. (308)

Taking first and second derivatives and setting t = 0 yields the mean and variance of a
gamma random variable:

E[X] =
α

β
Var[X] =

α

β2
. (309)

Appendix F Zipf’s Law and the PY Process

As we have discussed in Sec. (??), when 0 < σ < 1 the Pitman-Yor process yields power-
law behavior. In this appendix we consider the power law known as Zipf’s law, and give
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a first-order derivation of this law. The claim is that for large N , the proportion of tables
with m customers scales as O(m−1−σ).

To derive this law, consider a PYCRP with parameters α and σ, with N +1 customers.
We will tag one of the customers, say the one indexed by N + 1. Denote the partition
among the other N customers by π, and the table in π that customer N +1 sits at by Z (if
the tagged customer sits by himself we let Z = ∅). We call Z the tagged table. Together,
π and Z fully describe the partition of [N + 1]. Let KN,m denote the number of tables in
π with size m and let KN denote the total number of tables.

Define a Markov chain over partitions of the N +1 customers, represented by π and Z,
given by a random-scan Gibbs sampler: At each iteration one of the customers is chosen
uniformly at random, and this customer is reseated in the restaurant according to the
PYCRP predictive probabilities. This Markov chain is reversible, particularly it satisfies
detailed balance. Further, it has stationary distribution given by a PYCRP over π and
Z |π given by the PYCRP predictive probabilities, by making use of exchangeability and
considering the tagged customer as the last one to enter the restaurant.

Consider a pair of states (π, Z) and (π′, Z ′), with |Z| = m+1, m ≥ 1, and where (π′, Z ′)
is obtained by a customer sitting at the tagged table other than the tagged customer being
reseated elsewhere. Note that |Z ′| = m. The detailed balance equation gives:

P (π, Z)P ((π, Z) → (π′, Z ′)) = P (π′, Z ′)P ((π′, Z ′) → (π, Z)) (310)

P (π)
m+ 1− σ

α+N

1

N + 1

(

1−
m+ 1− σ

α+N

)

= P (π′)
m− σ

α+N

1

N + 1

m+ 1− σ

α+N
. (311)

Summing over all (π, Z) and (π′, Z ′) satisfying the description above, we get:

Eπ

[

m+ 1− σ

α+N

m+ 1

N + 1

(

1−
m+ 1− σ

α+N

)

KN,m+1

]

= Eπ
′

[

m− σ

α+N

N −m

N + 1

m+ 1− σ

α+N
K ′
N,m

]

(312)

The additional term of (m+1)KN,m+1 on the left-hand side arises because there areKN,m+1

tables at which the tagged customer could have sat, and there are m+ 1 other customers
at the table which could have been reseated elsewhere. Similarly, on the right-hand sid3 we
have K ′

N,m choices for the tagged table, and N −m customers from other tables that could
be reseated at the tagged table. Simplifying, we get:

E[KN,m+1] =
N −m

α+N −m− 1 + σ

m− σ

m+ 1
E[KN,m] ≍

m− σ

m+ 1
E[KN,m], (313)

where the asymptotic expression is obtained for N ≫ m ≥ 1.
To solve the recurrence in Eq. (313), we have to solve for the boundary condition E[KN,1].

Consider again a pair of states (π, Z) and (π′, Z ′), but now with |Z| = 1 and |Z ′| = 0. Now
there are two possibilities which cannot be distinguished based on (π, Z) and (π′, Z ′): either
the tagged customer was chosen to be reseated at his own table, or the only other customer
at the tagged table was chosen to be reseated elsewhere. The detailed balance equation
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now becomes:

P (π)
1− σ

α+N

(

1

N + 1

α+ σKN

α+N
+

1

N + 1

(

1−
1− σ

α+N

))

=P (π′)
α + σK ′

N

α+N

(

1

N + 1

1− σ

α+N
+

1

N + 1

1− σ

α+N

)

. (314)

Again, summing over all (π, Z) and (π′, Z ′) satisfying the description,

Eπ

[

1− σ

α+N
KN,1

(

1

N + 1

α+ σKN

α+N
+

1

N + 1

(

1−
1− σ

α+N

))]

(315)

=Eπ
′

[

α+ σK ′
N

α+N

(

1

N + 1

1− σ

α+N
K ′
N,1 +

N

N + 1

1− σ

α+N

)]

. (316)

Cancelling terms and simplifying, we get:

E[KN,1] =
N

α+ σ +N − 1
(α+ σE[KN ]). (317)

For large N , we see that

E[KN,1] ≍ σE[KN ]. (318)

Now expanding the recurrence in Eq. (313), we have:

E[KN,m] ≍
σ

m!

Γ(m− σ)

Γ(1− σ)
E[KN ] for m ≥ 1. (319)

We can also verify that
∑

m≥1 E[KN,m] is indeed equal to E[KN ] by noting that

∑

m≥1

σ

m!

Γ(m− σ)

Γ(1− σ)
= 1 (320)

using the Taylor expansion of the function −(1 − x)σ about x0 = 0 evaluated at x = 1.
Finally, applying Stirling’s formula, assuming N ≫ m≫ 1,

E[KN,m] ≍
σ

Γ(1− σ)
m−1−σ

E[KN ]. (321)
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