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Abstract

A social network will often be dynamic, with social connec-
tions changing over time. Incorporating temporal changes into
a model for a social network will not only make it more re-
alistic, but will allow us to capture mechanisms and uncover
insights that would otherwise be impossible. In this thesis, we
extend and improve the Siena methodology, proposed by Sni-
jders (2001), the most prominent and widely used framework
for modelling dynamic social networks.

In Part II, we propose a model for the diffusion of an innovation
as it propagates through the dynamic network. Our model will
synthesise the Siena network model with a proportional haz-
ards model that is standard in survival analysis, providing us
with easily interpretable parameters for the diffusion process.

Obtaining the maximum likelihood estimate given longitudi-
nal data and a Siena model is a computationally demanding
task, and in Part III, we consider improvements to the existing
method. We show that these improvements can reduce com-
putation times substantially.

In Part IV, we consider various uses of Monte Carlo simulation
in the Siena framework. We focus on efficiently performing
likelihood ratio tests, in order to perform model selection, and
improving the estimation of standard errors.
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Chapter 1

Introduction

Society is a ‘web or tissue of human interactions and interrelations’ (Gins-

berg, 1939); it is ‘the sum of formal relations in which associating individu-

als are bound together’ (Giddings, 1896); it ‘does not consist of individuals

but expresses the sum of interrelations, the relations within which these

individuals stand’ (Marx, 1939). When defining society, the importance of

social relations is often emphasised, and so if we wish to further our un-

derstanding of a range of disciplines, such as sociology, anthropology or

politics, then it seems important to look to the connections between peo-

ple. Social network analysis provides us with a flexible and quantitative

way to do this.

In an early example of social network analysis, while studying Norwe-

gian fishermen, Barnes (1954) noted the similarities between the nets that

they used and the structure of the community in which they lived. Social

network analysis has since flourished as a framework for representing so-
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20 CHAPTER 1. INTRODUCTION

cial structures (Wasserman and Faust, 1994), accounting for patterns and

regularities, and depicting the social world as ‘an intertwined mesh of con-

nections through which individuals [are] bound together” (Scott, 1988).

Typically, a social network consists of a set of social actors and a finite

number of predefined relations between them; this framework allows us

to represent a huge variety of social structures. The social actor is very of-

ten an individual person, where examples of relations are friendship, trust,

advice, or collaboration (Wasserman and Faust, 1994). For example, the

widely used ‘Bank-wiring room’ data (Roethlisberger and Dickson, 1939)

measures a variety of relations ranging from standard (such as ‘liking’ and

‘antagonism’), to quite idiosyncratic (e.g. participation in ‘controversies

about windows’). However, the social actors need not be individual peo-

ple: social network analysis is used to study incredibly diverse scenarios,

ranging from countries connected by export relationships (Rhue and Sun-

dararajan, 2014) to birds related by pecking (Allee, 1958; Faust, 2014) (with

the latter research area reputedly giving rise to the phrase ‘pecking order’

(Perrin, 1955)).

Social network analysis is important because relationships can be as im-

portant, and in many applications, more important, than actor attributes,

when trying to understand observed behaviour (Knoke and Yang, 2008).

For example, many of a person’s attributes (such as gender and race) are

unchanged across the variety of social contexts in which they participate

(such as home or work), whereas structural relations may vary and be de-

fined in each place. An example given by Knoke and Yang (2008) suggests
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a scenario where a person has ‘little initiative’ at work but is the ‘dynamic

leader of [their] neighbourhood association’. Such contrasting behaviours

may be difficult to reconcile with their unchanging attributes, but could be

captured were we to observe their positions in the distinct social networks

based at their work and neighbourhood.

Looking at the structure of a network can provide us with a lot of infor-

mation, but for many applications, it is desirable, and even necessary, to

also look at a network as a dynamic process, where the social relations

between social actors change over time (Doreian and Stokman, 2013). If

we consider the case where the social actors are people, and the relation

between them friendship, then it is an empirical fact that the social ties are

not constant: the relationship had to begin at some point, and can certainly

end.

If we know that the social network is not constant, and we wish to cre-

ate as realistic a model as possible, then one which incorporates the net-

work changes is highly desirable. Moreover, a model with a network

that is dynamic allows us to capture mechanisms and uncover insights

which would be impossible considering only a static network. One of the

most important, which we will discuss further in Chapter 2, is the idea

of ‘disentangling selection and influence’ (Steglich et al., 2010). This can

be summarised colloquially as attempting to simultaneously answer the

two questions: Do friends become similar? Do similar people become friends?

We must look at social actors, and their network relations, and how both

change over time, to answer these questions.
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Dynamic network analysis has been described as ‘a Holy Grail for network

researchers’ (Carrington et al., 2005). This thesis will use the Siena model,

which was developed by Snijders (2001) to serve this purpose. This model

is popular and widely used; it is described by Veenstra and Steglich (2012)

as ‘the prominent tool for the analysis of longitudinal network data’. It is

referred to as a ‘stochastic actor-oriented’ model (Snijders et al., 2010), be-

cause its formulation is such that it can be interpreted that changes to the

network are driven by the actors. In other words, each actor is in control

of their outgoing ties, and they may choose to change or maintain their re-

lationships according to certain tendencies and inclinations. These can be

based on the network, such as a preference for reciprocated relationships

or simply a desire for a higher number of connections; however, they can

also depend on actor attributes, such as a predilection towards homophily,

where actors prefer those with similar behaviours, beliefs or practices. In

Section 1.2 we will describe some basic social mechanisms that can be op-

erationalised to express tendencies such as these.

1.1 Notation and some definitions

A social network consisting of n actors is modelled as a directed graph,

with an edge (which we will often refer to as a tie) from one node to an-

other corresponding to a specific social relation between them, such as

friendship, trust or collaboration. The directed graph can be represented

by an n × n adjacency matrix x = (xij), where xij = 1 if and only if a tie
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exists from actor i to actor j; otherwise xij = 0. The ties are assumed to be

directed (so that xij = 1 does not imply xji = 1) and non-reflexive (so that

xii = 0 for all i ∈ {1, . . . n}).

We refer to the ‘sender’ of a tie as the ego actor, and the ‘receiver’ as the

alter; we will sometimes refer to the set of actors to whom an ego has ties

as their alters.

1.2 Social network mechanisms

In this thesis, we are primarily interested in local structures of the net-

work; although we model an entire network, our analysis is usually in-

terpreted in terms of the actors within. In this section we briefly describe

some mechanisms that may be observed at the micro-level of a social net-

work, and why they may be of interest.

1.2.1 Reciprocity

In this thesis, we consider directed networks, and in such networks there

is often a tendency towards reciprocity, or mutuality: a tie from one actor

to another will often be returned. This is one of the most basic mechanisms

and will usually be incorporated into a model.
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1.2.2 Triads

The triads of a network are the subgraphs on sets of three nodes. Much of

the local structure of the network can be described using the triads (Hol-

land and Leinhardt, 1977). One important configuration of the triads is

transitivity, which can be described as the tendency of a social actor to

become ‘friends’ with a ‘friend of a friend’.

Another configuration widely examined is known as a ‘three-cycle’, where

the ties between the three actors forms a cycle of length three. Often it is

found that there is a tendency against this type of configuration, which can

be interpreted as evidence of local hierarchy (Davis, 1970).

1.2.3 Interactions with actor attributes

Actor attributes, such as demographics, can interact with the network in

significant ways. Actors with different characteristics may prefer differ-

ent amount of network connections, or have differing levels of popularity:

for example, Pearson et al. (2006) found that girls preferred to have more

friends but were themselves less attractive as friends.

Researchers may often be interested in tendencies for actors to prefer to

maintain relationships with those with whom they share similarites, known

as homophily (McPherson et al., 2001). For example, in the same study

mentioned above, Pearson et al. (2006) found that tobacco and alcohol

users preferred other users as friends.
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1.2.4 Centrality

There are various ways to measure a social actor’s centrality in the net-

work. The most obvious are the number of incoming ties, known as inde-

gree, or the number of outgoing ties, known as outdegree.

