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Overview of Lectures

1. Exchangeability and de Finetti’s Theorem

2. Sufficiency, Partial Exchangeability, and Exponential Families

3. Exchangeable Matrices and Random Networks

Basic references for the series of lectures include Aldous (1985)
and Lauritzen (1988). Other references will be given as we go
along. For this lecture, Aldous (1981); Diaconis and Freedman
(1981); Lauritzen (2003) are particularly relevant.
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Theorems of deFinetti, Hewitt and Savage

Variants and extensions
Summarizing statistics
de Finetti’s Theorem for semigroups
de Finetti’s Theorem for Finite Markov chains

Random matrices
Random Rasch matrices
Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

Random graphs
Random bipartite graphs
Exchangeable random graphs
Social network analysis
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X1, . . . ,Xn, . . . is exchangeable if for all n = 2, 3, . . . ,, π ∈ S(n)

X1, . . . ,Xn
D
= Xπ(1), . . . ,Xπ(n).

de Finetti (1931):
A binary sequence X1, . . . ,Xn, . . . is exchangeable if and only if
there exists a distribution function F on [0, 1] such that for all n

p(x1, . . . , xn) =

∫ 1

0
θtn(1− θ)n−tn dF (θ),

where tn =
∑n

i=1 xi . Further, F is distribution function of Y = X̄∞
and, conditionally on Y = θ, X1, . . . ,Xn, . . . are i.i.d. with
expectation θ.
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Summarizing statistics
de Finetti’s Theorem for semigroups
de Finetti’s Theorem for Finite Markov chains

t(x) is summarizing p if for some φ

p(x) = φ(t(x)).

For binary variables, X1, . . . ,Xn, . . . is exchangeable if and only if
for all n

P(X1 = x1, . . . ,Xn = xn) = φn(
∑

i xi ).

Thus exchangeability in binary case is equivalent to tn =
∑

i xi

summarizing the distribution of X1, . . . ,Xn.
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Rephrasing de Finetti–Hewitt–Savage

If a family of distributions for a sequence X1, . . . ,Xn, . . . is
summarized by the empirical measure, then every distribution in
the family is conditionally i.i.d. given the infinitely remote future T
or, equivalently, given the limiting empirical measure M∞.
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Let t : X → S be a semigroup valued statistic i.e. S has a
composition ⊕ which satisfies

a⊕ b = b ⊕ a, (a⊕ b)⊕ c = a⊕ (b ⊕ c).

The distribution of X1, . . . ,Xn of is summarized by
tn(x1, . . . , xn) = t(x1)⊕ · · · ⊕ t(xn) for all n if and only if
X1, . . . ,Xn, . . . are conditionally i.i.d. given the tail T and

P(Xi = x | T ) = p(x) = p(x | θ) = c(θ)−1ρθ{t(x)}

where ρθ is a character on the semigroup generated by t(X ), i.e.
an ‘exponential function’, satisfying

ρθ(u)ρθ(v) = ρ(u ⊕ v), ρθ(u) ≥ 0.
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Diaconis and Freedman (1980) show for countable X that if the
distribution of X1, . . . ,Xn is for all n summarized by

tn(x1, . . . , xn) = (x1, {nxy}x ,y∈X )

where nxy are the transition counts:

nxy = #{i : (xi , xi+1) = (x , y)}

and the process is recurrent, then it is a mixture of stationary
Markov chains.
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Similar results true for

tn(x1, . . . , xn) = {x1,⊕i t(xi , xi+1)}

where t : X × X → S is semigroup valued:

The extreme recurrent processes are Markov chains with

P(Xn+1 = y |Xn = x) = ρθ{t(x , y)}cθ(y)

cθ(x)
,

where cθ are eigenvectors with eigenvalue 1 for the matrix
mxy = ρθ{t(x , y)}; see Ressel (1988) for full details.

