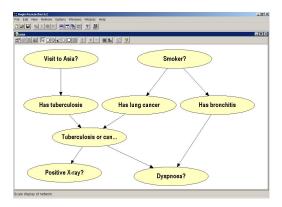
Graphs and Conditional Independence

Steffen Lauritzen, University of Oxford

CIMPA Summerschool, Hammamet 2011, Tunisia

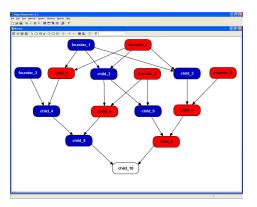
September 5, 2011

A directed graphical model



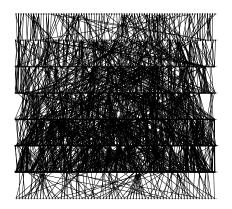
Directed graphical model (Bayesian network) showing relations between risk factors, diseases, and symptoms.

A pedigree



Graphical model for a pedigree from study of Werner's syndrome. Each node is itself a graphical model.

A large pedigree



Family relationship of 1641 members of Greenland Eskimo population.

We recall that two random variables X and Y are independent if

$$P(X \in A \mid Y = y) = P(X \in A)$$

or, equivalently, if

$$P\{(X \in A) \cap (Y \in B)\} = P(X \in A)P(Y \in B).$$

For discrete variables this is equivalent to

$$p_{ij}=p_{i+}p_{+j}$$

where $p_{ij} = P(X = i, Y = j)$ and $p_{i+} = \sum_{j} p_{ij}$ etc., whereas for continuous variables the requirement is a factorization of the joint density:

$$f_{XY}(x,y) = f_X(x)f_Y(y).$$

When X and Y are independent we write $X \perp\!\!\!\perp Y$.

Formal definition

Random variables X and Y are conditionally independent given the random variable Z if

$$\mathcal{L}(X \mid Y, Z) = \mathcal{L}(X \mid Z).$$

We then write $X \perp\!\!\!\perp Y \mid Z$ (or $X \perp\!\!\!\perp_P Y \mid Z$)

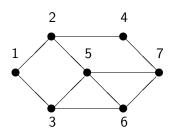
Intuitively:

Knowing *Z* renders *Y irrelevant* for predicting *X*.

Factorisation of densities:

$$X \perp \!\!\!\perp Y \mid Z \iff f_{XYZ}(x, y, z) f_Z(z) = f_{XZ}(x, z) f_{YZ}(y, z)$$

 $\iff \exists a, b : f(x, y, z) = a(x, z) b(y, z).$



For several variables, complex systems of conditional independence can for example be described by undirected graphs.

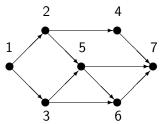
Then a set of variables A is conditionally independent of set B, given the values of a set of variables C if C separates A from B.

For example in picture above

$$1 \perp \!\!\! \perp \{4,7\} \mid \{2,3\}, \qquad \{1,2\} \perp \!\!\! \perp 7 \mid \{4,5,6\}.$$

Directed graphical models

Directed graphs are also natural models for conditional indpendence:



Any node is conditional independent of its non-descendants, given its immediate parents. So, for example, in the above picture we have

$$5 \perp\!\!\!\perp \{1,4\} \,|\, \{2,3\}, \quad 6 \perp\!\!\!\perp \{1,2,4\} \,|\, \{3,5\}.$$

For random variables X, Y, Z, and W it holds

(C1) If
$$X \perp \!\!\!\perp Y \mid Z$$
 then $Y \perp \!\!\!\!\perp X \mid Z$;

(C2) If
$$X \perp \!\!\!\perp Y \mid Z$$
 and $U = g(Y)$, then $X \perp \!\!\!\perp U \mid Z$;

(C3) If
$$X \perp \!\!\!\perp Y \mid Z$$
 and $U = g(Y)$, then $X \perp \!\!\!\perp Y \mid (Z, U)$;

(C4) If
$$X \perp \!\!\!\perp Y \mid Z$$
 and $X \perp \!\!\!\perp W \mid (Y, Z)$, then $X \perp \!\!\!\perp (Y, W) \mid Z$;

If density w.r.t. product measure f(x, y, z, w) > 0 also

(C5) If
$$X \perp \!\!\!\perp Y \mid (Z, W)$$
 and $X \perp \!\!\!\perp Z \mid (Y, W)$ then $X \perp \!\!\!\perp (Y, Z) \mid W$.