Another centrality measure is betweenness; this measures how many times

an actor is connected to two unconnected actors, and can be interpreted as

a measure of their ‘brokerage’ (Marsden, 2002).

Centrality measures can be important in determining who is important

in the network, whether often we define ‘important’ to mean influential

or an opinion leader (Valente, 1996). Considering the micro-level of the

network, social actors may take steps to obtain high centrality, in an at-

tempt to be popular and influence others, or they may prefer to connect

with others with high centrality, as this may manifest itself as an attractive

quality.

1.3 Outline and motivations

In this thesis, our overall goal is to extend and improve the Siena method-

ology for analysing dynamic social networks. We therefore begin by de-

scribing the Siena model, in Chapter 2.

In Part II, we propose a model for the diffusion of an innovation as it prop-

agates through the dynamic network. Our model will synthesise the Siena

network model with a proportional hazards model that is standard in sur-
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vival analysis, providing us with easily interpretable parameters for the

diffusion process.

As will be discussed in Chapter 2, parameter estimation for Siena model is

usually achieved using method of moments (Bowman and Shenton, 1985),

mainly due to its computational efficiency. In Part III, we consider max-

imum likelihood estimation, which is already available in Siena, but is

computationally demanding (Snijders et al., 2010). We consider special

cases of the Siena model conditional on which substantial efficiency im-

provements can be made. The aim is to improve performance enough to

make maximum likelihood a practically viable method for estimation.

In Part IV, we continue with maximum likelihood estimation, and con-

sider various uses of Monte Carlo simulation for maximum likelihood es-

timation. We focus on efficiently performing likelihood ratio tests, in order

to perform model selection, and improving the estimation of standard er-

rors.



Chapter 2

The Siena model

Dyads in a social network are inherently interdependent: whether or not

there is a relationship between two social actors will depend on the actors’

other relationships, or lack thereof (Robins and Pattison, 2005) . There

are few models for dynamic social networks which account for these de-

pendencies, and, of them, the Siena model (Snijders, 2001), is the most

prominent and widely used (Veenstra and Steglich, 2012).

For a collection of social actors, the Siena model assumes that a dynamic

network process evolves as a continuous time Markov chain on the space

of all possible networks between the actors; the parametrisation of the

transition intensity is such that one can interpret that the process changes

as actors stochastically maximise an objective function which encapsu-

lates their relationship preferences; for example, the function may increase

when an ego has more reciprocated ties, or ties with alters similar to the

ego.

27
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In this chapter we review the Siena model, firstly describing the model for

dynamic networks (Snijders, 2001), and then explaining how it is extended

to model the coevolution of dynamic networks and social actor attributes

(Snijders et al., 2007). After detailing these models, we describe the algo-

rithm used for parameter estimation in Section 2.3.

2.1 Model for a dynamic network

In this section, we consider the case where we wish to model a single dy-

namic network. In Section 2.1.1, we describe the some of the notation we

will use throughout the thesis. We give an overview of the model and its

assumptions in Section 2.1.2, before detailing the model specification in

Section 2.1.3.

2.1.1 Notation and data structure

Recall from Chapter 1 that we model a social network of n actors using a

direct graph which can be represented using an n× n adjacency matrix x.

In general, the network varies in time, so that X = X(t), for t ∈ T ⊂ R,

where T is a closed and bounded interval of the real line; the upper case

notation is used to indicate that the process is modelled as stochastic. An

observation of the network at time t is denoted by x(t).

We study longitudinal data: at a finite number (strictly larger than one) of

observation times t1 < . . . < tM , the network is observed, giving data
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X(t1) = x(t1), . . . , X(tM) = x(tM). The fact that the variables are ob-

served only at finitely many time points will later be seen to pose spe-

cial requirements on the estimation procedure. Covariates, either indi-

vidual (recorded for each actor) or dyadic (recorded for each pair of ac-

tors), can also be measured at each observation; these are assumed to

be fixed between observation times and non-stochastic. Individual and

dyadic covariates are referred to as v = (v1, . . . , vn) and w = (wij)1≤i,j≤n

respectively, with their possible dependence on the interval [tm−1, tm) for

m ∈ {2, . . . ,M} suppressed in the notation. Moreover, at times when it

is more convenient, we will refer to the process (X(t), v, w) as X(t), with

the covariates included only implicitly. An observation of the process at

time t is denoted by x(t). We refer to the multi-dimensional parameter

governing this stochastic process as θ.

2.1.2 Overview and Assumptions

We assume that the observed networks are outcomes of an underlying

continuous time Markov chain, as has been suggested by Holland and

Leinhardt (1977); this means that, between two observation times tm−1 and

tm, the process {X(t) : tm−1 ≤ t < tm}, is a continuous time Markov chain

with initial state given by the observation X(tm−1) = x(tm−1). The state

space of the process is X , where X is the set of binary adjacency matrices,

and given two distinct states x, x̂ ∈ X , we denote the transition intensity

for moving from x to x̂ at time t by Qθ(x, x̂, t).
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An important assumption of the model is that, at time t, given the current

state of the process X(t), the times until the next changes by the mem-

bers of the set of network ties are conditionally independent random vari-

ables. This means that at any one time point, the probability of more than

one change to these random variables is zero (Billingsley, 1995); therefore,

there can be at most one tie change to the network at any one point in

time. We refer to such a change as a mini-step. This assumption excludes

scenarios such as a mutual decision by two social actors to extend ties to

one another simultaneously; instead, each must do so one at a time. This

formulation also means that there will be lots of inertia in the model, and

so it is appropriate only for a social network in which the ties are enduring

in nature; for example, friendship and trust would be suitable, but highly

transient ties such as email contact or meeting at events would not.

Given the current state of the process X(t) = x (we suppress the depen-

dence of x on t to simplify the notation), only a single tie can change; in

other words, the network moves from x to a member of the set

A(x) =
⋃
i

⋃
j 6=i

{x(i j)} , (2.1)

where x(i j) ∈ X is the adjacency matrix that is the same as x in all but

the (i, j)th entry, so that

x(i j)hk =


1− xhk if (h, k) = (i, j),

xhk if (h, k) 6= (i, j).
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If x̂ ∈ X is not a member of the set A(x)∪ {x} then the transition intensity

Qθ(x, x̂, t) is zero.

2.1.3 Model specification

We consider the transition intensity of an actor changing an outgoing net-

work tie. Given the current state of the process X(t) = x, and given a

state x(i j) ∈ A(x) that can be reached from x by a single mini-step, we

model the transition intensity using the following decomposition

Qθ(x, x(i j), t) = λi(x, t; θ)pij(x; θ). (2.2)

This decomposition can be interpreted in the following way, proposed by

Snijders (2001): the process by which actor i changes one of their outgoing

ties {Xij : j ∈ {1, . . . , n}, j 6= i} has two stages; firstly, they must obtain

an opportunity to alter their ties, and secondly, they must choose which

of these to change. The time taken until a change opportunity arises for

actor i is modelled as being governed by the rate function λi(x, t; θ), and

the subsequent choice of what change to make by the conditional choice

probabilities (pi1(x; θ), . . . , pin(x; θ)).

