Exchangeable Matrices and Random Networks

Steffen Lauritzen
University of Oxford

$$
\text { May 31, } 2007
$$

Overview of Lectures

1. Exchangeability and de Finetti's Theorem
2. Sufficiency, Partial Exchangeability, and Exponential Families
3. Exchangeable Matrices and Random Networks

Basic references for the series of lectures include Aldous (1985) and Lauritzen (1988). Other references will be given as we go along. For this lecture, Aldous (1981); Diaconis and Freedman (1981); Lauritzen (2003) are particularly relevant.

Theorems of deFinetti, Hewitt and Savage
Variants and extensions
Summarizing statistics
de Finetti's Theorem for semigroups
de Finetti's Theorem for Finite Markov chains
Random matrices
Random Rasch matrices
Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation de Finetti for RCE matrices

Random graphs
Random bipartite graphs Exchangeable random graphs
Social network analysis
$X_{1}, \ldots, X_{n}, \ldots$ is exchangeable if for all $n=2,3, \ldots, \pi \in S(n)$

$$
X_{1}, \ldots, X_{n} \stackrel{\mathcal{D}}{=} X_{\pi(1)}, \ldots, X_{\pi(n)}
$$

de Finetti (1931):
A binary sequence $X_{1}, \ldots, X_{n}, \ldots$ is exchangeable if and only if there exists a distribution function F on $[0,1]$ such that for all n

$$
p\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{1} \theta^{t_{n}}(1-\theta)^{n-t_{n}} d F(\theta)
$$

where $t_{n}=\sum_{i=1}^{n} x_{i}$. Further, F is distribution function of $Y=\bar{X}_{\infty}$ and, conditionally on $Y=\theta, X_{1}, \ldots, X_{n}, \ldots$ are i.i.d. with expectation θ.
$t(x)$ is summarizing p if for some ϕ

$$
p(x)=\phi(t(x)) .
$$

For binary variables, $X_{1}, \ldots, X_{n}, \ldots$ is exchangeable if and only if for all n

$$
P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\phi_{n}\left(\sum_{i} x_{i}\right)
$$

Thus exchangeability in binary case is equivalent to $t_{n}=\sum_{i} x_{i}$ summarizing the distribution of X_{1}, \ldots, X_{n}.

Rephrasing de Finetti-Hewitt-Savage

If a family of distributions for a sequence $X_{1}, \ldots, X_{n}, \ldots$ is summarized by the empirical measure, then every distribution in the family is conditionally i.i.d. given the infinitely remote future \mathcal{T} or, equivalently, given the limiting empirical measure M_{∞}.

Let $t: \mathcal{X} \rightarrow \mathcal{S}$ be a semigroup valued statistic i.e. \mathcal{S} has a composition \oplus which satisfies

$$
a \oplus b=b \oplus a, \quad(a \oplus b) \oplus c=a \oplus(b \oplus c)
$$

The distribution of X_{1}, \ldots, X_{n} of is summarized by $t_{n}\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{1}\right) \oplus \cdots \oplus t\left(x_{n}\right)$ for all n if and only if $X_{1}, \ldots, X_{n}, \ldots$ are conditionally i.i.d. given the tail \mathcal{T} and

$$
P\left(X_{i}=x \mid \mathcal{T}\right)=p(x)=p(x \mid \theta)=c(\theta)^{-1} \rho_{\theta}\{t(x)\}
$$

where ρ_{θ} is a character on the semigroup generated by $t(\mathcal{X})$, i.e. an 'exponential function', satisfying

$$
\rho_{\theta}(u) \rho_{\theta}(v)=\rho(u \oplus v), \quad \rho_{\theta}(u) \geq 0 .
$$

Diaconis and Freedman (1980) show for countable \mathcal{X} that if the distribution of X_{1}, \ldots, X_{n} is for all n summarized by

$$
t_{n}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1},\left\{n_{x y}\right\}_{x, y \in \mathcal{X}}\right)
$$

where $n_{x y}$ are the transition counts:

$$
n_{x y}=\#\left\{i:\left(x_{i}, x_{i+1}\right)=(x, y)\right\}
$$

and the process is recurrent, then it is a mixture of stationary Markov chains.