Proof of (C5): We have

$$X \perp \!\!\!\perp Y \mid (Z, W) \Rightarrow f(x, y, z, w) = a(x, z, w)b(y, z, w).$$

Similarly

$$X \perp \!\!\! \perp Z \mid (Y, W) \Rightarrow f(x, y, z, w) = g(x, y, w)h(y, z, w).$$

If f(x, y, z, w) > 0 for all (x, y, z, w) it thus follows that

$$g(x,y,w) = a(x,z,w)b(y,z,w)/h(y,z,w).$$

The left-hand side does not depend on z. So for fixed $z = z_0$:

$$g(x, y, w) = \tilde{a}(x, w)\tilde{b}(y, w).$$

Insert this into the second expression for f to get

$$f(x, y, z, w) = \tilde{a}(x, w)\tilde{b}(y, w)h(y, z, w) = a^*(x, w)b^*(y, z, w)$$

which shows $X \perp \!\!\!\perp (Y, Z) \mid W$.

Conditional independence can be seen as encoding abstract irrelevance. With the interpretation: $Knowing\ C$, A is irrelevant for learning B, (C1)–(C4) translate into:

- (II) If, knowing C, learning A is irrelevant for learning B, then B is irrelevant for learning A;
- (I2) If, knowing C, learning A is irrelevant for learning B, then A is irrelevant for learning any part D of B;
- (I3) If, knowing C, learning A is irrelevant for learning B, it remains irrelevant having learnt any part D of B;
- (I4) If, knowing C, learning A is irrelevant for learning B and, having also learnt A, D remains irrelevant for learning B, then both of A and D are irrelevant for learning B.

The property analogous to (C5) is slightly more subtle and not generally obvious.

An *independence model* \perp_{σ} is a ternary relation over subsets of a finite set V. It is *graphoid* if for all subsets A, B, C, D:

- (S1) if $A \perp_{\sigma} B \mid C$ then $B \perp_{\sigma} A \mid C$ (symmetry);
- (S2) if $A \perp_{\sigma} (B \cup D) \mid C$ then $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid C$ (decomposition);
- (S3) if $A \perp_{\sigma} (B \cup D) \mid C$ then $A \perp_{\sigma} B \mid (C \cup D)$ (weak union);
- (S4) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid (B \cup C)$, then $A \perp_{\sigma} (B \cup D) \mid C$ (contraction);
- (S5) if $A \perp_{\sigma} B \mid (C \cup D)$ and $A \perp_{\sigma} C \mid (B \cup D)$ then $A \perp_{\sigma} (B \cup C) \mid D$ (intersection).

Semigraphoid if only (S1)–(S4) holds. It is compositional if also

(S6) if $A \perp_{\sigma} B \mid C$ and $A \perp_{\sigma} D \mid C$ then $A \perp_{\sigma} (B \cup D) \mid C$ (composition).

Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no self-loops, no multiple edges).

For subsets A, B, S of V, let $A \perp_{\mathcal{G}} B \mid S$ denote that S separates A from B in G, i.e. that all paths from A to B intersect S.

Fact: The relation $\perp_{\mathcal{G}}$ on subsets of V is a compositional graphoid.

This fact is the reason for choosing the name 'graphoid' for such independence model.

Systems of random variables

For a system V of labeled random variables $X_v, v \in V$, we use the shorthand

$$A \perp \!\!\!\perp B \mid C \iff X_A \perp \!\!\!\!\perp X_B \mid X_C$$

where $X_A = (X_V, v \in A)$ denotes the variables with labels in A.

The properties (C1)–(C4) imply that $\perp \!\!\!\! \perp$ satisfies the semi-graphoid axioms for such a system, and the graphoid axioms if the joint density of the variables is strictly positive.

A regular *multivariate Gaussian distribution*, defines a *compositional graphoid independence model*.

Geometric orthogonality

Let L, M, and N be linear subspaces of a Hilbert space H and

$$L \perp M \mid N \iff (L \ominus N) \perp (M \ominus N),$$

where $L \ominus N = L \cap N^{\perp}.L$ and M are said to meet orthogonally in N.

- (O1) If $L \perp M \mid N$ then $M \perp L \mid N$;
- (O2) If $L \perp M \mid N$ and U is a linear subspace of L, then $U \perp M \mid N$;
- (O3) If $L \perp M \mid N$ and U is a linear subspace of M, then $L \perp M \mid (N + U)$;
- (O4) If $L \perp M \mid N$ and $L \perp R \mid (M + N)$, then $L \perp (M + R) \mid N$.

Intersection does not hold in general whereas *composition* (S6) does.