Rate function

The time until actor i has an opportunity to change their outgoing ties is

modelled as an exponential random variable, with rate parameter depend-
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ing on the time and current state of the process. The rate parameter need

not be the same for all actors; instead, covariates and some functions of

the network, such as the number of outgoing ties that an actor has, can be

incorporated into the rate function. However, in the simplest case (which

we consider in this thesis) it is modelled as the same for each actor, and not

dependent on the current state of the network, so that the rate function for

actor i is defined as

λi(x, t; θ) = ρ[X](t). (2.3)

Between observations at times tm−1 and tm, the number of opportunities

that each actor has to change their ties is distributed as a Poisson random

variable with mean

ρ[X]
m :=

∫ tm

tm−1

ρ[X](t)dt. (2.4)

Conditional choice probabilities

Given the current state of the network X(t) = x, and given that actor i

has an opportunity to change one of their outgoing ties, they must choose

whether to extend a new tie, dissolve an existing tie, or leave the network

unchanged. The choice is governed by the conditional choice probabil-

ities pi1(y; θ), . . . , pin(y; θ) (seen in equation (2.2) for j 6= i). We define

pii(x; θ) = 1 −
∑

j 6=i pij(x; θ). For j ∈ {1, . . . , n} the network changes from

x to x(i j) (where we define x(i i) = x) with probability pij(x; θ). The
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inclusion of a potentially non-zero probability pii(x; θ) that the network re-

mains unchanged can be interpreted as accounting for the fact that actors

satisfied with the state of network will prefer to leave their ties unaltered.

We model the conditional choice probabilities in a multinomial logit form:

for j 6= i, given a change opportunity and the current state of the process

X(t) = x, actor i changes their tie to actor j ∈ {1, . . . , n}with probability

pij(x; θ) =
exp(fi(x(i j); θ))∑n
k=1 exp(fi(x(i k); θ))

, (2.5)

where fi(x; θ) is referred to as the objective function. This parametrisation is

a common choice in random utility modelling (see, for example, Maddala

(1983)); one interpretation of this is that actor i prefers networks for which

fi(x; θ) is high; Maddala (1983) shows that this formulation is equivalent

to saying that, given the current state of the process X(t) = x, and given

a change opportunity, actor i chooses j ∈ {1, . . . , n} to maximise the func-

tion

M(j) = fi(x(i j); θ) + ε(j), (2.6)

where ε(1), . . . , ε(n) are independent random variables drawn from the

type-1 extreme value distribution (also known as the standard Gumbel

distribution).

The objective function is modelled as a weighted linear combination of
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effects si1(x), . . . , siK[X](x), for some known K [X], and has the form

fi(x; θ) =
K[X]∑
k=1

β
[X]
k sik(x). (2.7)

The weights β[X]
1 , . . . , β

[X]

K[X] are parameters to be estimated. Effects are func-

tions of the current state of the process which are intended to encapsu-

late the different reasons an actor considers when making their tie change.

There are many possible effects, and a number of them are detailed in the

Appendix of Snijders et al. (2010). Some common choices, which we in-

clude in examples throughout this thesis, are:

1. Outdegree effect, the number of actor i’s outgoing ties.

2. Reciprocity effect, the number of actor i’s reciprocated ties.

3. Transitive triplet effect, the number of transitive patterns in actor i’s

outgoing ties (for example, friends who are also a friend of a friend).

4. ‘Number of actors at distance 2’ effect, the number of actors to whom

actor i is not directly tied but who can be reached by a path of out-

going ties of length 2 (for example, a friend of a friend who is not

themselves a friend).

5. 3-cycles effect, the number of cyclical triangles that actor i appears in.

6. Betweenness effect, the number of pairs of actors (j, h) for whom h is

tied to actor i and i is tied to actor j, but h is not tied to j. This effect

represents the amount of ‘brokerage’ by actor i.
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7. Covariate ego effect, the outdegree of actor i multiplied by the value of

their covariate.

8. Covariate alter effect, the sum of the covariates of actor i’s ties.

9. Covariate similarity effect, the sum of the similarities between the co-

variate for actor i and the covariates for each of actor i’s. (This effect

includes a centering constant c depending on the observed data is

included to reduce correlations with the outdegree effect. The value

of c is given by Ripley et al. (2011).)

Assuming that the weight parameter associated with one of these effects

is positive, we can interpret the maximisation of (2.6) as a preference for

tie changes which increases the number of relevant ties or patterns.

Tables 2.1 and 2.2 show the formulas and network diagrams for these ef-

fects (using a binary covariate in the diagrams, to simplify the illustration).

2.1.4 Summary of the model

In summary, we refer to the collection of all the unknown parameters as

θ = (ρ, β), where ρ =
(
ρ

[X]
2 , . . . , ρ

[X]
M

)
are those parameters associated

with the rate function, whilst β =
(
β

[X]
1 , . . . , β

[X]

K[X]

)
are those associated

with the network effects. Then, between observations at tm−1 and tm, the

continuous time Markov process {X(t) : tm−1 ≤ t < tm} on state space

X has initial state X(tm−1) = x(tm−1), where x(tm−1) is the observation

of the process at tm−1, and then evolves according to transition intensity
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Table 2.1: Structural effects. A dashed line indicates that were that tie to
exist, then the effect measure si(x) would increase.

Effect si(x)

Outdegree
∑

j xij

Reciprocity
∑

j xijxji

Transitive triplets
∑n

j,h=1 xijxjhxih

# actors at distance 2
∑n

h=1(1− xih)1{maxj(xijxjh)>0}

3-cycles
∑n

j,h=1 xijxjhxih

Betweenness
∑n

j,h=1 xijxhi(1− xhj)
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Table 2.2: Covariate effects for a binary actor covariate. A dashed line
indicates that were that tie to exist, then the effect measure si(x, z) would
increase. A shaded node indicates thats the corresponding covariate is
one; otherwise it is zero.
Effect si(x, z)

Covariate ego wi
∑n

j=1 xij

Covariate alter
∑n

j=1 xijwj

Covariate similarity
∑n

j=1 xij

(
1− |wj−wi|

maxi,j{|wj−wi|} − c
)
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Qθ(x, x̂, t) = Q̃θ(x, x̂)
(
ρ[X](t)/ρ

[X]
m

)
, for x̂ 6= x, where

Q̃(x, x̂) =


ρ

[X]
m pij(x; θ), if x̂ = x(i j) ∈ A(x),

0, otherwise,
(2.8)

where pij(y; θ) is given by (2.5).

2.2 Coevolution of a dynamic network and indi-

vidual behaviours

So far, in this chapter, we have described how to model the evolution of a

dynamic network; however, often we would like to jointly model this pro-

cess with an actor variable, which we will refer to as a behaviour (Snijders

et al., 2007). This behaviour is modelled as a stochastic, continuous time

variable.

If, for a collection of social actors, we were interested in both a dynamic

social network connecting them, and a time varying individual level be-

haviour, it may often be the case that the network and behaviour will be

interdependent, and so it is desirable to model them jointly. If we do this,

as well as creating a model which is arguably more representative of the

unknown underlying process, it also enables us to disentangle the distinct

effects of influence and selection (Steglich et al., 2010). Influence refers to

the way that social actors may choose their behaviour depending on the

behaviours of those around them, perhaps due to a tendency to behave
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similarly to one’s peers, whilst homophilous selection can be described

as the preference for instigating and maintaining relationships with those

with whom they are similar with respect to some relevant behaviour. The

Siena co-evolution model accounts for both of these effects by making the

evolutions of the network and the behaviours dependent on one another;

it is formulated so that at each point in time, the transition intensity de-

termining the change to the network is dependent on the current state of

the behaviour variable, and vice versa. The contrasting ideas of influence

and selection (and the different implications to causality that they imply),

are acknowledged by sociologists to exist jointly in many scenarios (e.g.

Fisher and Bauman (1988), Pearson and Michell (2000), Kirke (2004)), and

so it is important that they are both accounted for. Neglecting one may

erroneously attribute too much importance to the other; for example, Bau-

man and Ennett (1996) argue that the impact of selection when studying

adolescent smoking has been often neglected, but is important, and may

partially confound the effect of influence, a widely accepted mechanism

in such a scenario.

In this section, we describe the model for the co-evolution of a network

and an individual-level variable formulated by Snijders et al. (2007).

