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Genesis and history

» Precursors originate mostly from Physics (Gibbs, 1902),
Genetics (Wright, 1921, 1934), and Economics (Wold, 1954);

» Early graphical models in statistics include covariance
selection models (Dempster, 1972) and log-linear models
(Haberman, 1974);

> Papers setting the scene include Darroch et al. (1980),
Wermuth and Lauritzen (1983), and Lauritzen and Wermuth
(1989).

» Subject took off after Pearl (1988) and Lauritzen and
Spiegelhalter (1988), and in particular after Whittaker (1990)
and Lauritzen (1996).

» Developments now prolific and it is largely impossible to keep
track. Google gives 7 420 000 hits.
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Examples

A directed graphical model
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Directed graphical model (Bayesian network) showing relations
between risk factors, diseases, and symptoms.
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Examples

A pedigree

Graphical model for a pedigree from study of Werner's syndrome.
Each node is itself a graphical model.
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Examples

A large pedigree

Family relationship of 1641 members of Greenland Eskimo
population.
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Conditional Independence

Markov theory Undirected graphs

Directed acyclic graphs
Moralization

Random variables X and Y are conditionally independent given the
random variable Z if

LIX|Y,Z)=L(X]|2).

We then write X 1L Y| Z (or X Lp Y| 2)
Intuitively:

Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities:

XUY|Z < f(xy,2z)f(z)="7(x,2)f(y,2)
<= da,b:f(x,y,z) = a(x,z)b(y, z).
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Fundamental properties

For random variables X, Y, Z, and W it holds

(C1) KX 1LY |Z then Y 1L X | Z;

(C2) KX 1LY |Z and U= g(Y), then X I U| Z;
(C3) KX 1LY |Z and U= g(Y), then X L Y |(Z, U);
(C4) F X 1LY |Z and X 1L W |(Y, Z), then

XU (Y,W)|Z
If density w.r.t. product measure f(x,y,z,w) > 0 also

(C5) I X 1L Y |[(Z, W) and X 1L Z| (Y, W) then
X 1(Y,Z)| W.
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Conditional Independence

Markov theory Undirected graphs

Directed acyclic graphs
Moralization

A distribution P is said to factorize w.r.t. and undirected graph if
its joint density f can be written as

F(x)=Z I ¢alxa), (1)
AcA
where A are complete subsets of the graph.
Here x = (xy,v € V), xa = (xy, v € A) so ¢4 only depends the
A-coordinates of x.

The factorization is matched by a global Markov property, ie that
ALl B|S if S separates A from B in G, writtenas ALgB|S
(Hammersley and Clifford, 1971).
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Conditional Independence
Undirected phs
Directed acyclic graphs
Moralization

Markov theory

Factorization example

The graph above corresponds to a factorization as

f(x) = vi2(x1, x2)13(x1, X3)2a(x2, xa)25(x2, X5)
X 356(X3, X5, X6)Va7(Xa, x7)V567(X5, X6, X7)-
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Global Markov property

3 6

To find conditional independence relations, one should look for
separating sets, such as {2,3}, {4,5,6}, or {2,5,6}
For example, it follows that 1 1L 7|{2,5,6} and 2 1. 6|{3,4,5}.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Pairwise and local Markov properties

G = (V, E) simple undirected graph; A distribution P satisfies
(P) the pairwise Markov property if

atB=alpp|V\{a B}

(L) the local Markov property if

VaeV:allpV\cla)| bd(a);
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Pairwise Markov property

3 6

Any non-adjacent pair of random variables are conditionally
independent given the remaning.
For example, 1 11 5|{2,3,4,6,7} and 4 11 6|{1,2,3,5,7}.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Local Markov property

3 6

Every variable is conditionally independent of the remaining, given
its neighbours.

For example, 5 1l {1,4}|{2,3,6,7} and 7 1. {1,2,3}|{4,5,6}.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Let (F) denote the property that f factorizes w.r.t. G and let (G),
(L) and (P) denote the Markov properties as defined. Then it
holds that

(F) = (6) = (L) = (P).

