Probability Propagation

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 9, Michaelmas Term 2011

November 10, 2011

・ロン ・回と ・ヨン・

æ

Local computation algorithms have been developed with a variety of purposes. For example:

- Kalman filter and smoother
- Solving sparse linear equations;
- Decoding digital signals;
- Estimation in hidden Markov models;
- Peeling in pedigrees;
- Belief function evaluation;
- Probability propagation.

Also dynamic programming, linear programming, optimizing decisions, calculating Nash equilibria in cooperative games, and many others. *List is far from exhaustive!*

All algorithms are using, explicitly or implicitly, a *graph decomposition* and *a junction tree* or similar to make the computations.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Factorizing density on $\mathcal{X} = \times_{v \in V} \mathcal{X}_v$ with V and \mathcal{X}_v finite:

$$p(x) = \prod_{C \in \mathcal{C}} \phi_C(x).$$

The *potentials* $\phi_C(x)$ depend on $x_C = (x_v, v \in C)$ only. Basic task to calculate *marginal* probability

$$p(x_E^*) = \sum_{y_{V\setminus E}} p(x_E^*, y_{V\setminus E})$$

for $E \subseteq V$ and fixed x_E^* , but sum has too many terms. A second purpose is to get the prediction $p(x_v | x_E^*) = p(x_v, x_E^*)/p(x_E^*)$ for $v \in V$.

If the initial model is based on a DAG \mathcal{D} , the first step is to form the *moral graph* $\mathcal{G} = \mathcal{D}^m$, exploiting that if P factorizes w.r.t. \mathcal{D} , it also factorizes w.r.t. \mathcal{D}^m .

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロト イポト イラト イラト

A very simple example

Assume

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

and assume each of X, Y, Z, and W have, say, 100 states.

The joint state space has thus 10^8 states, and to calculate p(x) directly from p(x, y, z, w) by brute force involves 10^6 terms in the sum for every x, hence 10^8 arithmetic operations are needed.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロン 不同と 不同と 不同と

æ

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

we instead may do as follows:

1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

・ロン ・聞と ・ほと ・ほと

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

- 1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;
- 2. Calculate $\psi^*(y,z) = \psi(y,z)\eta^*(z)$ with 10000 multiplications

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

・ロン ・回 と ・ ヨ と ・ ヨ と

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

- 1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;
- 2. Calculate $\psi^*(y,z) = \psi(y,z)\eta^*(z)$ with 10000 multiplications
- 3. Calculate $\psi^*(y) = \sum_z \psi^*(y, z)$, with 10000 additions;

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

ヘロン 人間 とくほど 人間 とう

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

- 1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;
- 2. Calculate $\psi^*(y,z) = \psi(y,z)\eta^*(z)$ with 10000 multiplications
- 3. Calculate $\psi^*(y) = \sum_z \psi^*(y, z)$, with 10000 additions;
- 4. Calculate $\phi^*(x, y) = \phi(x, y)\psi^*(y)$ with 10000 multiplications;

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

(ロ) (同) (E) (E) (E)

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

- 1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;
- 2. Calculate $\psi^*(y,z) = \psi(y,z)\eta^*(z)$ with 10000 multiplications
- 3. Calculate $\psi^*(y) = \sum_z \psi^*(y, z)$, with 10000 additions;
- 4. Calculate $\phi^*(x, y) = \phi(x, y)\psi^*(y)$ with 10000 multiplications;
- 5. Calculate $\phi^*(x) = \sum_y \phi^*(x, y)$, with 10000 additions.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

A very simple example

From

$$p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$$

we instead may do as follows

- 1. Calculate $\eta^*(z) = \sum_w \eta(z, w)$, with 10000 additions;
- 2. Calculate $\psi^*(y,z) = \psi(y,z)\eta^*(z)$ with 10000 multiplications
- 3. Calculate $\psi^*(y) = \sum_z \psi^*(y, z)$, with 10000 additions;
- 4. Calculate $\phi^*(x,y) = \phi(x,y)\psi^*(y)$ with 10000 multiplications;
- 5. Calculate $\phi^*(x) = \sum_y \phi^*(x, y)$, with 10000 additions.

Now $p^*(x) = \phi^*(x)$ so we have done this with only 50000 operations, rather than a million.

Note we have never explicitly formed the product $p(x, y, z, w) = \phi(x, y)\psi(y, z)\eta(z, w)$

イロト イヨト イヨト イヨト

Starting from a DAG \mathcal{D} , the computational structure is set up in several steps:

 Moralisation: Constructing D^m, exploiting that if P factorizes over D, it factorizes over D^m. Skip if starting from an undirected graph.