2.2.1 Notation and data structure

We use the same notation for the network process X(t), but now also

model a behaviour process over the same time period T . An actor’s be-



40 CHAPTER 2. THE SIENA MODEL

haviour is modelled as random process which can take values in B, a pre-

determined finite interval of integers. For actor i, and at time t, it is de-

noted by Zi(t). Collectively, the vector Z(t) = (Z1(t), . . . , Zn(t)) is referred

to as the behaviour variable or behaviour process.

At a finite number (strictly larger than one) of observation times t1 <

. . . < tM , the network and behaviour variables are observed, giving data

(X(t1), Z(t1)) = (x(t1), z(t1)), . . . , (X(tM), Z(tM)) = (x(tM), z(tM)). As be-

fore, covariates can also be measured.

The network and behaviour variables, and any individual or dyadic co-

variates, are jointly modelled as one process Y (t) = (X(t), Z(t)) (with the

covariates included implicitly). An observation of the process at time t is

denoted by y(t). As before, we refer to the multi-dimensional parameter

governing the stochastic process as θ.

2.2.2 Overview and assumptions

The network and behaviour processes are likely to be dependent on one

another, so we consider them as a joint process {Y (t) = (X(t), Z(t)) : t ∈

T }. Modelling as a joint process allows us to incorporate explanatory

variables which account for the dependencies that the network and the

behaviours have on one another; examples of these explanatory variables

will be detailed later in this section. Note that this formulation means that

the homophily mechanisms are assumed to be dependent only on the pro-

cess Y (t) and any measured covariates; latent homophily is not considered
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here (Shalizi and Thomas, 2011).

The assumptions about this process following a continuous time Markov

chain continue for this model: we assume that between two observation

times tm−1 and tm, the process {Y (t) : tm−1 ≤ t < tm}, is a continuous

time Markov chain with initial state given by the observation Y (tm−1) =

y(tm−1). The state space of this process is X × Bn, where X is the set of

binary adjacency matrices and Bn is the set of all n-tuples of the set B (i.e.

Bn is the set of all values that the vector of behaviours can take). Given

two distinct states y, ŷ ∈ X × Bn, we denote the transition intensity for

moving from y to ŷ at time t by Qθ(y, ŷ, t).

As with the network model, we assume that there can be only one change

to the process, either to the network or the behaviour variable, at any one

point in time. We also assume that at any point in time, an actor’s be-

haviour can change by at most one, either by increasing or decreasing.

Given the current state of the process Y (t) = y = (x, z) (we suppress the

dependence of y on t to simplify the notation), the process can change in

either the network x or the behaviour variable z. If it is the network that

updates then a single tie can change; in other words, the network moves

from x to a member of the set A(x); see (2.1).

If it is the behaviour variable which changes, the only change that can

occur is that a single actor may increase or decrease their behaviour by 1;

in other words the behaviour variable changes from z to a member of the
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set

R(z) =

 ⋃
i:zi<max(B)

{z(i ↑ 1)}

 ∪
 ⋃
i:zi>min(B)

{z(i ↓ 1)}

 ,
where z(i ↑ 1), z(i ↑ 1) ∈ Bn and

z(i ↑ 1)j =


zj + 1 for j = i,

zj for j 6= i,

and

z(i ↓ 1)j =


zj − 1 for j = i,

zj for j 6= i.

Combining these two scenarios, given the current state Y (t) = y = (x, z),

a mini-step can change the process to a member of the set

M(y) = {A(x)× {z}} ∪ {{x} ×R(z)}.

If ŷ ∈ X × Bn is not a member of the set M(y) ∪ {y} then the transition

intensity Qθ(y, ŷ, t) is zero.

2.2.3 Model specification

Given the current state Y (t) = y, the model for the transition intensity

Qθ(y, ŷ, t) where ŷ ∈ A(x)× {z} (i.e. where is the network that changes) is

the same as described earlier, in Section 2.1.3. In this section, we describe

the most common model used for the the transition intensity Qθ(y, ŷ, t)



2.2. COEVOLUTION MODEL 43

where ŷ ∈ A(x)×{z}, i.e. where is the behaviour that changes (in Chapter

3 we will propose an alternative model for a special case of the behaviour

variable).

Similarly to the model for a network change, for a change in behaviours,

we model the transition intensity by considering the decompositions

Qθ(y, (x, z(i ↑ 1)), t) = λ
[Z]
i (y, t; θ)p

[Z]
i,1 (y; θ), (2.9)

and

Qθ(y, (x, z(i ↓ 1)), t) = λ
[Z]
i (y, t; θ)p

[Z]
i,−1(y; θ). (2.10)

As with a network change, we can interpret a behaviour change as a two

stage process: firstly, an actor obtains an opportunity to alter their be-

haviour, and secondly, they choose, whether to increase or decrease their

behaviour, or to leave in unchanged. We might assume that the time taken

for the opportunity to arise is governed by the rate function λ
[Z]
i (y, t; θ),

and the choice of what change (if any) to make, by the conditional choice

probabilities (p
[Z]
i,−1(y; θ), p

[Z]
i,0 (y; θ), p

[Z]
i,1 (y; θ))

Rate function

Often, the behaviour rate function is modelled as the same for all actors,

and not dependent on the current state of the network (although in Chap-
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ter 3 this will not be the case); assuming this implies that

λ
[Z]
i (y, t; θ) = ρ[Z](t),

for some time dependent function ρ[Z](t).

When we model the network and behaviours jointly, the function ρ[Z](t)

has an important restriction required for the computational tractability

of the estimation procedure: when we simulate from these processes, we

must know the relative frequencies with which to change the network and

the behaviours. To achieve this, we can restrict the function so that, be-

tween observations, the rate of change to the behaviours is proportional

to the rate of change of the network, with the constant of proportionality

being estimated from the data. Specifically, recall from Section 2.1.3 that

the rate function for a change to the network is denoted by ρ[X](t); then

between observations at times tm−1 and tm, the ratio between the network

and behaviour rate functions must be constant: for m = 2, . . . ,M ,

ρ[Z](t)

ρ[X](t)
= cm,

for some constant cm. As with the network variable, between observations

at times tm−1 and tm, the number of opportunities that each actor has to

change their behaviour is distributed as a Poisson random variable with

mean

ρ[Z]
m :=

∫ tm

tm−1

ρ[Z](t)dt. (2.11)
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Conditional choice probabilities

Given the current state Y (t) = y, and given that actor i has an opportu-

nity to change their behaviour, they must choose whether to increase or

decrease its value, or to leave it unchanged. The choice is governed by the

conditional choice probabilities (p
[Z]
i,−1(y; θ), p

[Z]
i,0 (y; θ), p

[Z]
i,1 (y; θ)). We define

p
[Z]
i,0 (y; θ) = 1 − p

[Z]
i,−1(y; θ) − p

[Z]
i,1 (y; θ). Similarly to the conditional choice

probabilities for network changes, the inclusion of a potentially non-zero

probability p
[Z]
i,0 (y; θ) that the behaviour remains unchanged can be inter-

preted as accounting for the fact that actors satisfied with the state of be-

haviour will prefer to leave it unaltered.