Clearly, then

p(x1, . . . , xn) = p(x1)ρθ{⊕i t(xi , xi+1)}
cθ(xn)

cθ(x1)
.
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Random Rasch matrices
Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

Rasch model (Rasch, 1960):
Problem i attempted by person j . There are ‘easinesses’
α = (αi )i=1,... and ‘abilities’ β = (βj)j=1,... so that binary
responses Xij are conditionally independent given (α, β) and

P(Xij = 1 |α, β) = 1− P(Xij = 0 |α, β) =
αiβj

1 + αiβj
.

A random Rasch matrix has (αi ) i.i.d. with distribution A and (βj)
i.i.d. B.
Also potential model for hit of batter i against pitcher j,
occurrence of species i on island j, etc.
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Example of random Rasch matrix
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A doubly infinite matrix X = {Xij}∞,∞
1,1 is said to be

I row–column exchangeable (RCE-matrix) if for all m, n,
π ∈ S(m), ρ ∈ S(n)

{Xij}m,n
1,1

D
= {Xπ(i)ρ(j)}

m,n
1,1 .

I weakly exchangeable (WE-matrix) if for all n and π ∈ S(n)

{Xij}n,n
1,1

D
= {Xπ(i)π(j)}

n,n
1,1 .
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A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is said to be

row-column summarized (RCS-matrix) if for all m, n

p({xij}m,n
1,1 ) = φm,n{R1, . . . ,Rm;C1, . . . ,Cn},

where Ri =
∑

j xij and Cj =
∑

j xij are the row- and column sums.
Note that, in contrast to the case of binary sequences,
RCE-matrices are generally not RCS-matrices and vice versa
because group GRC of row and column permutations does not act
transitively on matrices with fixed row- and column sums:

If a matrix is both RCE and RCS, it is an RCES-matrix.
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RCE versus RCS

M1 =

 1 0 0
0 0 1
0 1 1

 , M2 =

 0 1 0
0 0 1
1 0 1


M3 =

 0 0 1
1 0 0
0 1 1

 , M4 =

 0 0 1
0 1 0
1 0 1


M5 =

 0 0 1
0 0 1
1 1 0


| det M1| = | det M2| = | det M3| = | det M4| = 1,| det M5| = 0.
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RCE versus RCE and RCS (RCES)
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RCE versus RCES
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Weakly summarized matrices

A doubly infinite (binary) matrix X = {Xij}∞,∞
1,1 is weakly

summarized (WS-matrix) if for all n

p({xij}n,n
1,1) = φn{R1 + C1, . . . ,Rn + Cn},

where Ri =
∑

j xij and Cj =
∑

j xij are the row- and column sums
as before.
Also here WE-matrices are generally not WS-matrices and vice
versa.
If a matrix is both WE and WS, it is an WES-matrix.
If in addition, {Xij = Xji}, i.e. the matrix is symmetric, we may
consider SWE, SWS, SWES matrices, etc.
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M6 =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0



M7 =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


No joint permutation of rows and columns take M6 into M7:
M6 is adjacency matrix of two triangles and M7 adjacency matrix
of 6-cycle.
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The set of distributions PRCE is a convex simplex.
In particular, every P ∈ PRCE has a unique representation as a
mixture of extreme points ERCE , i.e.

P(A) =

∫
E

Q(A)µP(Q).

The same holds if RCE is replaced by RCS, RCES, WE, SWE,
SWES, etc. In addition, it can be shown that

ERCES = ERCE ∩ PRCS , EWES = EWE ∩ PWS ,

etc.
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Features of extreme measures

Aldous (1981): for any P ∈ PRCE the following are equivalent:

I P ∈ ERCE

I The tail σ-field T is trivial

I The corresponding RCE-matrix X is dissociated.

Here the tail T is T =
⋂∞

n=1 σ{Xij ,min(i , j) ≥ n} and a matrix is
dissociated if for all A1,A2,B1,B2 with A1 ∩ A2 = B1 ∩ B2 = ∅

{Xij}i∈A1,j∈B1 ⊥⊥{Xij}i∈A2,j∈B2 .

