1. Let X_1, X_2, X_3, X_4, X_5 be independent with $X_i \sim \mathcal{N}(0, 1)$. Define recursively

 $Y_1 \leftarrow X_1, \ Y_2 \leftarrow X_2 + Y_1, \ Y_3 \leftarrow 2X_3 + Y_2, \ Y_4 \leftarrow X_4 + Y_3, \ Y_5 \leftarrow X_5 + 2Y_4.$

- (a) Find the covariance matrix Σ of Y;
- (b) Find the concentration matrix $K = \Sigma^{-1}$ of Y.
- (c) Find a directed acyclic graph \mathcal{D} so that Y is directed Markov w.r.t. \mathcal{D} .
- (d) Construct the dependence graph of Y;
- (e) Find the conditional distribution of Y_3 given $Y_1 = y_1, Y_2 = y_2, Y_4 = y_4, Y_5 = y_5$.
- 2. Consider a Gaussian distribution $\mathcal{N}_4(0, \Sigma)$ with $K = \Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G} = (V, E)$ with $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}\}$. Assume that the following Wishart matrix has been observed, with 10 degrees of freedom:

- (a) Perform one full cycle of the IPS algorithm to find the MLE of the concentration matrix, starting with K = I.
- (b) Assume next that $K = \Sigma^{-1}$ satisfies the conditional independence restrictions of the graph $\mathcal{G}^* = (V, E^*)$ with $V = \{1, 2, 3, 4\}$ and $E^* = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$. Find the maximum likelihood estimate of the concentration matrix.
- 3. Consider a Gaussian distribution $\mathcal{N}_4(0, \Sigma)$ with $K = \Sigma^{-1}$ satisfying the conditional independence restrictions of the graph $\mathcal{G} = (V, E)$ with $V = \{1, 2, 3, 4\}$ and $E = \{\{1, 2\}, \{2, 3\}\{1, 4\}\{3, 4\}\}.$
 - (a) Find two equations of degree 3 in σ₁₃ and σ₂₄ expressing these in terms of the variances σ₁₁, σ₂₂, σ₃₃, σ₄₄ and the covariances σ₁₂, σ₁₃, σ₁₄, σ₁₅; *Hint:* Express the appropriate inverse element of the covariance

Hint: Express the appropriate inverse element of the covariance matrix as a cofactor;

- (b) Consider the likelihood equations based on observing a Wishart matrix W = w with $W \sim \mathcal{W}(n, \Sigma)$. Use the answer under (a) to establish an equation of degree 5 for the maximum likelihood estimate of σ_{13} .
- (c) Assume next that $\sigma_{11} = \sigma_{22} = \sigma_{33} = \sigma_{44} = 1$ and $\sigma_{12} = \sigma_{23} = \sigma_{34} = \rho$ and $\sigma_{14} = -\rho$. Show that then $\rho^2 < 1/2$.

Steffen L. Lauritzen, University of Oxford

November 21, 2011