All reverse implications are false in general.
If f(x) > 0 for all x it further holds that

(P) = (F)

so then
(F) = (6) < (L) < (P)

(Lauritzen, 1996, Chap. 3).
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Conditional Independence

lirected grapk
Markov theory Undirected graphs

Directed acyclic graphs
Moralization

A probability distribution P over X = X\, factorizes over a DAG D
if its density or probability mass function f has the form

f(X) = H fV(XV ’Xpa(v))'

vev

A well-known example is a Markov chain:

----re

X1 Xo Xz Xa X5 X,
with X,'_,_]_J_L(Xl,...,X,'_l)’X,' fori=3,...,n.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Example of DAG factorization

3 6
The above graph corresponds to the factorization

f(x) = fla)f(xalx)f(xs|x)f(xa|x2)
X f(X5 ’X2,X3)f(X6 ’X3,X5)f(X7 | X4, X5,X6).
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Local directed Markov property

A distribution P satisfies the local Markov property (L) w.r.t. a
directed acyclic graph D if

Vae V:allp{nd(a)\pa(a)}| pa(a).

Here nd(«) are the non-descendants of a.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Local directed Markov property

3 6

For example, the local Markov property says
41 {1,3,5,6}]2,

51 {1,4}|{2,3}

31 {2,4} 1.
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Conditional Independence

Markov theory Undirected graphs

Directed acyclic graphs

Moralization

A distribution satisfies the global Markov property w.r.t. D if

AlpB|S= Al B|S.

Here 1p is d-separation, which is somewhat subtle.

It is always true for a DAG that

(F) <= (G) <= (L)
(Pearl, 1986; Geiger and Pearl, 1990; Lauritzen et al., 1990).

Steffen Lauritzen, University of Oxford Graphical Models



Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Separation in DAGs

A trail T from vertex « to vertex 5 in a DAG D is blocked by S if
it contains a vertex v € 7 such that
> either v € S and edges of 7 do not meet head-to-head at +, or
» ~ and all its descendants are not in S, and edges of T meet
head-to-head at 7.
A trail that is not blocked is active. Two subsets A and B of

vertices are d-separated by S if all trails from A to B are blocked
by S. We write A Lp B|S.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Separation by example

3 6 3 6

For S = {5}, the trail (4,2,5,3,6) is active, whereas the trails
(4,2,5,6) and (4,7,6) are blocked.
For S = {3,5}, they are all blocked.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Returning to example

3 6

Hence 4 1 p 63,5, but it is not true that 4 1 p 6|5 nor that
41p6.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

The moral graph D™ of a DAG D is obtained by adding undirected
edges between unmarried parents and subsequently dropping
directions, as in the example below:

Steffen Lauritzen, University of Oxford Graphical Models



Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Undirected factorizations

If P factorizes w.r.t. D, it factorizes w.r.t. the moralised graph D™.

This is seen directly from the factorization:

F) =TT FO Ia0) = TT ¥1vpupa) (%),

veV veVv

since {v} U pa(v) are all complete in D™.
Hence if P satisfies any of the directed Markov properties w.r.t. D,
it satisfies all Markov properties for D™.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Alternative equivalent separation

To resolve query involving three sets A, B, S:

1. Reduce to subgraph induced by ancestral set Dan(ausus) of
AUBUS;

2. Moralize to form (DAn(Augus))m ;

It then holds that A Lp B | S if and only if S separates A from B
in this undirected graph.

Proof in Lauritzen (1996) needs to allow self-intersecting paths to
be correct.
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Forming ancestral set

3 6

The subgraph induced by all ancestors of nodes involved in the
query 4 1 p6|3,57
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Adding links between unmarried parents

3 6

Adding an undirected edge between 2 and 3 with common child 5
in the subgraph induced by all ancestors of nodes involved in the
query 4 1 p6|3,57
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Conditional Independence
Undirected graphs
Directed acyclic graphs
Moralization

Markov theory

Dropping directions

3 6

Since {3,5} separates 4 from 6 in this graph, we can conclude that
4156|3,5
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Bayesian inference using Gibbs sampling

Complex models

A particular successful development is associated with BUGS,
(Gilks et al., 1994) (WinBUGS, OpenBUGS).