イロン イヨン イヨン イヨン

Starting from a DAG \mathcal{D} , the computational structure is set up in several steps:

- Moralisation: Constructing D^m, exploiting that if P factorizes over D, it factorizes over D^m. Skip if starting from an undirected graph.
- 2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;

・ロン ・回 と ・ ヨ と ・ ヨ と

Starting from a DAG \mathcal{D} , the computational structure is set up in several steps:

- Moralisation: Constructing D^m, exploiting that if P factorizes over D, it factorizes over D^m. Skip if starting from an undirected graph.
- 2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
- 3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.

・ロン ・回と ・ヨン ・ヨン

Starting from a DAG \mathcal{D} , the computational structure is set up in several steps:

- Moralisation: Constructing D^m, exploiting that if P factorizes over D, it factorizes over D^m. Skip if starting from an undirected graph.
- 2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
- 3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.
- 4. *Initialization:* Assigning potential functions ϕ_C to cliques.

・ロン ・聞と ・ほと ・ほと

Starting from a DAG $\ensuremath{\mathcal{D}}$, the computational structure is set up in several steps:

- Moralisation: Constructing D^m, exploiting that if P factorizes over D, it factorizes over D^m. Skip if starting from an undirected graph.
- 2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
- 3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.
- 4. *Initialization:* Assigning potential functions ϕ_C to cliques.

Computations are executed by *message passing*.

イロン イヨン イヨン イヨン

Starting from a DAG \mathcal{D} , the computational structure is set up in several steps:

- 1. *Moralisation:* Constructing \mathcal{D}^m , exploiting that if P factorizes over \mathcal{D} , it factorizes over \mathcal{D}^m . Skip if starting from an undirected graph.
- 2. Triangulation: Adding edges to find chordal graph $\tilde{\mathcal{G}}$ with $\mathcal{G} \subseteq \tilde{\mathcal{G}}$. This step is non-trivial (NP-complete) to optimize;
- 3. Constructing junction tree: Using MCS, the cliques of $\tilde{\mathcal{G}}$ are found and arranged in a junction tree.
- 4. *Initialization:* Assigning potential functions ϕ_C to cliques.

Computations are executed by *message passing*.

The complete process above is known as *compilation*.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロト イヨト イヨト イヨト

Initialization

1. For every vertex $v \in V$ we find a clique C(v) in the triangulated graph $\tilde{\mathcal{G}}$ which contains pa(v). Such a clique exists because $v \cup pa(v)$ are complete in \mathcal{D}^m by construction, and hence in $\tilde{\mathcal{G}}$;

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロト イヨト イヨト イヨト

Initialization

- 1. For every vertex $v \in V$ we find a clique C(v) in the triangulated graph $\tilde{\mathcal{G}}$ which contains pa(v). Such a clique exists because $v \cup pa(v)$ are complete in \mathcal{D}^m by construction, and hence in $\tilde{\mathcal{G}}$;
- 2. Define potential functions ϕ_C for all cliques C in $\tilde{\mathcal{G}}$ as

$$\phi_C(x) = \prod_{v:C(v)=C} p(x_v \mid x_{\mathsf{pa}(v)})$$

where the product over an empty index set is set to 1, i.e. $\phi_C \equiv 1$ if no vertex is assigned to C.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Initialization

- 1. For every vertex $v \in V$ we find a clique C(v) in the triangulated graph $\tilde{\mathcal{G}}$ which contains pa(v). Such a clique exists because $v \cup pa(v)$ are complete in \mathcal{D}^m by construction, and hence in $\tilde{\mathcal{G}}$;
- 2. Define potential functions ϕ_{C} for all cliques C in $\tilde{\mathcal{G}}$ as

$$\phi_C(x) = \prod_{v:C(v)=C} p(x_v \mid x_{\mathsf{pa}(v)})$$

where the product over an empty index set is set to 1, i.e. $\phi_C \equiv 1$ if no vertex is assigned to C.

3. It now holds that

$$p(x) = \prod_{C \in \mathcal{C}} \phi_C(x).$$

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Overview

This involves following steps

1. *Incorporating observations:* If $X_E = x_E^*$ is observed, we modify potentials as

$$\phi_{\mathcal{C}}(x_{\mathcal{C}}) \leftarrow \phi_{\mathcal{C}}(x) \prod_{e \in E \cap \mathcal{C}} \delta(x_e^*, x_e),$$

with $\delta(u, v) = 1$ if u = v and else $\delta(u, v) = 0$. Then:

$$p(x \mid X_E = x_E^*) = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_C)}{p(x_E^*)}.$$

Marginals p(x^{*}_E) and p(x_C | x^{*}_E) are then calculated by a local message passing algorithm.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Separators

Between any two cliques C and D which are neighbours in the junction tree their intersection $S = C \cap D$ is called a *separator*. In fact, the sets S are the minimal separators appearing in any decomposition sequence.

