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Conditional independence
The notion of conditional independence is fundamental for
graphical models.

For three random variables X, Y and Z we denote this as
X 1LY | Z and graphically as
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If the random variables have density w.r.t. a product
measure p, the conditional independence is reflected in the
relation

f(@,y,2)f(2) = f2,2)f(y,2),

where f is a generic symbol for the densities involved.



Graphical models
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For several variables, complex systems of conditional
independence can be described by undirected graphs.

Then a set of variables A is conditionally independent of
set B, given the values of a set of variables C' if ('
separates A from B.



A directed graphical model
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Smoker?

Has bronchitis

Has tuberculosis Has lung cancer
>
Tuberculosis or can...

Positive X-ray?

Scale display of nebwork

Directed model showing relations between risk factors,
diseases, and symptoms.




A pedigree

Graphical model for a pedigree from study of Werner's
syndrome. Each node is itself a graphical model.



A highly complex pedigree

Family relationship of 1641 members of Greenland Eskimo
population.



Conditional independence

Random variables X and Y are conditionally independent
given the random variable Z if

LX|Y,Z)=L(X|Z).
We then write X LY |Z (or X 1LpY | Z)
Intuitively:
Knowing Z renders Y irrelevant for predicting X.
Factorisation of densities w.r.t. product measure:

XUY|Z = [flxy2)f(2)=[f(x,2)f(y,2)
<~ da,b: f(z,y,2) = a(x, 2)b(y, 2).



Fundamental properties

For random variables X, Y, Z, and W it holds

Cl) if X 1LY |ZthenY 1L X |Z;

(C1)

(C2) if X LY |Zand U =g(Y), then X 1L U | Z;
(C3) if X 1LY | Z and U = g(Y), then X 1LY |(Z,U);
(C4)

C4) if X LY |Z and X LW | (Y, Z), then

XU (Y,W)|Z;
If density w.r.t. product measure f(z,y,z) > 0 also

(C5) if X LY |Zand X 1L Z|Y then X 1l (Y, Z).



Additional note on (C5)

f(z,y,z) > 0is not necessary for (C5). Enough e.g. that
f(y,z) >0 forall (y,2) or f(z,2) >0 for all .

In discrete and finite case it is even enough that the
bipartite graphs G, = (Y U Z, E,) defined by

Yo~z = f(yaz)>07

are all connected.

Alternatively it is sufficient if the same condition is satisfied
with X replacing Y.

Is there a simple necessary and sufficient condition?



Graphoid axioms

Ternary relation 1, among subsets of a finite set V' is
graphoid if for all disjoint subsets A, B, C, and D of V:

) if AL, B|C then B 1, A|C,

)ifAl,B|Cand DC B, then A1, D|C,;

S3) if AL, B|C and D C B, then A L, B|(C'UD);
)

Al,(BUD)|C,;

(S5) if AL, B|(CUD)and ALl,C|(BUD) then
Al,(BUC)|D.

Semigraphoid if only (S1)-(S4) holds.



Irrelevance

Conditional independence can be seen as encoding
irrelevance in a fundamental way. With the interpretation:
Knowing C', A is irrelevant for learning B, (S1)—(54)
translate to:

(I1) If, knowing C', learning A is irrelevant for learning B,
then B is irrelevant for learning A;

(12) If, knowing C', learning A is irrelevant for learning B,
then A is irrelevant for learning any part D of B;

(I3) If, knowing C, learning A is irrelevant for learning B,
it remains irrelevant having learnt any part D of B,



(I4) If, knowing C, learning A is irrelevant for learning B
and, having also learnt A, D remains irrelevant for
learning B, then both of A and D are irrelevant for
learning B.

The property (S5) is slightly more subtle and not generally
obvious.

Also the symmetry (C1) is a special property of
probabilistic conditional independence, rather than of
general irrelevance, where (I11) could appear dubious.



Probabilistic semigraphoids

V finite set, X = (X,,v € V) random variables.

For ACV, let X4 = (X,,v € A).

Let X, denote state space of X,.

Similarly 24 = (z,,v € A) € Xy = XpeaXy.
Abbreviate: AU B|S < X4 1 Xp|Xg.

Then basic properties of conditional independence imply:
The relation 1L on subsets of V is a semigraphoid.

If f(x) >0 for all z, 1L is also a graphoid.

Not all (semi)graphoids are probabilistically representable.



Second order conditional independence

Sets of random variables A and B are partially uncorrelated
for fixed C if their residuals after linear regression on X¢
are uncorrelated:

COV{XA — E*(XA ‘ Xc),XB — E*(XB | Xc)} = O,
in other words, if the partial correlations are zero

pa.c = 0.
We then write A 1, B|C.

Also L, satisfies the semigraphoid axioms (51) -(54) and
the graphoid axioms if there is no non-trivial linear relation
between the variables in V.



Separation in undirected graphs

Let G = (V, E) be finite and simple undirected graph (no
self-loops, no multiple edges).

For subsets A, B,S of V, let A Lg B|S denote that S
separates A from B in G, i.e. that all paths from A to B
intersect S.

Fact: The relation 1g on subsets of V' is a graphoid.

This fact is the reason for choosing the name ‘graphoid’ for
such separation relations.



