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We want to congratulate the authors for a thought-provoking and very inter-
esting paper. Sparse modeling of the concentration matrix has enjoyed popularity
in recent years. It has been framed as a computationally convenient convex �1-
constrained estimation problem in Yuan and Lin (2007) and can be applied readily
to higher-dimensional problems. The authors argue—we think correctly—that the
sparsity of the concentration matrix is for many applications more plausible after
the effects of a few latent variables have been removed. The most attractive point
about their method is surely that it is formulated as a convex optimization problem.
Latent variable fitting and sparse graphical modeling of the conditional distribution
of the observed variables can then be obtained through a single fitting procedure.

Practical aspects. The method deserves wide adoption, but this will only be
realistic if software is made available, for example, as an R-package. Not many
users will go to the trouble of implementing the method on their own, so we will
strongly urge the authors to do so.

An imputation method. In the absence of readily available software, it is
worth thinking whether the proposed fitting procedure can be approximated by
methods involving known and well-tested computational techniques. The concen-
tration matrix of observed and hidden variables is

K =
(

KO KOH

KHO KH

)
,

where we have deviated from the notation in the paper by omitting the asterisk.
The proposed estimator Ŝn = K̂O of KO was defined as

(K̂O, L̂n) = argminS,L −�(S − L;�n
O) + λn

(
γ ‖S‖1 + tr(L)

)
(1)

such that S − L � 0,L � 0,(2)

where �n
O is the empirical covariance matrix of the observed variables.

An alternative would be to replace the nuclear-norm penalization with a fixed
constraint κ on the rank of the hidden variables, replacing problem (1) with

(K̂O, L̂n) = argminS,L −�(S − L;�n
O) + λn‖S‖1

(3)
such that S − L � 0 and L � 0 and rank(L) ≤ κ.
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This can be achieved by a missing-value formulation in combination with use
of the EM algorithm, which also applies in a penalized likelihood setting [Green
(1990)]. Let the hidden variables be of a fixed dimensionality κ and assume for a
moment these are observed so one would find the concentration matrix K̂ of the
joint distribution of the observed variables XO and hidden variables XH based on
the complete data penalized likelihood as

argminK − logfK(XO,XH) + λ‖KO‖1,(4)

where fK is the joint density of (XO,XH). This formulation is very similar to
the missing-value problem treated in Städler (2012), except for the fact that we
only penalize the concentration matrix KO of the observed variables, in analogy
with the proposed latent-variable approach. The EM algorithm iteratively replaces
the likelihood in (4) for t = 1, . . . , T by its conditional expectation and thus finds
K̂t+1 as

K̂t+1 = argminK −E
K̂t {logfK(XO,XH)|XO} + λ‖KO‖1.(5)

The iteration is guaranteed not to increase the negative marginal penalized likeli-
hood at every stage and will, save for unidentifiability, converge to the minimizer
in (3) for most starting values. Without loss of generality, one can fix the condi-
tional concentration matrix KH of the hidden variables to be the identity so that
these are conditionally independent with variance 1, given the observed variables.
Then −KOH is equal to the regression coefficients of the observed variables on
the hidden variables. As starting value we have let −K̂0

OH be equal to these with
hidden variables determined by a principal component analysis.

The expectation in (5) can be written as the log-likelihood of a Gaussian distri-
bution with concentration matrix K and empirical covariance matrix Wt , where

Wt =
(

�n
O −�n

OK̂t
OH

−K̂t
HO�n

O I + K̂t
HO�n

OK̂t
OH

)
.

The sufficient statistics involving the missing data are thus “imputed” in Wt . Each
of the updates (5) can now be computed with the graphical lasso [Friedman, Hastie
and Tibshirani (2008)].

We thought it would be interesting to compare the two methods on the data
example given in the paper. Figure 1 shows the solution K̂O for the stock-return
example when using the proposed method (1) and the imputation method (4) with
4 iterations. The number κ of latent variables and the number of nonzero edges in
K̂O is adjusted to be the same as in the original estimator.

The three pairs with the highest absolute entries in the fitted conditional con-
centration matrix are identical (AT&T—Verizon, Schlumberger—Baker Hughes
and Merrill Lynch—Morgan Stanley) for the two methods and the 15 pairs with
highest absolute entries in the off-diagonal concentration matrix have an overlap
of size 12. The resulting graphs are slightly different although they share many
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FIG. 1. The nonzero entries of the concentration matrix K̂O , using the proposed procedure (1)
(left) and the imputation method in (4) (right). Two representative companies are shown for some of
the sectors.

features. Our graph has 136 edges, one more than that in the procedure described
in the paper, and 77 of the edges are shared. Our graph has more isolated vertices
(15 vs. 9), slightly fewer cliques (62 vs. 81) and the largest clique in our graph has
six variables rather than four. The graph is displayed to the left in Figure 2 and
features some clearly identified clusters of variables.

The selected graph is very unstable under bootstrap simulations. In the spirit of
Meinshausen and Bühlmann (2010), we fit the graph on 2000 bootstrap samples.
Only 28 edges are selected in more than half of these samples. The resulting graph
is shown in Figure 2. As many as 25 of these edges appear also as edges of the
estimator proposed in (1). It would have been interesting to be able to compare
with the same “stability graph” of the proposed procedure but we suspect that they
will match closely.

Latent directed structures. In a sense the procedure described in this paper
can be seen as a modification of, or an alternative to, factor analysis, in which in-
dependent latent variables are sought to explain all the correlations, corresponding
to the graph for the observed variables being completely empty.

Methods for identifying such models can, for example, be developed using
tetrad constraints [Spirtes, Glymour and Scheines (1993), Drton, Sturmfels and
Sullivant (2007)]. Another generalization of factor analysis is to look for sparse di-
rected graphical models, which have now been rather well established through, for
example, the FCI algorithm [Spirtes, Glymour and Scheines (1993), Richardson
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FIG. 2. Left: the graph of the imputation method as in (4). Right: the graph of the stable edges. In both cases, isolated vertices have been removed from
the display.
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and Spirtes (2002)] with an algebraic underpinning in Sullivant (2008). Again this
could be an alternative to the procedure described in this interesting paper.

Summary. We effectively replaced the nuclear norm penalization of L in the
paper by a fixed constraint on the rank. This might be easier to do than choosing
a reasonable value for the penalty on the trace of L. Using this formulation, we
could combine the EM algorithm with the graphical lasso, enabling us to compute
the solution with readily available software. It would be interesting to see whether
our procedure can be shown to recover the correct sparsity structure under similar
assumptions to those in the paper. We want to congratulate the authors again for a
very interesting discussion paper.
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