We model the conditional choice probabilities in a multinomial logit form:

given a change opportunity and the current state of the process Y (t) = y,

actor i decreases their behaviour with 1 with probability

p
[Z]
i,−1(y; θ) =

exp{f [Z]
i [(x, z(i ↓ 1)); θ]}

1 + exp{f [Z]
i [(x, z(i ↓ 1)); θ]}+ exp{f [Z]

i [(x, z(i ↑ 1)); θ]}
,

(2.12)

and increases it with probability

p
[Z]
i,1 (y; θ) =

exp{f [Z]
i [(x, z(i ↑ 1)); θ]}

1 + exp{f [Z]
i [(x, z(i ↓ 1)); θ]}+ exp{f [Z]

i [(x, z(i ↑ 1)); θ]}
,

(2.13)

where f [Z]
i (y; θ) is referred to as the behaviour objective function. As with

the network objective function, one interpretation of this is that actor i
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prefers behaviours for which f
[Z]
i (y; θ) is high, and it is modelled as a

weighted linear combination of effects The objective function is modelled

as a weighted linear combination of effects s[Z]
i1 (y), . . . , s

[Z]

iK[Z](y), for some

known K [Z], and has the form

f
[X]
i (y; θ) =

K[Z]∑
k=1

β
[Z]
k s

[Z]
ik (y). (2.14)

The weights β[Z]
1 , . . . , β

[Z]

K[Z] are parameters to be estimated. Similarly to

network effects, behaviour effects are functions of the current state of the

process which are intended to encapsulate the different reasons an actor

considers when making their behaviour change. Some example behaviour

effects are (more are detailed in the Appendix of Snijders et al. (2010)):

1. Behaviour shape: the current value of the behaviour,

zi.

2. Quadratic shape: the square of the current value of the behaviour,

z2
i .

3. Average similarity: the average value of a measure of behaviour simi-

larity between the actor and those to whom they have a tie,

∑n
j=1 xij

(
1− |zi−zj |

maxi,j{|zi−zj |} − c
)

∑n
j=1 xij

,



2.2. COEVOLUTION MODEL 47

where a centering constant c depending on the observed data (and

given by Ripley et al. (2011)) is included to reduce correlations with

the rate parameters.

Note that average similarity is an example of an effect which can be used

for account for influence, because the more similar an actor’s behaviour is

to its peers, the higher the value of this effect is.

Selection network effects

In Section 2.1.3 we saw examples of network effects; now that we have

a co-evolving behaviour variable, we may wish to incorporate network

effects that also depend on the current state of the behaviour; this can al-

low us to account for the effect of the behaviour on the network. Some

examples are:

1. Behaviour ego: the outdegree of actor imultiplied by the value of their

behaviour,

zi

n∑
j=1

xij.

2. Behaviour alter: the sum of the behaviours of actor i’s ties.

n∑
j=1

xijzj.

3. Behaviour similarity: the sum of the similarities between the behaviour
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for actor i and the behaviour for each of actor i’s ties,

n∑
j=1

xij

(
1− |zj − zi|

maxi,j{|zj − zi|}
− c
)

A centering constant c depending on the observed data is included

to reduce correlations with the outdegree effect. The value of c is

given by Ripley et al. (2011).

Note that behaviour similarity can be used to account for homophilous se-

lection, because it is higher in value when an actor has more ties to others

with behaviour that is similar to theirs.

2.2.4 Discussion of the model

In summary, we refer to the collection of all the unknown parameters as

θ = (ρ, β), where ρ =
(
ρ

[X]
2 , . . . , ρ

[X]
M , ρ

[Z]
2 , . . . , ρ

[Z]
M

)
are those parameters as-

sociated with the rate functions, whilst β =
(
β

[X]
1 , . . . , β

[X]

K[X] , β
[Z]
1 , . . . , β

[Z]

K[Z]

)
are those associated with the network and behaviour effects. Then be-

tween observations at tm−1 and tm, the continuous time Markov process

{Y (t) : tm−1 ≤ t < tm} on state space X × Bn has initial state Y (tm−1) =

y(tm−1), where y(tm−1) is the observation of the process at tm−1, and then

evolves according to transition intensityQθ(y, ŷ, t) = Q̃θ(y, ŷ)
(
ρ[X](t)/ρ

[X]
m

)
,
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for ŷ 6= y, where

Q̃(y, ŷ) =



ρ
[X]
m pij(y; θ), if ŷ = (x(i j), z) ∈ A(x)× {z},

ρ
[Z]
m p

[Z]
i,−1(y; θ), if ŷ = (x, z(i ↓ 1)) ∈ {x} ×R(z),

ρ
[Z]
m p

[Z]
i,1 (y; θ), if ŷ = (x, z(i ↑ 1)) ∈ {x} ×R(z),

0, otherwise,

(2.15)

where pij(y; θ), p[Z]
i,−1(y; θ) and p

[Z]
i,1 (y; θ) are given by (2.5), (2.12) and (2.13),

respectively.

As is discussed in detail by Steglich et al. (2010), modelling the dynamics

of the network by assuming an explicit statistical model where the net-

work evolves with an actor-level variable (here, the behaviour variable)

gives a reasonably realistic model of the unobserved underlying continuous-

time process, given incomplete, longitudinal data (which for practical pur-

poses, is the most likely available kind). Assuming a static network may

wrongly attribute too much importance to social influence, while, as ex-

plained by Steglich et al. (2010), modelling a dynamic network but fail-

ing to control for the dependencies between network dyads by neglect-

ing mechanisms such as reciprocity and transitivity will lead to inaccurate

conclusions. After controlling for these important actor tendencies, we

can estimate the effects of selection and influence, which may both be of

interest. In our model, we simultaneously control for these distinct mech-

anisms by including a network effect which can account for homophilous

peer selection, such as the behaviour similarity effect, and also including
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behaviour effects which are interpretable as influence effects, such as the

average similarity effect.

2.3 Parameter estimation

We do not observe the times of ministeps, instead only observing the state

of the network and behaviour variables at a few time points t1 < . . . < tM .

As a result of this, the likelihood for this model cannot in general be writ-

ten in a closed form expression, which makes maximum likelihood esti-

mation of θ complicated and often computationally very expensive. We

will consider maximum likelihood estimation in Parts III and IV, but the

fastest, and hence most commonly used, estimation technique is to em-

ploy the Method of Moments (reviewed by Bowman and Shenton (1985)).

This method involves choosing statistics of the process and finding the pa-

rameter value such that the expected values of these statistics is equal to

the observed values; this parameter value (which we hope both exists and

is unique) is then our method of moments estimate, which we denote by

θ̂MoM.

For m ∈ {2, . . . ,M}, we choose an appropriate vector statistic

Gm(Y (tm−1), Y (tm))

with the same dimension as the vector of parameters θ. We then estimate
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θ by solving

M∑
m=2

Eθ (Gm(Y (tm−1), Y (tm))|Ym−1 = ym−1) =
M∑
m=2

Gm(y(tm−1), y(tm)).

(2.16)

We choose the statistics so that the jth component is primarily associated

with estimating the jth component of θ, for j ∈ {1, . . . , dim(θ)}.

Considering the components of θ associated with the rate functions, for

m ∈ {2, . . . ,M}, we use
∑

i,j |xij(tm)− xij(tm−1)| as the statistic associated

with ρ[X]
m , and

∑
i |zi(tm)− zi(tm−1)| as the statistic associated with ρ[Z]

m .

For any component of θ associated with an effect, for m ∈ {2, . . . ,M}, we

simply use the value of that effect at time tm summed over all actors.

Given a parameter estimate θ̃, we can simulate data ỹ = (ỹ1, ỹ2, . . . , ỹM),

by setting ỹ1 = y(t1), and for m ∈ {2, . . . ,M}, starting at time tm−1, and in

initial state ỹm−1, and simulating forward according the specified model

with parameter θ = θ̃ until time tm, at which point we set ỹm as the current

state of the process. We denote that ỹ is simulated using this method by

ỹ ∼ θ̃.

2.3.1 Robbins-Monro stochastic approximation algorithm

We approximate the solution to (2.16) using a variation of the Robbins-

Monro algorithm (Robbins and Monro, 1951; Snijders, 2001). The algo-

rithm has three phases: Phase 1 is a short preliminary phase, used to gen-
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erate a matrix used in the iterative formula used in Phase 2; Phase 2 con-

tains the iterations used to actually estimate the solution; Phase 3 is used

to estimate standard errors and check convergence of the algorithm.

