
Local computation
Probability propagation

Probability Propagation

Steffen Lauritzen, University of Oxford

Graphical Models, Lecture 9, Michaelmas Term 2011

November 10, 2011

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Local computation algorithms have been developed with a variety
of purposes. For example:

I Kalman filter and smoother
I Solving sparse linear equations;
I Decoding digital signals;
I Estimation in hidden Markov models;
I Peeling in pedigrees;
I Belief function evaluation;
I Probability propagation.

Also dynamic programming, linear programming, optimizing
decisions, calculating Nash equilibria in cooperative games, and
many others. List is far from exhaustive!

All algorithms are using, explicitly or implicitly, a graph
decomposition and a junction tree or similar to make the
computations.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Factorizing density on X = ×v∈VXv with V and Xv finite:

p(x) =
∏
C∈C

φC (x).

The potentials φC (x) depend on xC = (xv , v ∈ C ) only.

Basic task to calculate marginal probability

p(x∗E ) =
∑
yV\E

p(x∗E , yV \E )

for E ⊆ V and fixed x∗E , but sum has too many terms. A second
purpose is to get the prediction p(xv | x∗E ) = p(xv , x

∗
E )/p(x∗E ) for

v ∈ V .

If the initial model is based on a DAG D, the first step is to form
the moral graph G = Dm, exploiting that if P factorizes w.r.t. D, it
also factorizes w.r.t. Dm.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

Assume
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

and assume each of X , Y , Z , and W have, say, 100 states.

The joint state space has thus 108 states, and to calculate p(x)
directly from p(x , y , z ,w) by brute force involves 106 terms in the
sum for every x , hence 108 arithmetic operations are needed.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows:

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows:

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows:

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows:

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows:

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

A very simple example

From
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

we instead may do as follows

1. Calculate η∗(z) =
∑

w η(z ,w), with 10000 additions;

2. Calculate ψ∗(y , z) = ψ(y , z)η∗(z) with 10000 multiplications

3. Calculate ψ∗(y) =
∑

z ψ
∗(y , z), with 10000 additions;

4. Calculate φ∗(x , y) = φ(x , y)ψ∗(y) with 10000 multiplications;

5. Calculate φ∗(x) =
∑

y φ
∗(x , y), with 10000 additions.

Now p∗(x) = φ∗(x) so we have done this with only 50000
operations, rather than a million.

Note we have never explicitly formed the product
p(x , y , z ,w) = φ(x , y)ψ(y , z)η(z ,w)

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Computations are executed by message passing.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Starting from a DAG D, the computational structure is set up in
several steps:

1. Moralisation: Constructing Dm, exploiting that if P factorizes
over D, it factorizes over Dm. Skip if starting from an
undirected graph.

2. Triangulation: Adding edges to find chordal graph G̃ with
G ⊆ G̃. This step is non-trivial (NP-complete) to optimize;

3. Constructing junction tree: Using MCS, the cliques of G̃ are
found and arranged in a junction tree.

4. Initialization: Assigning potential functions φC to cliques.

Computations are executed by message passing.

The complete process above is known as compilation.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Initialization

1. For every vertex v ∈ V we find a clique C (v) in the
triangulated graph G̃ which contains pa(v). Such a clique
exists because v ∪ pa(v) are complete in Dm by construction,
and hence in G̃;

2. Define potential functions φC for all cliques C in G̃ as

φC (x) =
∏

v :C(v)=C

p(xv | xpa(v))

where the product over an empty index set is set to 1, i.e.
φC ≡ 1 if no vertex is assigned to C .

3. It now holds that

p(x) =
∏
C∈C

φC (x).

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Initialization

1. For every vertex v ∈ V we find a clique C (v) in the
triangulated graph G̃ which contains pa(v). Such a clique
exists because v ∪ pa(v) are complete in Dm by construction,
and hence in G̃;

2. Define potential functions φC for all cliques C in G̃ as

φC (x) =
∏

v :C(v)=C

p(xv | xpa(v))

where the product over an empty index set is set to 1, i.e.
φC ≡ 1 if no vertex is assigned to C .

