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Examples

A directed graphical model
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Scale display of network

Directed graphical model (Bayesian network) showing relations

between risk factors, diseases, and symptoms
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Examples

A pedigree

child_10

Graphical model for a pedigree from study of Werner's syndrome.
Each node is itself a graphical model.
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Examples

A large pedigree

Family relationship of 1641 members of Greenland Eskimo
population.
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Independence
Formal definition
Fundamental properties

Conditional independence

We recall that two random variables X and Y are independent if

P(X e AlY =y)=P(X € A)
or, equivalently, if

P{(X e AN(Y eB)} =P(XecAP(Y €B).
For discrete variables this is equivalent to
Pij = Pi+P+j
where pj = P(X =i,Y =j) and pi; = Zj pij etc., whereas for
continuous variables the requirement is a factorization of the joint
density:
fxy (x,y) = fx(xX)fy (y)-

When X and Y are independent we write X 1L Y.
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Independence
Formal definition
Fundamental properties

Conditional independence

Formal definition

Random variables X and Y are conditionally independent given the
random variable Z if

LIX|Y,Z)=L(X]|2).

We then write X 1L Y| Z (or X Lp Y| 2)
Intuitively:

Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities:

XWY|Z = fxvz(xy, 2)fz(z) = fxz(x,2)fyz(y, 2)
<= da,b:f(x,y,z) = a(x,z)b(y, z).
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Independence

Conditional independence Formal definition

Fundamental properties

3 6

For several variables, complex systems of conditional independence
can for example be described by undirected graphs.

Then a set of variables A is conditionally independent of set B,
given the values of a set of variables C if C separates A from B.

For example in picture above

1 {4,7}[{2,3},  {1,2} 1.7|{4,5,6}).
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Independence
Formal definition
Fundamental properties

Conditional independence

Directed graphical models

Directed graphs are also natural models for conditional

indpendence:
2 4

3 6

Any node is conditional independent of its non-descendants, given
its immediate parents. So, for example, in the above picture we
have

51 {1,4}|{2,3}, 61{1,2,4}|{3,5}.
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Independence

Conditional independence Formal definition

Fundamental properties

For random variables X, Y, Z, and W it holds
(C1) If X 1LY | Z then Y 1L X | Z;
(C2) IF X 1LY |Z and U = g(Y), then X 1L U| Z;
(C3) IFX 1LY |Z and U = g(Y), then X 1L Y | (Z, U);
(C4) If X 1LY |Z and X AL W | (Y, Z), then
X1 (Y, W)|z,
If density w.r.t. product measure f(x,y,z, w) > 0 also

(C5) I X 1LY |(Z, W) and X 1L Z| (Y, W) then
X 1(Y,Z)|W.
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Independence
Formal definition
Fundamental properties

Conditional independence

Proof of (C5): We have
X1LY|(Z,W)= f(x,y,z,w) = a(x,z,w)b(y, z, w).
Similarly
XWLZ|(Y,W)= f(x,y,z,w) =g(x,y,w)h(y,z, w).
If f(x,y,z,w) >0 for all (x,y,z, w) it thus follows that
g(x,y,w) = a(x,z,w)b(y,z,w)/h(y, z, w).

The left-hand side does not depend on z. So for fixed z = zj:

g(x,y, w) = a(x, w)b(y, w).

Insert this into the second expression for f to get

f(x,y,z,w) = 3a(x,w)b(y,w)h(y,z,w) = a*(x, w)b*(y, z, w)
which shows X 1L (Y, Z)| W.
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Graphoids and semi-graphoids

Abstract conditional independence Examples

Conditional independence can be seen as encoding abstract
irrelevance. With the interpretation: Knowing C, A is irrelevant for
learning B, (C1)—(C4) translate into:

(I1) If, knowing C, learning A is irrelevant for learning B,
then B is irrelevant for learning A;

(I2) If, knowing C, learning A is irrelevant for learning B,
then A is irrelevant for learning any part D of B,

(I3) If, knowing C, learning A is irrelevant for learning B,
it remains irrelevant having learnt any part D of B;

(I4) If, knowing C, learning A is irrelevant for learning B
and, having also learnt A, D remains irrelevant for
learning B, then both of A and D are irrelevant for
learning B.

The property analogous to (C5) is slightly more subtle and not
generally obvious.
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Graphoids and semi-graphoids

Abstract conditional independence Examples

An independence model L, is a ternary relation over subsets of a
finite set V. It is graphoid if for all subsets A, B, C, D:

(S1) if AL, B|C then B L, A| C (symmetry);

(S2) if AL, (BUD)|Cthen AL, B|Cand AL, D|C
(decomposition);

(S3) if AL, (BUD)|C then AL, B|(CU D) (weak
union);

(S4) if AL, B| C and AL, D|(BU C), then
Al,(BUD)|C (contraction);

(S5) if AL;B|(CUD)and AL, C|(BUD) then
AL, (BUC)|D (intersection).