Phase 1

In this phase, we simulate from an initial guess for the parameter estimate

and use the simulations to construct an estimate D̂ of

Dθ̂MoM =
∂

∂θ
Eθ (G)

∣∣∣
θ=θ̂MoM

, (2.17)

where G =
∑M

m=2Gm(Ỹm−1, Ỹm), and Ỹ ∼ θ. We will use D̂ in the next

phase. We also use D̂ to make one update to our parameter estimate,

which will then be used as our initial value in the next phase.

Phase 2

This phase contains several subphases, the default number of which is 4.

In Subphase L, we start with an initial parameter value θ(1) (obtained from

the previous subphase if L > 1, or Phase 1, otherwise), and update using

the iterative formula

θ(k+1) = θ(k) − aLD̂−1

M∑
m=2

[
Gm

(
ỹ

(k)
m−1, ỹ

(k)
m

)
−Gm (y(tm−1), y(tm))

]
,

where ỹ(k) ∼ θ(k), for k = 1, . . . , K, for some integer K, and aL decreases

with each subsequent subphase. We then use an average of the sequence
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θ(1), . . . , θ(k+1) as our final parameter estimate for this subphase. If we are

not in the final subphase, this estimate is then the initial value in the next;

otherwise this is our final parameter estimate.

Phase 3

In Phase 3, we simulate using our final parameter estimate, in order to

estimate standard errors (as well as checking the convergence of the algo-

rithm). As described by Snijders (2001), we use the delta method (Bishop

et al., 1975) and the implicit function theorem to estimate the covariance

matrix by

ˆcov
(
θ̂MoM

)
≈
(
D−1

θ̂MoM

)T
Σθ̂MoMD

−1

θ̂MoM ,

where Dθ̂MoM is given by (2.17), and

Σθ̂MoM = Covθ̂MoM (G) ,

where G =
∑M

m=2Gm(Ỹm−1, Ỹm), and Ỹ ∼ θ̂MoM.

We construct Monte Carlo estimates ofDθ̂MoM and Σθ̂MoM by simulating evo-

lutions of the process according to θ̂MoM.

The entire estimation procedure is implemented in the R package RSiena

(Ripley et al., 2011).
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Chapter 3

Diffusion of innovations in

dynamic networks

This Chapter is based on work by Greenan (2015).

3.1 Introduction

The spread of a new idea, belief or practice through a network of social

actors has long been a topic of interest in the social sciences. Examples

range from the initiation of recycling amongst Californian households to

the use of hybrid corn by Iowa farmers (Rogers, 1995). Early diffusion

models assume social actor homogeneity, where the chance of adopting

the innovation is the same for each individual in the network, and the

interest lies in how the proportion of those who have adopted the new be-

haviour varies over time (Bartholomew, 1967); however, these population
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models are inadequate for many research questions, ignoring the different

tendencies of and influences on the social actors, and so models specifying

individual rates of adoption are often required. This amounts to an event

history analysis (Allison, 1984), where the hazard of adopting the innova-

tion varies between actors, according to specified explanatory variables.

Sociologists and statisticians alike have asserted the importance of social

contagion in such analyses, regarding the time taken to adopt as depend-

ing not only on individual characteristics, such as age or gender, but also

on the social network to which an actor belongs, and their place within it

(Coleman et al. (1966), Valente (1995)). For example, those with many con-

nections in the network may be more likely to adopt the innovation than

those who are isolated, due to increased interactions with those who have

already adopted. Furthermore, once someone with many connections has

adopted, many others may quickly follow, guided by this popular indi-

vidual.

In existing diffusion studies (such as those by Strang and Tuma (1993),

Myers (2000) and Behrman et al. (2002)) it is assumed that the social net-

work in question is static, and does not change over time; however, this

is often unrealistic, especially given the time-scale of the process that will

usually be required to allow the innovation to diffuse adequately. Over

such a time, friendships form and dissolve, trust can be built and broken,

and those who were at one time popular and influential may not always

be so. For many applications, it is an empirical fact that networks are not

constant. In order to encapsulate network changes, we model the dynam-
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ics of the social network as evolving simultaneously with the diffusion of

the innovation.

In this chapter, we describe an modification of the model for the co-evolution

of a network and an individual-level variable described in Chapter 2. Our

model inherits the formulation that means that at every point in time the

network and adoption processes depend on one another, which allows us

to simultaneously account for influence and selection. The new paramet-

ric form proposed in this paper provides us with a proportional hazards

model for the adoption process. As will be described later in more de-

tail, this means that at any given point in time, conditional on the current

state of the dynamic network, the model for the adoption process follows

a standard and well-established survival analysis model. It also means

that we can easily quantitatively interpret the model parameters.

In Section 3.2, we describe the notation that will be employed, before ex-

plaining the model in detail in Section 3.3; we also detail possible ex-

planatory variables representing various forms of social contagion. The

method of parameter estimation is described in Section 3.4, along with a

theorem about its asymptotic performance. In Section 3.5, the method is

applied to a real dataset which documents the initiation of cannabis smok-

ing amongst adolescents in a Glaswegian school in the 1990s. The presence

of social contagion is shown in this case. In Section 3.6, the performance

of the estimator is examined with a simulation study.
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3.2 Notation and data structure

An adoption of an innovation is modelled as a time dependent binary ran-

dom variable for which {1} is an absorbing state indicating adoption: for

actor i, the adoption indicator is a random variable Zi(t) defined so that if

Ti is the time of adoption of the innovation, then Zi(t) = 1 if and only if

t > Ti. This is a special case of a behaviour variable described in Chapter 2,

where Zi(t) can take on any predetermined finite number of integer values

and can both increase and decrease over time. Collectively, the vector of

adoption indicators Z(t) = (Z1(t), . . . , Zn(t)) is referred to as the adoption

variable or adoption process, and, as with the behaviour variable, its obser-

vation at time t is denoted by z(t).

3.3 Model for the simultaneous diffusion of an

innovation and evolution of a dynamic net-

work

In this section, we describe the model that we will use for the simultaneous

diffusion of an innovation and evolution of a dynamic network. After

describing the model in detail, we will explain the benefits of this model

for the diffusion process over that described in Chapter 2.

We make many of the same model assumptions as in Chapter 2; between

two observation times tm−1 and tm, the process {Y (t) : tm−1 ≤ t < tm}, is a
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continuous time Markov chain with initial state given by the observation

Y (tm−1) = y(tm−1). The state space of this process is X × {0, 1}n, where

X is the set of binary adjacency matrices and {0, 1}n is the set of binary n-

tuples. Given two distinct states y, ŷ ∈ X×{0, 1}n, we denote the transition

intensity for moving from y to ŷ at time t by Qθ(y, ŷ, t).

As in Chapter 2, given the current state Y (t) = y = (x, z), we assume that

the process updates via mini-steps, where the process can change only to

a member of the set

M(y) = {A(x)× {z}} ∪ {{x} ×R(z)},

where A(x) is defined in (2.1). Now the only change that can be made to

the adoption variable is that a single actor may adopt the innovations, and

so now

R(z) =
⋃
i:zi=0

{z(i ↑ 1)} ,

where z(i ↑ 1) ∈ {0, 1}n and

z(i ↑ 1)j =


1 for j = i,

zj for j 6= i.

As before, if ŷ ∈ X ×{0, 1}n is not a member of the setM(y)∪{y} then the

transition intensity Qθ(y, ŷ, t) is zero.

Given the current state Y (t) = y, the model for the transition intensity

Qθ(y, ŷ, t) where ŷ ∈ A(x)× {z} (i.e. where is the network that changes) is
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the same as described earlier, in Section 2.1.3. In Section 3.3.1, we describe

the model for the components of the transition intensity matrix where the

change is to the adoption process.

3.3.1 Adoption process

We consider modelling the transition intensity of a single actor adopting

the innovation. Examining diffusion where the risk of adopting the inno-

vation has actor heterogeneity is most easily done by assuming an event

history model; this is done, amongst others, by Strang (1991), Strang and

Tuma (1993), and Iyengar et al. (2011).