We also assign potentials to separators, initially $\phi_S \equiv 1$ for all $S \in S$, where S is the set of separators. Finally let

$$\kappa(x) = \frac{\prod_{C \in \mathcal{C}} \phi_C(x_C)}{\prod_{S \in \mathcal{S}} \phi_S(x_S)},\tag{1}$$

・ロン ・回と ・ヨン・モン・

and now it holds that $p(x | x_E^*) = \kappa(x) / p(x_E^*)$.

The expression (1) will be *invariant* under the message passing.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロン イヨン イヨン イヨン

Marginalization

The *A*-marginal of a potential ϕ_B for $A \subseteq V$ is

$$\phi_B^{\downarrow A}(x) = \phi_B^{\downarrow A}(x_A) = \sum_{y_{A \cap B}: y_{A \cap B} = x_{A \cap B}} \phi_B(y)$$

Since ϕ_B depends on x through x_B only it is true that if $B \subseteq V$ is 'small', marginal can be computed easily.

Note that the marginal $\phi^{\downarrow A}$ depends on x_A only.

・ロン ・聞と ・ほと ・ほと

Marginalization satisfies

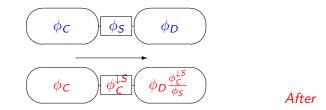
Consonance For subsets A and B: $\phi^{\downarrow(A\cap B)} = (\phi^{\downarrow B})^{\downarrow A}$ Distributivity If ϕ_C depends on x_C only and $C \subseteq B$: $(\phi\phi_C)^{\downarrow B} = (\phi^{\downarrow B}) \phi_C$.

Essentially the distributivity ensures that we can move factors in a sum outside of the summation sign.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Messages

When C sends message to D, the following happens:



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Before

Computation is *local*, involving only variables within cliques.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロト イヨト イヨト イヨト

The expression

$$\kappa(\mathbf{x}) = \frac{\prod_{C \in \mathcal{C}} \phi_C(\mathbf{x}_C)}{\prod_{S \in \mathcal{S}} \phi_S(\mathbf{x}_S)}$$

is invariant under the message passing since $\phi_C \phi_D / \phi_S$ is:

$$\frac{\phi_C \phi_D \frac{\phi_C^{\downarrow S}}{\phi_S}}{\phi_C^{\downarrow S}} = \frac{\phi_C \phi_D}{\phi_S}.$$

After the message has been sent, *D* contains the *D*-marginal of $\phi_C \phi_D / \phi_S$.

To see this, calculate

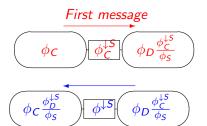
$$\left(\frac{\phi_C\phi_D}{\phi_S}\right)^{\downarrow D} = \frac{\phi_D}{\phi_S}\phi_C^{\downarrow D} = \frac{\phi_D}{\phi_S}\phi_C^{\downarrow S}.$$

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロン イヨン イヨン イヨン

Second message

If *D* returns message to *C*, the following happens:



Second message

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

Now all sets contain the relevant marginal of $\phi = \phi_C \phi_D / \phi_S$: The separator contains

$$\phi^{\downarrow S} = \left(\frac{\phi_C \phi_D}{\phi_S}\right)^{\downarrow S} = (\phi^{\downarrow D})^{\downarrow S} = \left(\phi_D \frac{\phi_C^{\downarrow S}}{\phi_S}\right)^{\downarrow S} = \frac{\phi_C^{\downarrow S} \phi_D^{\downarrow S}}{\phi_S}.$$

C contains

$$\phi_C \frac{\phi^{\downarrow S}}{\phi_C^{\downarrow S}} = \frac{\phi_C}{\phi_S} \phi_D^{\downarrow S} = \phi^{\downarrow C}$$

since, as before

$$\left(\frac{\phi_C\phi_D}{\phi_S}\right)^{\downarrow C} = \frac{\phi_D}{\phi_S}\phi_C^{\downarrow D} = \frac{\phi_C}{\phi_S}\phi_D^{\downarrow S}$$

Further messages between C and D are neutral! Nothing will change if a message is repeated.