» enables a Bayesian analyst to focus on substantive modelling
whereas the technical model specification and computational
side is taken care of automatically,
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Bayesian inference using Gibbs sampling

Complex models

A particular successful development is associated with BUGS,
(Gilks et al., 1994) (WinBUGS, OpenBUGS).

» enables a Bayesian analyst to focus on substantive modelling
whereas the technical model specification and computational
side is taken care of automatically,

» exploiting modularity, factorization, and MCMC methodology,
including the Gibbs and Metropolis—Hastings sampler.

» Conforming with Bayesian paradigm, parameters and
observations are explicitly represented in model as nodes in
graph, all being observables;
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Bayesian inference using Gibbs sampling
Complex models

Linear regression

for(IN1:N

Linear regression as a full Bayesian graphical model.
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Bayesian inference using Gibbs sampling
Complex models

Linear regression

model
{
for(iin1 : N) {
Y[i] ~ dnorm(mu([i],tau)
mul[i] <- alpha + beta * (x[i] - xbar)
}
tau ~ dgamma(0.001,0.001) sigma <- 1 / sqrt(tauw)
alpha ~ dnorm(0.0,1.0E-6)
beta ~ dnorm(0.0,1.0E-6)
}
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Bayesian inference using Gibbs sampling
Complex models

Data and BUGS model for pumps

The number of failures X; is assumed to follow a Poisson
distribution with parameter 6;t;,i =1,...,10

where 0; is the failure rate for pump i and t; is the length of
operation time of the pump (in 1000s of hours). The data are
shown below.

Pump 1 2 3 4 5 6 7 8 9 10
t 94.5 15.7 62.9 126 5.24 31.4 1.05 1.05 2.01 10.5
Xj 5 1 5 14 3 19 1 1 4 22

A gamma prior distribution is adopted for the failure rates:
0; ~T(a,8),i=1,...,10
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Bayesian inference using Gibbs sampling
Complex models

Gamma model for pumpdata

Failure of 10 power plant pumps.
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Bayesian inference using Gibbs sampling
Complex models

BUGS program for pumps

With suitable priors the program becomes

model
{
for (i in 1 : N) {
thetal[i] ~ dgamma(alpha, beta)
lambdal[i] <- thetali] * t[il]
x[i] ~ dpois(lambdal[il)
}
alpha ~ dexp(1)
beta ~ dgamma(0.1, 1.0)
}
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Bayesian inference using Gibbs sampling

Complex models

Growth of rats

e
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betali]

.

for(IN 1 : T)

——— i}

Ul

for(iIN 1: N)

Growth of 30 young rats.
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Bayesian inference using Gibbs sampling
Complex models

Finding full conditionals for Gibbs sampler

Inference in Bayesian complex graphical models as above uses the
Gibbs sampler.

For a DAG the densities of full conditional distributions are:

f(Xi ‘ XV\i) X H f(Xv |Xpa(v))
veVv

< f(x; ]xpa( H f(x\,\xpa(v))
vech(i)

= f(x; ’Xbl(i))a

x where bl(7) is the Markov blanket of node i

bl(i) = pa(i) U ch(i) U {Uyecn(y pa(v) \ {i}} .
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Bayesian inference using Gibbs sampling
Complex models

Markov blanket

3 6

Markov blanket of 6 is bl(6) = {3,5,7,4}.
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Bayesian inference using Gibbs sampling

Complex models

3 6 3 6
The Markov blanket is just the neighbours of in the moral graph:
bl(v) = ne™(v) so bl(6) = {3,5,7,4} and bl(3) = {1,5,6,2}.
The DAG is used for modular specification of the model, and the
moral graph for local computation.

Graphical Models
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Bayesian inference using Gibbs sampling

Complex models

> Is a huge conceptual extension of so-called Bayesian
hierarchical models;
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> Is a huge conceptual extension of so-called Bayesian
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Bayesian inference using Gibbs sampling

Complex models

> Is a huge conceptual extension of so-called Bayesian
hierarchical models;

» distinction prior/likelihood and parameter/random variable
less well defined;

» |If founder nodes in network are considered fixed and unknown,
no reason not to consider models in Fisherian paradigm.
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