3. It now holds that

p(x) =
∏
C∈C

φC (x).

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Initialization

1. For every vertex v ∈ V we find a clique C (v) in the
triangulated graph G̃ which contains pa(v). Such a clique
exists because v ∪ pa(v) are complete in Dm by construction,
and hence in G̃;

2. Define potential functions φC for all cliques C in G̃ as

φC (x) =
∏

v :C(v)=C

p(xv | xpa(v))

where the product over an empty index set is set to 1, i.e.
φC ≡ 1 if no vertex is assigned to C .

3. It now holds that

p(x) =
∏
C∈C

φC (x).

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Overview

This involves following steps

1. Incorporating observations: If XE = x∗E is observed, we modify
potentials as

φC (xC )← φC (x)
∏

e∈E∩C
δ(x∗e , xe),

with δ(u, v) = 1 if u = v and else δ(u, v) = 0. Then:

p(x |XE = x∗E ) =

∏
C∈C φC (xC )

p(x∗E )
.

2. Marginals p(x∗E ) and p(xC | x∗E ) are then calculated by a local
message passing algorithm.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Separators

Between any two cliques C and D which are neighbours in the
junction tree their intersection S = C ∩ D is called a separator. In
fact, the sets S are the minimal separators appearing in any
decomposition sequence.

We also assign potentials to separators, initially φS ≡ 1 for all
S ∈ S, where S is the set of separators.

Finally let

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

, (1)

and now it holds that p(x | x∗E ) = κ(x)/p(x∗E ).

The expression (1) will be invariant under the message passing.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Marginalization

The A-marginal of a potential φB for A ⊆ V is

φ↓AB (x) = φ↓AB (xA) =
∑

yA∩B :yA∩B=xA∩B

φB(y)

Since φB depends on x through xB only it is true that if B ⊆ V is
‘small’, marginal can be computed easily.

Note that the marginal φ↓A depends on xA only.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Marginalization satisfies

Consonance For subsets A and B: φ↓(A∩B) =
(
φ↓B

)↓A
Distributivity If φC depends on xC only and C ⊆ B:

(φφC )↓B =
(
φ↓B

)
φC .

Essentially the distributivity ensures that we can move factors in a
sum outside of the summation sign.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Messages

When C sends message to D, the following happens:

Before

�
�

�
�

�
�

�
�φC φS φD

-�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS After

Computation is local, involving only variables within cliques.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The expression

κ(x) =

∏
C∈C φC (xC )∏
S∈S φS(xS)

is invariant under the message passing since φCφD/φS is:

φC φD
φ↓SC
φS

φ↓SC
=
φCφD
φS

.

After the message has been sent, D contains the D-marginal of
φCφD/φS .
To see this, calculate(

φCφD
φS

)↓D
=
φD
φS

φ↓DC =
φD
φS

φ↓SC .

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Second message

If D returns message to C , the following happens:

First message

�
�

�
�

�
�

�
�φC

φ↓SD
φS

φ↓S φD
φ↓SC
φS

-

�

�
�

�
�

�
�

�
�φC φ↓SC φD

φ↓SC
φS

Second message

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Now all sets contain the relevant marginal of φ = φCφD/φS :
The separator contains

φ↓S =

(
φCφD
φS

)↓S
= (φ↓D)↓S =

(
φD

φ↓SC
φS

)↓S
=
φ↓SC φ↓SD
φS

.

C contains

φC
φ↓S

φ↓SC
=
φC
φS
φ↓SD = φ↓C

since, as before (
φCφD
φS

)↓C
=
φD
φS

φ↓DC =
φC
φS
φ↓SD .