Similar results true for

$$
t_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\{x_{1}, \oplus_{i} t\left(x_{i}, x_{i+1}\right)\right\}
$$

where $t: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{S}$ is semigroup valued:
The extreme recurrent processes are Markov chains with

$$
P\left(X_{n+1}=y \mid X_{n}=x\right)=\rho_{\theta}\{t(x, y)\} \frac{c_{\theta}(y)}{c_{\theta}(x)},
$$

where c_{θ} are eigenvectors with eigenvalue 1 for the matrix $m_{x y}=\rho_{\theta}\{t(x, y)\}$; see Ressel (1988) for full details.
Clearly, then

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \rho_{\theta}\left\{\oplus_{i} t\left(x_{i}, x_{i+1}\right)\right\} \frac{c_{\theta}\left(x_{n}\right)}{c_{\theta}\left(x_{1}\right)}
$$

Rasch model (Rasch, 1960):
Problem i attempted by person j. There are 'easinesses' $\alpha=\left(\alpha_{i}\right)_{i=1, \ldots}$ and 'abilities' $\beta=\left(\beta_{j}\right)_{j=1, \ldots}$ so that binary responses $X_{i j}$ are conditionally independent given (α, β) and

$$
P\left(X_{i j}=1 \mid \alpha, \beta\right)=1-P\left(X_{i j}=0 \mid \alpha, \beta\right)=\frac{\alpha_{i} \beta_{j}}{1+\alpha_{i} \beta_{j}}
$$

A random Rasch matrix has $\left(\alpha_{i}\right)$ i.i.d. with distribution A and $\left(\beta_{j}\right)$ i.i.d. B.

Also potential model for hit of batter i against pitcher j, occurrence of species i on island j, etc.

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

Example of random Rasch matrix

A doubly infinite matrix $X=\left\{X_{i j}\right\}_{1,1}^{\infty, \infty}$ is said to be

- row-column exchangeable (RCE-matrix) if for all m, n, $\pi \in S(m), \rho \in S(n)$

$$
\left\{X_{i j}\right\}_{1,1}^{m, n} \stackrel{\mathcal{D}}{=}\left\{X_{\pi(i) \rho(j)}\right\}_{1,1}^{m, n} .
$$

- weakly exchangeable (WE-matrix) if for all n and $\pi \in S(n)$

$$
\left\{X_{i j}\right\}_{1,1}^{n, n} \stackrel{\mathcal{D}}{=}\left\{X_{\pi(i) \pi(j)}\right\}_{1,1}^{n, n}
$$

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

A doubly infinite (binary) matrix $X=\left\{X_{i j}\right\}_{1,1}^{\infty, \infty}$ is said to be row-column summarized (RCS-matrix) if for all m, n

$$
p\left(\left\{x_{i j}\right\}_{1,1}^{m, n}\right)=\phi_{m, n}\left\{R_{1}, \ldots, R_{m} ; C_{1}, \ldots, C_{n}\right\}
$$

where $R_{i}=\sum_{j} x_{i j}$ and $C_{j}=\sum_{j} x_{i j}$ are the row- and column sums. Note that, in contrast to the case of binary sequences, $R C E$-matrices are generally not RCS-matrices and vice versa because group $G_{R C}$ of row and column permutations does not act transitively on matrices with fixed row- and column sums:
If a matrix is both RCE and RCS, it is an RCES-matrix.

RCE versus RCS

$$
\begin{gathered}
M_{1}=\left\{\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right\}, \quad M_{2}=\left\{\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right\} \\
M_{3}=\left\{\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right\}, \quad M_{4}=\left\{\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right\} \\
M_{5}=\left\{\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right\}
\end{gathered}
$$

$\left|\operatorname{det} M_{1}\right|=\left|\operatorname{det} M_{2}\right|=\left|\operatorname{det} M_{3}\right|=\left|\operatorname{det} M_{4}\right|=1,\left|\operatorname{det} M_{5}\right|=0$.

Outline

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

RCE versus RCE and RCS (RCES)

RCE versus RCES

Weakly summarized matrices

A doubly infinite (binary) matrix $X=\left\{X_{i j}\right\}_{1,1}^{\infty, \infty}$ is weakly summarized (WS-matrix) if for all n

$$
p\left(\left\{x_{i j}\right\}_{1,1}^{n, n}\right)=\phi_{n}\left\{R_{1}+C_{1}, \ldots, R_{n}+C_{n}\right\},
$$

where $R_{i}=\sum_{j} x_{i j}$ and $C_{j}=\sum_{j} x_{i j}$ are the row- and column sums as before.
Also here WE-matrices are generally not WS-matrices and vice versa.
If a matrix is both WE and WS, it is an WES-matrix. If in addition, $\left\{X_{i j}=X_{j i}\right\}$, i.e. the matrix is symmetric, we may consider SWE, SWS, SWES matrices, etc.