Denote by R(t) ⊆ {1, . . . , n} the risk set at time t ∈ T ; this is the set of

actors who are at risk of adopting the innovation. In other words, it is

those i ∈ {1, . . . , n} for which Zi(t) = 0. The hazard function for actor

i ∈ R(t) is defined as the event rate at time t conditional on survival until

time t:

hi(t; θ) = lim
∆t↓0

Pθ(t < Ti ≤ t+ ∆t |Ti > t,H(t))

∆t
, (3.1)

where Ti is the time of adoption. The hazard is defined as zero for those

i /∈ R(t). The hazard is conditional upon H(t) = {Y (s) : t1 ≤ s ≤ t},

the collection of all information about the process up until time t, which

is referred to as the history of the process until time t (Andersen, 1993).

Our models use a Markov assumption and so the only relevant part of the

history is the state of the process at time t; to make this explicit, we add
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the current state of the process y = y(t) as an argument of the hazard, so

that it is defined as

hi(t; y, θ) = lim
∆t↓0

Pθ(t < Ti ≤ t+ ∆t |Ti > t, Y (t) = y)

∆t
. (3.2)

The hazard function can equivalently be expressed in terms of the adop-

tion process as

hi(t; y, θ) = lim
∆t↓0

Pθ(Zi(t+ ∆t) = 1 |Zi(t) = 0, Y (t) = y)

∆t
. (3.3)

The hazard is the instantaneous transition intensity, and is a fundamen-

tal function in event history data analysis, since it measures the risk of

adopting the behaviour at each point in time. The hazard is related to our

Markov model in the following way: given the current state of the process

Y (t) = y, the process updates to ŷ = (x, z(i ↑ 1)), where z(i ↑ 1) ∈ R(z), by

actor i adopting the innovation, with transition intensity

Qθ(y, (x, z(i ↑ 1)), t) = hi(t; y, θ). (3.4)

Model for the hazard

The most popular event history model is the Cox regression model (Cox,

1972), where the hazard function for actor i ∈ R(t) is of the form

hi(t; y, θ) = h0(t) exp

{
K∑
k=1

αkaik(y)

}
, (3.5)
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where ai1(y), . . . , aiK(y) are time-dependent explanatory variables (although

time is suppressed in the notation, as these variables depend only the cur-

rent state of the process y = y(t)), and the parameters (α1, . . . , αK) are to

be estimated. For our model the explanatory variables are functions of

the adoption process, the network, or any other measured actor attribute,

and we refer to them as effects. It is a semi-parametric model, because no

assumptions are made about the form of the baseline hazard h0(t). As

is explained in detail by Tuma and Hannan (1984), it is conventional to

assume that explanatory variables are incorporated in the hazard as an

exponentiated weighted linear combination, as in equation (3.5). As long

as the baseline hazard is non-negative, this ensures that the hazard is kept

non-negative for all possible values that the variables or parameters might

take. It also means that the model belongs to a class commonly referred

to as the proportional hazards models (O’Quigley, 2008). These models have

the property that if a covariate is increased by some predetermined unit,

then the effect on the hazard is multiplicative; for example, considering

equation (3.5), increasing ai1 by 1 causes the hazard to increase by a fac-

tor of exp(α1). This means that if two actors differ only by some time-

independent covariate, for example gender, then their two hazards will be

proportional, and the ratio of the two will be constant over time. This is

attractive because it allows us to easily compare the two actors’ hazards,

consequently enabling us to evaluate the effect of a particular explanatory

variable, in this example gender.

We will employ the Cox regression model, and can estimate the param-
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eters associated with the explanatory variables whilst leaving the base-

line hazard unspecified, apart from in its relationship with the network

rate function, which we describe below. The use of an exponential hazard

model for event history analysis in the social sciences is well established;

Blossfeld (2002) describes it as “one of the most useful models for em-

pirical research.” Later, Blossfeld (2005) uses this model for a variety of

applications for event history analyses relating to youth behaviour, such

as transition into cohabitation or parenthood.

Moreover, proportional hazards models have previously been employed

to analyse diffusions through networks, in a very similar application to

ours (albeit with static networks): Strang and Tuma (1993) and Strang

(1991) examine actor heterogeneity in diffusion with the use of an individual-

level exponential model, where the baseline hazard is constant; the latter

refers to this as the epidemic model of diffusion.

Baseline hazard

We describe our hazard model as semi-parametric because the baseline

hazard h0(t) is an unspecified function of time; however, due to the method

of estimation we use, we require a restriction on the relationship between

this and the network rate function: between observations, the ratio be-

tween them must be constant: for m = 2, . . . ,M , if we define ρ
[Z]
m =∫ tm

tm−1
h0(t)dt, and h0m(t) = h0(t)/ρ

[Z]
m , then the network rate function is

given by

ρ[X](t) = ρ[X]
m h0m(t).
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An important special case is obtained if h0m(t) = 1/(tm − tm−1) for all

m = 2, . . . ,M ; the rates of network changes and adoptions are constant be-

tween observations, and the adoption process follows the piecewise con-

stant exponential model (Blossfeld, 2002).

Adoption effects

We now present a description of possible adoption effects, which have

been inspired by those used in analyses by Strang and Tuma (1993), Myers

(2000) and Valente (2005). There are four types of effects that we will detail,

and apart from the first, intrinsic characteristics, they can all be described

as contagion effects, as they are intended to account for the impact of the

prior adoptions by actors in the network on an individual’s propensity to

adopt. All of the contagion effects we include are what Strang and Tuma

(1993) refer to as social proximity measures, which means they can be written

in the form

aik(y) =
n∑
j=1

zjdijk(y), (3.6)

where dijk(y) is a measure of closeness between actors i and j and the indi-

cators {z1, . . . , zn}mean that the effect sums only over those j which have

adopted the innovation. If we interpret this ‘closeness’ as ‘potential influ-

ence’, then the effect measures the total amount of potential influence from

current adopters that actor i is subjected to. Strang and Soule (1998) give a

qualitative review of various mechanisms which potentially underlie the
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process of a diffusion in a social network; several more contagion effects

other than the ones we will now present could be constructed from these.

Note that we define 0/0 = 0.

1. Intrinsic characteristics: This type of effect can be described as an at-

tribute which affects an actor’s propensity to adopt the innovation,

irrespective of the adoptions of others in the network. These can be

covariates, such as age or gender, in which case the effect is simply

the value of the covariate; for example

ai1(y) = wi, (3.7)

where wi is the value of the covariate for actor i. They could also

be statistics of the network, such as indegree or outdegree (the num-

ber of incoming or outgoing ties, respectively, that an actor has with

others in the network).

2. Infection: Myers (2000) describes this type of effect as a measure of

“how influential the individual actor’s adoption act is on everyone

else in the system”, and defines it formally as

n∑
j=1

zjsj(y),

where sj(y) is a measure of the importance of actor j’s adoption (My-

ers refers to this as a measure of the adoption’s “severity”). In this

formulation, an adoption by an actor affects all others in the network
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equally, which for many networks may not be a reasonable assump-

tion. Moreover, at any given time, this effect has equal value for all

actors, which may lead to high correlation with the baseline hazard.

Another type of effect can be constructed so that an adoption by an

alter affects the ego actor only if there is tie from ego to alter. For

this effect, we sum only over those actors to whom actor i has an

outgoing tie, giving the infection effect the formula

ai2(y) =
n∑
j=1

zjxijsj(y). (3.8)

It is this effect that we consider later in our analysis of real data. Op-

tions for the importance measure sj(y) could be an actor’s indegree

or outdegree, or an actor covariate. Strang and Tuma (1993) choose

to measure importance by the adopter’s indegree (although, like My-

ers, they assume adoptions affect all actors in the network equally).