Further messages between C and D are neutral! Nothing will
change if a message is repeated.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Two phases:

I CollInfo: messages are sent from leaves towards arbitrarily
chosen root R.
After CollInfo, the root potential satisfies
φR(xR) = κ↓R(xR) = p(xR , x

∗
E ).

I DistInfo: messages are sent from root R towards leaves.
After CollInfo and subsequent DistInfo, it holds for all
B ∈ C ∪ S that φB(xB) == κ↓B(xB) = p(xB , x

∗
E ).

I Hence p(x∗E ) =
∑

xS
φS(xS) for any S ∈ S and p(xv | x∗E ) can

readily be computed from any φS with v ∈ S .

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

CollInfo

 

 

Root

� � � �

� � � �

� � � �

� � � �

� � � �

� �

� �

� �

� � � �
� �

� �

� �

� �

� �

� �

� �

	 � 	 �
 �


 �


 �


 �


 �


 �

� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �� � �

� � �� � �

� � � � � �

� � �
� � �� � �

� � �
� � �

� � �

� � �

� � � � � � � � � � � �� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �
� � �

� � �
� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

� � �

� � �

� � �� � �

� � �

� � �

� � �

� � �

� � �

� � �
� 
 
� � �

Messages are sent from leaves towards root.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

DistInfo

Root
 

 

� � � �

� � � �

� � � �

� � � �

� � � �

� �

� �

� �

� �� �
� �

� �

� �

� �

� �

� �

� �

	 � 	 �


 �


 �


 �


 �


 �


 �

� � �

� � �

� � �

� � �
� � �

� � �

� � �

� � �

� � �

� � �

� � �� � �

� � �

� � �

� � �

� � �

� � �� � �

� � �

� � � � � �

� � �

� � �� � �

� � � � � �
� � �

� � �

� � �

� � � � � � � � �� � �� � �� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

� � � � � �� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �� � �

After CollInfo, messages are sent from root towards leaves.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

The correctness of the algorithm is easily established by induction:

We have on the previous overheads shown correctness for a
junction tree with only two cliques.

Now consider a leaf clique L of the juction tree and let
V ∗ = ∪C :C∈C\{L}C .

Because the tree is a junction tree, we have S∗ = L ∩ C ∗ = L ∩ V ∗

where C ∗ is the neighbour of L in the junction tree. Thus L and
V ∗ form a junction tree of two cliques with separator S∗

After a message has been sent from L to V ∗ in the CollInfo
phase, φV ∗ is equal to the V ∗-marginal of κ.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

By induction, when all messages have been sent except the one
from the neighbour clique C ∗ to L, all cliques other than L contain
the relevant marginal of κ, and

φV ∗ =

∏
C :C∈C\{L} φC∏
S:S∈S\{S∗} φS

.

Now let, V ∗ send its message back to L. To do this, it needs to
calculate φ↓S

∗

V ∗ . But since S∗ ⊆ C ∗, and φC∗ = φ↓C
∗

V ∗ we have

φ↓S
∗

V ∗ = φ↓S
∗

C∗

and sending a message from V ∗ to L is thus equivalent to sending
a message from C ∗ to L. Thus, after this message has been sent,
φL = κ↓L as desired.

Steffen Lauritzen, University of Oxford Probability Propagation



Local computation
Probability propagation

Basic problem and structure of algorithm
Setting up the structure
Basic computations
Message passing
Message scheduling
Correctness of algorithm

Alternative scheduling of messages

Local control:
Allow clique to send message if and only if it has already received
message from all other neighbours. Such messages are live.

Using this protocol, there will be one clique who first receives
messages from all its neighbours. This is effectively the root R in
CollInfo and DistInfo.

Additional messages never do any harm (ignoring efficiency issues)
as κ is invariant under message passing.
Exactly two live messages along every branch is needed.

Steffen Lauritzen, University of Oxford Probability Propagation


	Local computation
	Probability propagation
	Basic problem and structure of algorithm
	Setting up the structure
	Basic computations
	Message passing
	Message scheduling
	Correctness of algorithm