Outline

$$
\begin{aligned}
& M_{6}=\left\{\begin{array}{llllll}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right\} \\
& M_{7}=\left\{\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right\}
\end{aligned}
$$

No joint permutation of rows and columns take M_{6} into M_{7} : M_{6} is adjacency matrix of two triangles and M_{7} adjacency matrix of 6 -cycle.

The set of distributions $\mathcal{P}_{\text {RCE }}$ is a convex simplex. In particular, every $P \in \mathcal{P}_{R C E}$ has a unique representation as a mixture of extreme points $\mathcal{E}_{R C E}$, i.e.

$$
P(A)=\int_{\mathcal{E}} Q(A) \mu_{P}(Q)
$$

The same holds if RCE is replaced by RCS, RCES, WE, SWE, SWES, etc. In addition, it can be shown that

$$
\mathcal{E}_{R C E S}=\mathcal{E}_{R C E} \cap \mathcal{P}_{R C S}, \quad \mathcal{E}_{W E S}=\mathcal{E}_{W E} \cap \mathcal{P}_{W S}
$$

etc.

Features of extreme measures

Aldous (1981): for any $P \in \mathcal{P}_{R C E}$ the following are equivalent:

- $P \in \mathcal{E}_{R C E}$
- The tail σ-field \mathcal{T} is trivial
- The corresponding RCE-matrix X is dissociated.

Here the tail \mathcal{T} is $\mathcal{T}=\bigcap_{n=1}^{\infty} \sigma\left\{X_{i j}, \min (i, j) \geq n\right\}$ and a matrix is dissociated if for all $A_{1}, A_{2}, B_{1}, B_{2}$ with $A_{1} \cap A_{2}=B_{1} \cap B_{2}=\emptyset$

$$
\left\{X_{i j}\right\}_{i \in A_{1}, j \in B_{1}} \Perp\left\{X_{i j}\right\}_{i \in A_{2}, j \in B_{2}} .
$$

A binary doubly infinite random matrix X is a ϕ-matrix if $X_{i j}$ are independent given $U=\left(U_{i}\right)_{i=1, \ldots}$ and $V=\left(V_{j}\right)_{j=1, \ldots}$ where U_{i} and V_{j} are independent and uniform on $(0,1)$ and

$$
P\left(X_{i j}=1 \mid U=u, V=v\right)=\phi\left(u_{i}, v_{j}\right)
$$

Aldous (1981); Diaconis and Freedman (1981) show that distributions of ϕ-matrices are the extreme points of $\mathcal{P}_{R C S}$, i.e. binary RCE matrices are mixtures of ϕ-matrices.
Many ϕ give same distribution of ϕ-matrix.

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

RCE versus RCS

Consider ϕ-matrix defined by $\phi\left(u_{i}, v_{j}\right)=u_{i} v_{j}$. Then

$$
P\left(M_{1}\right)=P\left(M_{2}\right)=P\left(M_{3}\right)=P\left(M_{4}\right)=\frac{665}{2985984}
$$

whereas $P\left(M_{5}\right)=1 / 4096 .(665 \times 4096=2723840)$
RCE matrices have no simple summarizing statistics whereas RCES-matrices are summarized by the empirical distributions of row- and column sums:

$$
t_{m n}=\left(\sum_{i=1}^{m} \delta_{r_{i}}, \sum_{j=1}^{n} \delta_{s_{j}}\right) .
$$

This is a semigroup statistic, and RCES matrices can be represented via mixtures of characters on the image semigroup (Ressel 2002, personal communication).

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

Rasch type ϕ-matrices

If a ϕ-matrix is RCS it must satisfy

$$
P\left(\left.\left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\} \right\rvert\, U, V\right)=P\left(\left.\left\{\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right\} \right\rvert\, U, V\right)
$$

This holds if ϕ is of Rasch type, i.e. if for all u, v, u^{*}, v^{*} :

$$
\begin{aligned}
& \phi(u, v) \bar{\phi}\left(u, v^{*}\right) \bar{\phi}\left(u^{*}, v\right) \phi\left(u^{*}, v^{*}\right)= \\
& \bar{\phi}(u, v) \phi\left(u, v^{*}\right) \phi\left(u^{*}, v\right) \bar{\phi}\left(u^{*}, v^{*}\right),
\end{aligned}
$$

where we have let $\bar{\phi}=1-\phi$. Above is Rasch functional equation. General solutions of this equation represent characters of the image semigroup of the empirical row- and column sum measures.

