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Sufficiency

A statistic T = t(X) is said to be sufficient for the
parameter θ if Pθ{X = x |T = t} does not depend on θ.

Intuitively, a sufficient statistic is capturing all information
in data x which is relevant for θ.

Clearly, it can be of interest to find a statistic which does
so as compactly as possible. Such a statistic is called
minimal sufficient.

Formally a statistic is said to be minimal sufficient if it is
sufficient and it can be calculated from any other sufficient
statistic.
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Neyman’s factorization theorem

Sufficient statistics are most easily recognized through the
following fundamental result:

A statistic T = t(X) is sufficient for θ if and only if the
family of densities can be factorized as

f(x; θ) = h(x)k{t(x); θ}, x ∈ X , θ ∈ Θ, (1)

i.e. into a function which does not depend on θ and one
which only depends on x through t(x).

This is true in wide generality (essentially when densities
exist), but we only prove it here in the case where X is
discrete.
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Proof of the factorization theorem

Assume T sufficient and let h(x) = Pθ{X = x |T = t(x)}
be independent of θ. Let k(t; θ) = Pθ(T = t). Then

f(x; θ)=Pθ{X = x |T = t(x)}Pθ{T = t(x)} = h(x)k{t(x); θ}.

Conversely assume (1). Then

Pθ{X = x |T = t} =
h(x)k{t(x); θ}∑

y:t(y)=t h(y)k{t(y); θ}
1{t(x)=t}(x)

=
h(x)k{t; θ}

k{t; θ}
∑

y:t(y)=t h(y)
1{t(x)=t}(x)

=
h(x)∑

y:t(y)=t h(y)
1{t(x)=t}(x),

which is independent of θ.
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Example

Let X = (X1, . . . , Xn) be independent and Poisson
distributed with mean θ so that

f(x; θ) =
∏

i

θxi

xi!
e−θ =

θ
∑

i xi∏
i xi!

e−nθ.

This factorizes as in (1) with t(x) =
∑

i xi if we let
h(x) = 1/

∏
i xi! and k(t; θ) = θte−nθ.

Thus t(x) =
∑

i xi is sufficient (and indeed minimal
sufficient).
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Minimal sufficiency of the likelihood function

As previously mentioned, likelihood is probably the most
fundamental concept in statistic.

In fact, the likelihood function itself is always minimal
sufficient, thus implicitly the universal representation of
available information in the data about a parameter θ. To
establish this we first show

Let U = u(X) be any statistic from which the likelihood
function Lx(θ) can be reconstructed up to a factor which is
constant in θ. Then U is sufficient. In particular Lx is itself
sufficient.

To see this, we argue as follows: If Lx can be reconstructed
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from u = u(x) up to a constant factor, we have

Lx(θ) = c(x)d{u(x); θ}.

But then we have for the density that

f(x; θ) = e(x)Lx(θ) = e(x)c(x)d{u(x); θ}.

Using the factorization theorem with h(x) = e(x)c(x) and
k = d shows that U is sufficient.

The likelihood function is minimal sufficient.

For if T = t(X) is sufficient, the factorization theorem
yields

Lx(θ) = h(x)k{t(x); θ)}
so the likelihood function can be calculated (up to a
constant factor) from the value of t and Lx must therefore
be minimal sufficient.
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The Rao–Blackwell theorem

Sufficiency is important for obtaining minimum variance for
unbiased estimators:

If U = u(X) is an unbiased estimator of a function g(θ)
and T = t(X) is sufficient for θ then U∗ = u∗(X) where
u∗(x) = Eθ{U |T = t(x)} is also unbiased for g(θ) and

V(U∗) ≤ V(U).

The process of modifying U to the improved estimator U∗

by taking conditional expectation w.r.t. a sufficient statistic
T , is known as Rao–Blackwellization and can be important
in many contexts.
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Proof of the Rao–Blackwell theorem

Firstly, u∗(x) is indeed a function of x since the conditional
expectation Eθ{U |T = t(x)} is independent of θ because
T is sufficient.

Secondly, U∗ is unbiased since iterating expectations yields

E(U∗) = E{E(U |T )} = E(U) = g(θ).

Finally [E{U − g(θ) |T}]2 ≤ E[{U − g(θ)}2 |T ] so

V(U∗) = E[{E(U |T )− g(θ)}2]
= E[{E(U − g(θ) |T )}2]
≤ E(E[{U − g(θ)}2 |T ]) = V(U).
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Example

Consider the Poisson case above. Here X1 is clearly an
unbiased estimator of θ, but far from the best possible.

Now Rao-Blackwellize this to

θ̂ = E{X1 |T = X1 + · · ·+ Xn} = T/n = X̄,

where we have used that the conditional distribution of
(X1, · · · , Xn) given T = t is multinomial with parameters
p = (1/n, · · · , 1/n) and t.
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Uniqueness of the MVUE

A MVUE is essentially unique.

For if T and T ′ are both MVUE for g(θ), consider

V {T+λ(T ′−T )} = V(T )+λ2V(T ′−T )+2λ Cov(T, T ′−T ).
(2)

If V(T ′ − T )= 0 we clearly have T ′ = T so assume that
γ = V(T ′ − T ) > 0, let ρ = −Cov(T, T ′ − T ) and
λ = ρ/γ. Then

V{T +λ(T ′−T )} = V(T )+ρ2/γ−2ρ2/γ = V(T )−ρ2/γ.

Since T was MVUE, we get ρ = Cov(T, T ′ − T ) = 0.
Inserting this into (2) and letting λ = 1 yields
V(T ′) = V(T ) + V(T ′ − T ). As T ′ is MVUE we have
V(T ′ − T ) = 0 and thus T = T ′.
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Minimal sufficiency and MVUE

The Rao–Blackwell theorem and the essential uniqueness of
the MVUE implies that

A MVUE must essentially be a function of any minimal
sufficient statistic .

To see this, assume U is MVUE and let T be minimal
sufficient. Then Rao–Blackwellize U to U∗ = E{U |T}.

We then have V(U∗) ≤ V(U), but as U was already
MVUE, U∗ is also MVUE. The essential uniqueness of a
MVUE implies U = U∗.
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Completeness

A statistic T is said to be complete w.r.t. θ if for all
functions h

Eθ{h(T )} = 0 for all θ =⇒ h(t) = 0 a.s.

It is boundedly complete if the same holds when only
bounded functions h are considered.

The wording is not quite accurate. It would be more precise
to say the family of densities of T FT = {fT (t; θ), θ ∈ Θ}
is complete, but the shorter usage has become common in
statistical literature.
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Completeness and sufficiency

Any estimator of the form U = h(T ) of a complete and
sufficient statistic T is the unique unbiased estimator based
on T of its expectation.

For if h1 and h2 were two such estimators, we would have

Eθ{h1(T )− h2(T )} = 0 for all θ,

and hence h1 = h2.

In fact, if T is complete and sufficient, it is also minimal
sufficient. Note this makes the assumption of minimality in
Lemma 2.7 of Garthwaite et al. (2002) redundant.

Hence, if T is complete and sufficient, U = h(T ) is the
MVUE of its expectation.
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