Steffen Lauritzen, University of Oxford

Probability Propagation

・ロン ・回と ・ヨン・

2

Two phases:

► COLLINFO: messages are sent from leaves towards arbitrarily chosen root *R*.

After COLLINFO, the root potential satisfies $\phi_R(x_R) = \kappa^{\downarrow R}(x_R) = p(x_R, x_E^*).$

・ロン ・回 と ・ ヨ と ・ ヨ と

Two phases:

► COLLINFO: messages are sent from leaves towards arbitrarily chosen root *R*.

After COLLINFO, the root potential satisfies $\phi_R(x_R) = \kappa^{\downarrow R}(x_R) = p(x_R, x_E^*).$

▶ DISTINFO: messages are sent from root *R* towards leaves. After COLLINFO and subsequent DISTINFO, it holds for all $B \in C \cup S$ that $\phi_B(x_B) == \kappa^{\downarrow B}(x_B) = p(x_B, x_E^*)$.

< □ > < @ > < 注 > < 注 > ... 注

Two phases:

► COLLINFO: messages are sent from leaves towards arbitrarily chosen root *R*.

After COLLINFO, the root potential satisfies $\phi_R(x_R) = \kappa^{\downarrow R}(x_R) = p(x_R, x_E^*).$

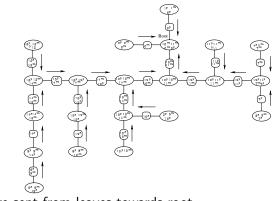
- ▶ DISTINFO: messages are sent from root *R* towards leaves. *After* COLLINFO *and subsequent* DISTINFO, *it holds for all* $B \in C \cup S$ that $\phi_B(x_B) == \kappa^{\downarrow B}(x_B) = p(x_B, x_E^*)$.
- ► Hence $p(x_E^*) = \sum_{x_S} \phi_S(x_S)$ for any $S \in S$ and $p(x_v | x_E^*)$ can readily be computed from any ϕ_S with $v \in S$.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

・ロト ・回ト ・ヨト

-≣->

CollInfo



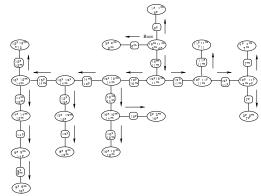
Messages are sent from leaves towards root.

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

・ロト ・回ト ・ヨト

< ∃⇒

DISTINFO



After $\operatorname{COLLINFO}$, messages are sent from root towards leaves.

・ロン ・回と ・ヨン ・ヨン

The correctness of the algorithm is easily established by induction:

We have on the previous overheads shown correctness for a junction tree with only two cliques.

Now consider a leaf clique *L* of the juction tree and let $V^* = \bigcup_{C: C \in \mathcal{C} \setminus \{L\}} C.$

Because the tree is a junction tree, we have $S^* = L \cap C^* = L \cap V^*$ where C^* is the neighbour of L in the junction tree. Thus L and V^* form a junction tree of two cliques with separator S^*

After a message has been sent from L to V^* in the COLLINFO phase, ϕ_{V^*} is equal to the V^* -marginal of κ .

By induction, when all messages have been sent except the one from the neighbour clique C^* to L, all cliques other than L contain the relevant marginal of κ , and

$$\phi_{V^*} = \frac{\prod_{C:C \in \mathcal{C} \setminus \{L\}} \phi_C}{\prod_{S:S \in \mathcal{S} \setminus \{S^*\}} \phi_S}$$

Now let, V^* send its message back to L. To do this, it needs to calculate $\phi_{V^*}^{\downarrow S^*}$. But since $S^* \subseteq C^*$, and $\phi_{C^*} = \phi_{V^*}^{\downarrow C^*}$ we have

$$\phi_{V^*}^{\downarrow S^*} = \phi_{C^*}^{\downarrow S^*}$$

and sending a message from V^* to L is thus equivalent to sending a message from C^* to L. Thus, after this message has been sent, $\phi_L = \kappa^{\downarrow L}$ as desired.

・ロト ・回ト ・ヨト ・ヨト

Basic problem and structure of algorithm Setting up the structure Basic computations Message passing Message scheduling Correctness of algorithm

イロン イヨン イヨン イヨン

Alternative scheduling of messages

Local control:

Allow clique to send message if and only if it has already received message from all other neighbours. Such messages are *live*.

Using this protocol, there will be one clique who first receives messages from all its neighbours. This is effectively the root R in COLLINFO and DISTINFO.

Additional messages never do any harm (ignoring efficiency issues) as κ is invariant under message passing.

Exactly two live messages along every branch is needed.