Random Rasch matrices

de Finetti for RCES

Lauritzen (2003): Any RCES matrix is a mixture of Rasch type ϕ-matrices.
A random binary matrix is regular if

$$
0<P\left(X_{i j}=1 \mid \mathcal{S}\right)<1 \text { for all } i, j,
$$

where the shell σ-algebra \mathcal{S} is

$$
\mathcal{S}=\bigcap_{n=1}^{\infty} \sigma\left\{X_{i j}, \max (i, j) \geq n\right\}
$$

Any regular RCES matrix is a mixture of random Rasch matrices.

Solutions to Rasch functional equation

Regular solutions ($0<\phi<1$) all of form

$$
\phi(u, v)=\frac{a(u) b(v)}{1+a(u) b(v)}
$$

leading to random Rasch models.
Regular random Rasch matrices are parametrized by distributions (A, B) of $a(U)$ and $b(V)$, up to multiplication of a and division of b with constant.

$$
(A, B) \sim\left(A^{\prime}, B^{\prime}\right) \Longleftrightarrow A^{\prime}(x)=A(c x), B^{\prime}(y)=B(y / c)
$$

for some $c>0$.

Non-regular solutions to Rasch equation

There are other interesting solutions, e.g.

$$
\phi(u, v)=\chi_{\{u \leq v\}}= \begin{cases}1 & \text { if } u \leq v \\ 0 & \text { otherwise }\end{cases}
$$

or

$$
\phi(u, v)= \begin{cases}\frac{a(u) b(v)}{1+a(u) b(v)} & \text { if } 1 / 3<u, v<2 / 3 \\ \chi_{\{u \leq v\}} & \text { otherwise }\end{cases}
$$

corresponding to incomparable groups.

Non-regular Rasch with sorted rows and columns

Non-regular RCE with sorted rows and columns

$$
\phi(u, v)=\chi\{|u-v| \leq 1 / 2\}
$$

Outline
Variants and extensions
Random matrices

RCE vs Rasch with sorted rows and columns

$$
\phi(u, v)=u v, \quad \phi(u, v)=u v /(1+u v)
$$

Random Rasch matrices

Row- and column-exchangeable matrices
Summarized matrices
Convexity formulation
de Finetti for RCE matrices

de Finetti for WE matrices

A binary doubly infinite random matrix X is a ψ-matrix if $X_{\{i, j\}}$ are all independent given $U=\left(U_{i}\right)_{i=1, \ldots}$ where U_{i} are mutually independent and uniform on $(0,1)$ and

$$
\left.P\left(X_{\{i, j\}}\right)=(y, z) \mid U=u, V=v\right)=\psi_{y z}\left(u_{i}, u_{j}\right)
$$

Here we have let $X_{\{i, j\}}=\left(X_{i j}, X_{j i}\right)$ for $i<j$.
Reformulating results in Aldous (1981) yield that binary WE matrices are mixtures of ψ-matrices.
Note that we may further impose full symmetry by restricting to $\psi_{y z}=0$ unless $y=z$ and distributional symmetry by assuming $\psi_{y z}=\psi_{z y}$ or, equivalently, $\psi_{y z}(u, v)=\psi_{y z}(v, u)$.

Regular SWES matrices

Exactly as before, it is easy to show that $\mathcal{E}_{\text {SWES }}=\mathcal{E}_{S W E} \cap \mathcal{P}_{\text {SWS }}$, implying that SWES matrices are mixtures of ψ-matrices where ψ satisfies the Rasch functional equation.
Hence regular SWES ψ-matrices are generated as

$$
\psi(u, v)=\frac{a(u) a(v)}{1+a(u) a(v)}
$$

Probably no interesting non-regular solutions?

A binary matrix X defines a random graph in several ways.
If we consider the rows and colums as labels of two different sets of vertices, a random bipartite graph can be defined from X by letting $X_{i j}=1$ if and only if there is a directed edge from i to j. An RCE-matrix then corresponds to a random graph with exhangeable labels within each partition of the graph vertices. An RCS-matrix is similarly one where any two graphs having the same in-degree and out-degree for every vertex are equally likely.