Steffen LauritzenUniversity of Oxford Exchangeable Matrices and Random Networks



Outline
Theorems of deFinetti, Hewitt and Savage

Variants and extensions
Random matrices

Random graphs
References

Random Rasch matrices
Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

A binary doubly infinite random matrix X is a φ-matrix if Xij are
independent given U = (Ui )i=1,... and V = (Vj)j=1,... where Ui and
Vj are independent and uniform on (0, 1) and

P(Xij = 1 |U = u,V = v) = φ(ui , vj),

Aldous (1981); Diaconis and Freedman (1981) show that
distributions of φ-matrices are the extreme points of PRCS , i.e.
binary RCE matrices are mixtures of φ-matrices.
Many φ give same distribution of φ-matrix.

Steffen LauritzenUniversity of Oxford Exchangeable Matrices and Random Networks



Outline
Theorems of deFinetti, Hewitt and Savage

Variants and extensions
Random matrices

Random graphs
References

Random Rasch matrices
Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

RCE versus RCS

Consider φ-matrix defined by φ(ui , vj) = uivj . Then

P(M1) = P(M2) = P(M3) = P(M4) =
665

2985984

whereas P(M5) = 1/4096. (665× 4096 = 2723840)
RCE matrices have no simple summarizing statistics whereas
RCES-matrices are summarized by the empirical distributions of
row- and column sums:

tmn =
(∑m

i=1 δri ,
∑n

j=1 δsj

)
.

This is a semigroup statistic, and RCES matrices can be
represented via mixtures of characters on the image semigroup
(Ressel 2002, personal communication).
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Rasch type φ-matrices

If a φ-matrix is RCS it must satisfy

P

({
1 0
0 1

} ∣∣ U,V

)
= P

({
0 1
1 0

} ∣∣ U,V

)
.

This holds if φ is of Rasch type, i.e. if for all u, v , u∗, v∗:

φ(u, v)φ̄(u, v∗)φ̄(u∗, v)φ(u∗, v∗) =

φ̄(u, v)φ(u, v∗)φ(u∗, v)φ̄(u∗, v∗),

where we have let φ̄ = 1− φ. Above is Rasch functional equation.
General solutions of this equation represent characters of the image
semigroup of the empirical row- and column sum measures.
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de Finetti for RCES

Lauritzen (2003): Any RCES matrix is a mixture of Rasch type
φ-matrices.
A random binary matrix is regular if

0 < P(Xij = 1 | S) < 1 for all i , j ,

where the shell σ-algebra S is

S =
∞⋂

n=1

σ{Xij ,max(i , j) ≥ n}.

Any regular RCES matrix is a mixture of random Rasch matrices.
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Solutions to Rasch functional equation

Regular solutions (0 < φ < 1) all of form

φ(u, v) =
a(u)b(v)

1 + a(u)b(v)

leading to random Rasch models.
Regular random Rasch matrices are parametrized by distributions
(A,B) of a(U) and b(V ), up to multiplication of a and division of
b with constant.

(A,B ) ∼ (A′,B ′) ⇐⇒ A′(x) = A(cx),B ′(y) = B(y/c)

for some c > 0.
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Non-regular solutions to Rasch equation

There are other interesting solutions, e.g.

φ(u, v) = χ{u≤v} =

{
1 if u ≤ v
0 otherwise.

or

φ(u, v) =


a(u)b(v)

1 + a(u)b(v)
if 1/3 < u, v < 2/3

χ{u≤v} otherwise

corresponding to incomparable groups.
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Non-regular Rasch with sorted rows and columns

φ(u, v) = χ{u≤v}
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Non-regular RCE with sorted rows and columns

φ(u, v) = χ{|u−v |≤1/2}
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RCE vs Rasch with sorted rows and columns

φ(u, v) = uv , φ(u, v) = uv/(1 + uv).
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de Finetti for WE matrices

A binary doubly infinite random matrix X is a ψ-matrix if X{i ,j}
are all independent given U = (Ui )i=1,... where Ui are mutually
independent and uniform on (0, 1) and

P(X{i ,j}) = (y , z) |U = u,V = v) = ψyz(ui , uj).