Geometric Orthogonality

As another fundamental example, consider geometric
orthogonality in Euclidean vector spaces or Hilbert spaces.
Let L, M, and N be linear subspaces of a Hilbert space H
and define

L1 M|N < (L&N)L(M&N),

where L& N = LN NL. Then L and M are said to meet
orthogonally in N. This has properties

(O1) If L L M

N then M L L|N;

(02) If L L M|N and U is a linear subspace of L, then



(0O3) If L L M|N and U is a linear subspace of M, then
L1 M|(N+U);

(O4) fLLM|Nand L LR
L1 (M+R)|N.

(M + N), then

The analogue of (C5) does not hold in general; for example
if M = N we may have

LLM|Nand L LN|M,

but if L and M are not orthogonal then it is false that
L1 (M+N).



Variation independence
Let Y C X = Xy X, and define for S C V the S-section
U"s of U as

U's = {uv\s 1 us = us,u € U}.

Define further the conditional independence relation Iz, as
Aty B|C <= Yul : U = {U"C}, x {U" )

i.e. if and only if the C-sections all have the form of a
product space.

The relation Iy, satisfies the semigraphoid axioms. In
particular I;; holds if U is the support of a probability
measure satisfying the similar conditional independence
restriction.



Markov properties for semigraphoids

G = (V, E) simple undirected graph; L, (semi)graphoid
relation. Say |, satisfies

(P) the pairwise Markov property if
atf = alsB|V\{a B}
(L) the local Markov property if
VaeV:al,V\cl(a)| bd(a);
(G) the global Markov property if
AlgB|S = Al,B]|S.



Pairwise Markov property
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Any non-adjacent pair of random variables are conditionally
independent given the remaning.

For example, 1 11 5[{2,3,4,6,7} and 4 11 6|{1,2,3,5,7}.



Local Markov property
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Every variable is conditionally independent of the
remaining, given its neighbours.

For example, 5 1L {1,4}|{2,3,6,7} and
71 {1,2,3}|{4,5,6).



Global Markov property
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To find conditional independence relations, one should look
for separating sets, such as {2,3}, {4,5,6}, or {2,5,6}

For example, it follows that 1 1l 7|{2,5,6} and
211 6|{3,4,5}.



Structural relations among Markov properties

For any semigraphoid it holds that
(6 = (L) = (P)
If |, satisfies graphoid axioms it further holds that
(P) = (G)
so that in the graphoid case
(G) = (L) < (P).

The latter holds in particular for 1L, when f(x) > 0.



(G) = (L) — (P)
(G) implies (L) because bd(«) separates o from V' \ cl(«).
Assume (L). Then 3 € V \ cl(a) because o ¢ 3. Thus
bd(e) U ((V \ cl(a)) \ {5}) =V \ {a, B},
Hence by (L) and (S3) we get that
als (VA cl(@) [V {a, 5}
(S2) then gives a L, 3|V \ {a, B} which is (P).



(P) = (G) for graphoids

Asuume (P) and A Lg B|S. We must show AL, B|S.

Wilog assume A and B non-empty. Proof is reverse
induction on n = |S].

If n =|V| —2 then A and B are singletons and (P) yields
A l, B|S directly.

Assume |S| = n < |V] — 2 and conclusion established for
|S| > n.

First assume V = AU BUS. Then either A or B has at
least two elements, say A.

If « € Athen B 1lg(A\ {a})|(SU{a}) and also
algB|(SUA\{a}) (as Lg is a semi-graphoid).



Thus by the induction hypothesis
(A\{a}) Lo B[(SU{a}) and {a} L, B[ (SU A\ {a}).

Now (S5) gives A L, B | S.

For AUBUS C V we choose a € V\ (AUBUS). Then
Alg B|(SU{a}) and hence the induction hypothesis
yields A L, B|(SU{a}).

Further, either AU S separates B from {a} or BU S
separates A from {a}. Assuming the former gives
alysBJAUS.

Using (S5) we get (AU {a}) L, B|S and from (52) we
derive that AL, B | S.

The latter case is similar.



Factorisation and Markov properties

For a CV, ¢4(x) is a function depending on z, only, i.e.
To = Yo = Ya(T) = Ya(y).
We can then write ¢, () = ¥, (x,) without ambiguity.

The distribution of X factorizes w.r.t. G or satisfies (F) if
its density f w.r.t. product measure on X has the form

F@) = [ vala).
a€A
where A are complete subsets of G or, equivalently, if
f(x) = H 7;0(33)7
ceC

where C are the cliques of G.



Factorization example

The cliques of this graph are the maximal complete subsets

{1,2}, {1,3}, {2,4}, {2.5}, {3,5.6}, {4,7}, and {5,6,7}.
A complete set is any subset of these sets.

The graph above corresponds to a factorization as

fx) = oz, z2)i3(z1, 23)h2a (22, 4)a5(x2, T5)

X 3s6(w3, x5, 6 ) Va7 (T4, T7)Ys67(T5, T6, 7).



Factorisation of the multivariate Gaussian

Consider a multivariate Gaussian random vector
X =Ny (&, %) with X regular so it has density

F@]6,%) = 2r) V12 (det K) /26~ (=0 K@=0)/2,

where K = X~ is the concentration matrix of the
distribution.

Thus the Gaussian density factorizes w.r.t. G if and only if
« 74 b = k‘ag =0

i.e. if the concentration matrix has zero entries for
non-adjacent vertices.



Factorization theorem

Consider a distribution with density f w.r.t. a product
measure and let (G), (L) and (P) denote Markov properties
w.r.t. the semigraphoid relation I .

It then holds that
(F) = (G)

and further:
If f(x) >0 forall z: (P) = (F).

Thus in the case of positive density (but typically only
then), all the properties coincide:

(F) <= (6) < (L) < (P)