If we consider the row-and column numbers to label the same vertex set, the matrix X represents in a similar way a random graph.
The graph is in general directed, but if we further restrict the matrix X to be symmetric, X can represent a random undirected graph.
A WE-matrix now represents a random graph with exchangeable labels, and an SWE-matrix similarly an undirected random exchangeable graph.
An SWS-matrix represents a random graph with the probability of any graph only depending on its vertex degrees.

Random graphs with exchangeability properties form natural models for social networks.
Frank and Strauss (1986) consider Markov graphs which are random graphs with

$$
\begin{equation*}
X_{\{i, j\}} \Perp X_{\{k, l\}} \mid X_{E \backslash\{\{i, j\},\{k, l\}\}} \tag{1}
\end{equation*}
$$

whenever all indices i, j, k, I are different. Here E denotes the edges in the complete graph on $\{1, \ldots, n\}$.

They show that weakly exchangeable Markov graphs all have the form

$$
p\left(\left\{x_{i j}\right\}_{1,1}^{n, n}\right) \propto \exp \left\{\tau_{n} t(x)+\sum_{k=1}^{n-1} \delta_{n k} \nu_{k}(x)\right\}
$$

where $x=\left\{x_{i j}\right\}_{1,1}^{n, n}, t(x)$ is the number of triangles in x, and $\nu_{k}(x)$ is the number of vertices in x of degree k.
Such Markov graphs are SWE, but generally not extendable as such.
They are SWES if $\tau=0$, and not otherwise if $n>5$.

Note that ψ-matrices typically differ from Markov graphs in that they are dissociated, hence marginally rather than conditionally independent:

$$
\begin{equation*}
X_{\{i, j\}} \Perp X_{\{k, l\}} \tag{2}
\end{equation*}
$$

whenever all indices i, j, k, I are different.
In fact infinite weakly exchangeable Markov graphs are Bernoulli graphs, essentially because the conjunction of (1) and (2) implies complete independence.

Problem: characterize exchangeable random graphs which for every n also are summarized by the number of triangles and the empirical distribution of vertex degrees:

$$
p\left(\left\{x_{i j}\right\}_{1,1}^{n, n}\right)=f_{n}\left(t(x), \sum_{k=1}^{n} \delta_{r_{k}(x)}\right)
$$

or similar graphs with sufficient statistics being counts of specific types of subgraph.
Rasch-type graphs, i.e. regular SWES-matrices, are as above, but without triangles.

Summary

- RCES matrices are mixtures of ϕ-matrices of Rasch type
- Regular RCES matrices are mixtures of random Rasch matrices
- Non-regular RCES matrices can be natural and interesting
- RCE, RCES, WE and SWE, matrices may produce possibly interesting random graphs, in particular in combination with other types of summarizing statistics.

Aldous, D. (1981). Representations for partially exchangeable random variables. Journal of Multivariate Analysis, 11:581-598.
Aldous, D. (1985). Exchangeability and related topics. In Hennequin, P., editor, École d'Été de Probabilités de Saint-Flour XIII - 1983, pages 1-198. Springer-Verlag, Heidelberg. Lecture Notes in Mathematics 1117.
de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio. Atti della R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale, 4:251-299.

Diaconis, P. and Freedman, D. (1980). de Finetti's theorem for Markov chains. Annals of Probability, 8:115-130.
Diaconis, P. and Freedman, D. (1981). On the statistics of vision: the Julesz conjecture. Journal of Mathematical Psychology, 24:112-138.

Frank, O. and Strauss, D. (1986). Markov graphs. Journal of the American Statistical Association, 81:832-842.
Lauritzen, S. L. (1988). Extremal Families and Systems of Sufficient Statistics. Springer-Verlag, Heidelberg. Lecture Notes in Statistics 49.
Lauritzen, S. L. (2003). Rasch models with exchangeable rows and columns. In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M., editors, Bayesian Statistics 7, pages 215-232, Oxford. Clarendon Press.
Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests, volume 1 of Studies in Mathematical Psychology. Danmarks Pædagogiske Institut, Copenhagen.
Ressel, P. (1988). Integral representations for distributions of symmetric stochastic processes. Probability Theory and Related Fields, 79:451-467.