- $\mathcal{G} = (V, E)$ simple undirected graph; An independence model \perp_{σ} satisfies
- (P) the pairwise Markov property if

$$\alpha \nsim \beta \Rightarrow \alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\};$$

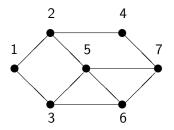
(L) the local Markov property if

$$\forall \alpha \in V : \alpha \perp_{\sigma} V \setminus \mathsf{cl}(\alpha) \mid \mathsf{bd}(\alpha);$$

(G) the global Markov property if

$$A \perp_{\mathcal{G}} B \mid S \Rightarrow A \perp_{\sigma} B \mid S$$
.

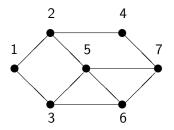
Pairwise Markov property



Any non-adjacent pair of random variables are conditionally independent given the remaning.

For example, $1 \perp_{\sigma} 5 \mid \{2, 3, 4, 6, 7\}$ and $4 \perp_{\sigma} 6 \mid \{1, 2, 3, 5, 7\}$.

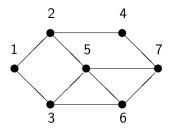
Local Markov property



Every variable is conditionally independent of the remaining, given its neighbours.

For example, $5 \perp_{\sigma} \{1,4\} \mid \{2,3,6,7\} \text{ and } 7 \perp_{\sigma} \{1,2,3\} \mid \{4,5,6\}.$

Global Markov property



To find conditional independence relations, one should look for separating sets, such as $\{2,3\},~\{4,5,6\},$ or $\{2,5,6\}$ For example, it follows that $1 \perp_{\sigma} 7 \mid \{2,5,6\}$ and $2 \perp_{\sigma} 6 \mid \{3,4,5\}.$

For any semigraphoid it holds that

$$(G) \Rightarrow (L) \Rightarrow (P)$$

If \perp_{σ} satisfies graphoid axioms it further holds that

$$(P) \Rightarrow (G)$$

so that in the graphoid case

$$(G) \iff (L) \iff (P).$$

The latter holds in particular for $\perp \!\!\! \perp$, when f(x) > 0.

$$(G) \Rightarrow (L) \Rightarrow (P)$$

(G) implies (L) because $bd(\alpha)$ separates α from $V \setminus cl(\alpha)$.

Assume (L). Then $\beta \in V \setminus cl(\alpha)$ because $\alpha \not\sim \beta$. Thus

$$\mathsf{bd}(\alpha) \cup ((V \setminus \mathsf{cl}(\alpha)) \setminus \{\beta\}) = V \setminus \{\alpha, \beta\},\$$

Hence by (L) and weak union (S3) we get that

$$\alpha \perp_{\sigma} (V \setminus \mathsf{cl}(\alpha)) \mid V \setminus \{\alpha, \beta\}.$$

Decomposition (S2) then gives $\alpha \perp_{\sigma} \beta \mid V \setminus \{\alpha, \beta\}$ which is (P).

- $(P) \Rightarrow (G)$ for graphoids:
- Assume (P) and $A \perp_{\mathcal{G}} B \mid S$. We must show $A \perp_{\sigma} B \mid S$.

Wlog assume A and B non-empty. Proof is reverse induction on n = |S|.

If n = |V| - 2 then A and B are singletons and (P) yields $A \perp_{\sigma} B \mid S$ directly.

Assume |S| = n < |V| - 2 and conclusion established for |S| > n:

First assume $V = A \cup B \cup S$. Then either A or B has at least two elements, say A. If $\alpha \in A$ then $B \perp_{\mathcal{G}} (A \setminus \{\alpha\}) | (S \cup \{\alpha\})$ and also $\alpha \perp_{\mathcal{G}} B | (S \cup A \setminus \{\alpha\})$ (as $\perp_{\mathcal{G}}$ is a semi-graphoid). Thus by the induction hypothesis

$$(A \setminus \{\alpha\}) \perp_{\sigma} B \mid (S \cup \{\alpha\}) \text{ and } \{\alpha\} \perp_{\sigma} B \mid (S \cup A \setminus \{\alpha\}).$$

Now intersection (S5) gives $A \perp_{\sigma} B \mid S$.

$(P) \Rightarrow (G)$ for graphoids, continued

For $A \cup B \cup S \subset V$ we choose $\alpha \in V \setminus (A \cup B \cup S)$. Then $A \perp_{\mathcal{G}} B \mid (S \cup \{\alpha\})$ and hence the induction hypothesis yields $A \perp_{\sigma} B \mid (S \cup \{\alpha\})$.

Further, either $A \cup S$ separates B from $\{\alpha\}$ or $B \cup S$ separates A from $\{\alpha\}$. Assuming the former gives $\alpha \perp_{\sigma} B \mid A \cup S$.

Using intersection (S5) we get $(A \cup \{\alpha\}) \perp_{\sigma} B \mid S$ and from decomposition (S2) we derive that $A \perp_{\sigma} B \mid S$.

The latter case is similar.