Semigraphoid if only (S1)—(S4) holds. It is compositional if also

(S6) if ALy B|Cand AL, D|C then AL, (BUD)|C
(composition).
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Graphoids and semi-graphoids
Abstract conditional independence Examples

Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A, B, S of V, let A L5 B|S denote that S separates A
from B in G, i.e. that all paths from A to B intersect S.

Fact: The relation Lg on subsets of V' is a compositional
graphoid.

This fact is the reason for choosing the name ‘graphoid’ for such
independence model.
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Graphoids and semi-graphoids
Abstract conditional independence Examples

Systems of random variables

For a system V of labeled random variables X,,v € V, we use the
shorthand

AJ_LB|C — XAJ_LXB’XC,

where X4 = (Xy, v € A) denotes the variables with labels in A.

The properties (C1)—(C4) imply that 1L satisfies the
semi-graphoid axioms for such a system, and the graphoid axioms
if the joint density of the variables is strictly positive.

A regular multivariate Gaussian distribution, defines a
compositional graphoid independence model.
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Graphoids and semi-graphoids
Abstract conditional independence Examples

Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and
LIM|N < (LeN)L(MeN),

where LON = LNNL.L and M are said to meet orthogonally in N.
(O1) If L L M|N then M L L|N;
(O2) If L L M|N and U is a linear subspace of L, then

ULM|N,
(O3) If LL M| N and U is a linear subspace of M, then
L1 M|(N+ V),
(O4) If LL M|N and L L R| (M + N), then
LL(M+R)|N.
Intersection does not hold in general whereas composition (S6)

does.
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Definitions
Structural relations among Markov properties

Markov properties for undirected graphs

G = (V, E) simple undirected graph; An independence model L,
satisfies

(P) the pairwise Markov property if
atB=als,B|V\{a B}
(L) the local Markov property if
VaeV:al, V\c(a)| bd(a);
(G) the global Markov property if

AlgB|S=Al,B|S.
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Definitions
Structural relations among Markov properties
Markov properties for undirected graphs

Pairwise Markov property

3 6

Any non-adjacent pair of random variables are conditionally
independent given the remaning.
For example, 1 1,5({2,3,4,6,7} and 4 1,6|{1,2,3,5,7}.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Definitions
Structural relations among Markov properties
Markov properties for undirected graphs

Local Markov property

3 6

Every variable is conditionally independent of the remaining, given
its neighbours.
For example, 5 1, {1,4}]{2,3,6,7} and 7 L, {1,2,3}|{4,5,6}.
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Definitions
Structural relations among Markov properties
Markov properties for undirected graphs

Global Markov property

3 6

To find conditional independence relations, one should look for
separating sets, such as {2,3}, {4,5,6}, or {2,5,6}
For example, it follows that 1 1,7|{2,5,6} and 21,6({3,4,5}.
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Definitions

Structural relations among Markov properties

Markov properties for undirected graphs

For any semigraphoid it holds that
(G) = (L) = (P)
If 1, satisfies graphoid axioms it further holds that
(P) = (G)
so that in the graphoid case
(G) = (L) = (P).

The latter holds in particular for 1L, when f(x) > 0.
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Definitions
Structural relations among Markov properties
Markov properties for undirected graphs

(G) = (L) = (P)

(G) implies (L) because bd(«) separates a from V' \ cl(«).
Assume (L). Then 8 € V' \ cl(«) because a o 5. Thus

bd(e) U ((V\ cl(@)\ {£}) = V\ {«, B},
Hence by (L) and weak union (S3) we get that
aly (V@) VAA{a, B}

Decomposition (S2) then gives a L, 3| V' \ {a, 5} which is (P).
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Definitions

Structural relations among Markov properties

Markov properties for undirected graphs

(P) = (G) for graphoids:

Assume (P) and ALg B|S. We must show AL, B|S.

Wlog assume A and B non-empty. Proof is reverse induction on
n=1S|.

If n=|V|—2 then A and B are singletons and (P) yields
Al,B|S directly.

Assume |S| = n < |V/| — 2 and conclusion established for |S| > n:

First assume V = AUBUS. Then either A or B has at least two
elements, say A. If @ € Athen B Lg(A\{a})|(SU{a}) and also
algB|(SUA\{a}) (as Lg is a semi-graphoid). Thus by the
induction hypothesis

(A\{a}) Lo BI(SU{a}) and {a} Ly B[(SUAN\ {a}).

Now intersection (S5) gives AL, B | S.

Steffen Lauritzen, University of Oxford Graphs and Conditional Independence



Definitions
Structural relations among Markov properties
Markov properties for undirected graphs

(P) = (G) for graphoids, continued

For AUBUS C V we choose « € V' \ (AUBUS). Then
AlgB|(SU{a}) and hence the induction hypothesis yields
Al,B|(Su{a}).

Further, either AU S separates B from {a} or BU S separates A
from {a}. Assuming the former gives a L, B|AUS.

Using intersection (S5) we get (AU {a}) L, B|S and from
decomposition (S2) we derive that AL, B | S.

The latter case is similar.
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