Here we have let X{i ,j} = (Xij ,Xji ) for i < j .
Reformulating results in Aldous (1981) yield that binary WE
matrices are mixtures of ψ-matrices.
Note that we may further impose full symmetry by restricting to
ψyz = 0 unless y = z and distributional symmetry by assuming
ψyz = ψzy or, equivalently, ψyz(u, v) = ψyz(v , u).
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Regular SWES matrices

Exactly as before, it is easy to show that ESWES = ESWE ∩ PSWS ,
implying that SWES matrices are mixtures of ψ-matrices where ψ
satisfies the Rasch functional equation.
Hence regular SWES ψ-matrices are generated as

ψ(u, v) =
a(u)a(v)

1 + a(u)a(v)
.

Probably no interesting non-regular solutions?
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A binary matrix X defines a random graph in several ways.

If we consider the rows and colums as labels of two different sets
of vertices, a random bipartite graph can be defined from X by
letting Xij = 1 if and only if there is a directed edge from i to j .

An RCE-matrix then corresponds to a random graph with
exhangeable labels within each partition of the graph vertices.

An RCS-matrix is similarly one where any two graphs having the
same in-degree and out-degree for every vertex are equally likely.
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If we consider the row-and column numbers to label the same
vertex set, the matrix X represents in a similar way a random
graph.
The graph is in general directed, but if we further restrict the
matrix X to be symmetric, X can represent a random undirected
graph.
A WE-matrix now represents a random graph with exchangeable
labels, and an SWE-matrix similarly an undirected random
exchangeable graph.
An SWS-matrix represents a random graph with the probability of
any graph only depending on its vertex degrees.

Steffen LauritzenUniversity of Oxford Exchangeable Matrices and Random Networks



Outline
Theorems of deFinetti, Hewitt and Savage

Variants and extensions
Random matrices

Random graphs
References

Random bipartite graphs
Exchangeable random graphs
Social network analysis

Random graphs with exchangeability properties form natural
models for social networks.
Frank and Strauss (1986) consider Markov graphs which are
random graphs with

X{i ,j}⊥⊥X{k,l} |XE\{{i ,j},{k,l}} (1)

whenever all indices i , j , k, l are different. Here E denotes the
edges in the complete graph on {1, . . . , n}.
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They show that weakly exchangeable Markov graphs all have the
form

p({xij}n,n
1,1) ∝ exp{τnt(x) +

n−1∑
k=1

δnkνk(x)}

where x = {xij}n,n
1,1 , t(x) is the number of triangles in x , and νk(x)

is the number of vertices in x of degree k.
Such Markov graphs are SWE, but generally not extendable as
such.
They are SWES if τ = 0, and not otherwise if n > 5.

Steffen LauritzenUniversity of Oxford Exchangeable Matrices and Random Networks



Outline
Theorems of deFinetti, Hewitt and Savage

Variants and extensions
Random matrices

Random graphs
References

Random bipartite graphs
Exchangeable random graphs
Social network analysis

Note that ψ-matrices typically differ from Markov graphs in that
they are dissociated, hence marginally rather than conditionally
independent:

X{i ,j}⊥⊥X{k,l} (2)

whenever all indices i , j , k, l are different.
In fact infinite weakly exchangeable Markov graphs are Bernoulli
graphs, essentially because the conjunction of (1) and (2) implies
complete independence.
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Problem: characterize exchangeable random graphs which for
every n also are summarized by the number of triangles and the
empirical distribution of vertex degrees:

p({xij}n,n
1,1) = fn(t(x),

n∑
k=1

δrk (x))

or similar graphs with sufficient statistics being counts of specific
types of subgraph.
Rasch-type graphs, i.e. regular SWES-matrices, are as above, but
without triangles.
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Summary

I RCES matrices are mixtures of φ-matrices of Rasch type

I Regular RCES matrices are mixtures of random Rasch
matrices

I Non-regular RCES matrices can be natural and interesting

I RCE, RCES, WE and SWE, matrices may produce possibly
interesting random graphs, in particular in combination with
other types of summarizing statistics.
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