Using indegree as the measure of importance with the formula given

in equation (3.8), the infection effect measures the sum of the inde-

grees of the adopters to whom an actor is tied. A positive coefficient

associated with this effect implies that individuals with high inde-

grees influence their alters’ behaviour more than those with low in-

degrees; in other words, their adoptions are more highly infectious.

3. Exposure: According to Valente (2005), exposure “captures social in-

fluence conveyed through overt transmission of information, perusa-

sion, or direct pressure,” and can be measured either by the propor-

tion of contacts that have adopted, or the total number. We refer
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to the former definition as the average exposure effect, which has the

form

ai3(y) =

∑n
j=1 zjxij∑n
j=1 xij

, (3.9)

and to the latter as the total exposure effect, which can be written as

ai4(y) =
n∑
j=1

zjxij. (3.10)

A positive coefficient associated with these effects means that being

tied to adopters increases the chance of adopting.

4. Susceptibility: This type of effect conveys “how responsive an indi-

vidual actor is when an adoption act occurs,” according to Myers

(2000), and is intended to address the question of ‘whether some [ac-

tors] are more likely to react to the behavior of others, irrespective of

their inherent propensity to [adopt]’. For actor i, Myers (2000) oper-

ationalises this as a measure of ‘responsiveness’ pi(y) multiplied by

the total number of adopters currently in the network:

pi(y)
n∑
j=1

zj.

However, as with the infection effect, we argue that often it may

be more reasonable to assume that adoptions only affect those from



70 CHAPTER 3. DIFFUSION OF INNOVATIONS

whom the adopter has a tie, and so propose instead the formula

ai5(y) = pi(y)
n∑
j=1

zjxij. (3.11)

This effect can be considered an interaction between the responsive-

ness measure pi(y) and the total exposure (see equation (3.10)); we

can then think of this effect as measuring an actor’s susceptibility to

total exposure. This suggests a further effect, susceptibility to average

exposure, which has the formula

ai6(y) = pi(y)

∑n
j=1 zjxij∑n
j=1 xij

. (3.12)

Strang and Tuma (1993) choose to measure ‘responsiveness’ pi(y) by

an actor’s indegree, reasoning that an actor with a high indegree

“may be more susceptible to the adoptions of others, due to their

wide circle of contacts.” Alternatively, we may use outdegree (but

not for susceptibility to average exposure, as this just gives the total

exposure effect), or an actor covariate.

3.3.2 Discussion of the model

In summary, we refer to the collection of all the unknown parameters as

θ = (ρ, β, α), where ρ =
(
ρ

[X]
2 , . . . , ρ

[X]
M , ρ

[Z]
2 , . . . , ρ

[Z]
M

)
are those parameters

associated with the baseline rates, whilst β =
(
β

[X]
1 , . . . , β

[X]

K[X]

)
are those

associated with the network effects, and α = (α1, . . . , αK) are those re-



3.3. MODEL 71

lated to the adoption effects. Between observations at tm−1 and tm, the

continuous time Markov process {Y (t) : tm−1 ≤ t < tm} on state space

X × {0, 1}n has initial state Y (tm−1) = y(tm−1), where y(tm−1) is the ob-

servation of the process at tm−1, and then evolves according to transition

intensity Qθ(y, ŷ, t) = h0m(t)Q̃θ(y, ŷ), for ŷ 6= y, where

Q̃(y, ŷ) =


ρ

[X]
m pij(y; θ), if ŷ = (x(i j), z) ∈ A(x)× {z},

ρ
[Z]
m exp(αTai(y)), if ŷ = (x, z(i ↑ 1)) ∈ {x} ×R(z),

0, otherwise,

(3.13)

where pij(y; θ) is given by (2.5).

We have assumed that the diffusion follows a Cox regression model, and

have modelled the process by considering the hazard function. The model

by Snijders et al. (2007) described in Chapter 2 for the co-evolution of a

dynamic network with an actor integer-valued variable could be applied

to the network and adoption variables described in this chapter; however,

the model utilizing hazard functions proposed here is an improvement

for our application in two ways. Firstly, the use of Cox regression models

is well established in event history analysis, while the model proposed

by Snijders et al. (2007) (where the actor variable changes with transition

intensities modelled in a multinomial logit form) does not correspond to

any known survival model. Secondly, the use of a proportional hazards

model in this paper means that the parameters are easy to interpret; this is

more difficult using the model described in Chapter 2.
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3.4 Parameter estimation

In Section 2.3, we described how we estimate θ, the vector of parameters of

the model. Our method of moments estimation procedure requires choos-

ing vector valued moment statistics

G2(Y (t1), Y (t2)), . . . , GM(Y (tM−1), Y (tM)),

with dimension equal to the dimension of θ, such that each component is

primarily associated with a component of θ. In Section 2.3, we describe

choices of the components associated with rate parameter and network

effect parameters. Now we have additional parameters α = (α1, . . . , αK),

and for k ∈ {1, . . . , K}, and m = {2, . . . ,M}, we choose the component of

Gm(Y (tm−1), Y (tm)) associated with αk to be

∑
i∈R(tm−1)

aik(y(tm−1))zi(tm). (3.14)

3.4.1 Asymptotic behaviour of estimates of α

In this section, we consider the behaviour of the components of the mo-

ment statistics associated with estimating α. We assume that it is the first

K components of the moments statistics that are associated with α, and
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define (g1(θ;Y ), . . . , gK(θ;Y )) such that, for k = 1, . . . , K,

gk(θ;Y ) =
M∑
m=2

Gm(y(tm−1), y(tm))− Eθ (Gm(Y (tm−1), Y (tm))|Ym−1 = ym−1) .

(3.15)

Assessing the performance of the method of moments estimator suggested

by Snijders (2001) is difficult. However, conditional on the outcome of

the process, if we increase the frequency of the observations of the pro-

cess, then the method of moments estimate of α converges to the maxi-

mum likelihood estimate obtained by observing the process continuously

in time. To see this, consider a process Y = {Y (t) = (X(t), Z(t)) : 0 ≤

t ≤ 1}, which evolves according to the model described in Section 3.3.

Suppose that we can observe the process continuously in time, giving the

observation Y = y. Denote by α the vector of parameters associated with

the adoption effects. Then we may obtain a maximum likelihood esti-

mate α̂ML for α based on this complete data. Suppose we instead observe

the process only at M + 1 equally spaced timepoints {tMm = (m − 1)/M :

m = 1, . . . ,M + 1}, (the equal spacing is not necessary, but simplifies

notation; it is just necessary the intervals between observations are all

O(1/M)). We denote the observed data by yM = (yM1 , . . . , y
M
m , . . . , y

M
M+1),

where yMm = y(tMm ) is the observation of the state of the process at time tMm .

We may then obtain a method of moments estimate α̂MMoM for α based on

the data yM .

We compare the sequence of method of moments estimates {α̂MMoM}∞M=1
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of α with the maximum likelihood estimate α̂ML of α. We consider an

outcome Y = y for which

1. the baseline hazard h0(t) is a known function,with all derivatives

bounded for 0 ≤ t < 1;

2. the remaining parameters {θ \ α} are known;

3. the maximum likelihood estimate α̂ML of α based on continuous ob-

servation Y = y is unique and finite.

Theorem 3.16. Given the outcome Y = y, suppose that there is a increasing

integer sequence M1,M2, . . . such that the subsequence of method of moments

estimates {α̂MN
MoM}∞N=1 of α is bounded with each estimate in the subsequence the

unique method of moments estimate for the corresponding data yM . Then the

corresponding subsequence of distances between method of moments estimates

and α̂ML converges to zero: as N →∞,

‖α̂MN
MoM − α̂ML‖−→0.

Proof. At time t, the transition intensity matrix of the process is given

by Q(t) = h0(t)Q̃, where h0(t) is a scalar function and the matrix Q̃ does

not vary with time (its entries are given in Section 3.3.2). The start and

end of the process at 0 and 1 respectively are chosen without loss of

generality.

Firstly, consider the score when the process is observed continuously,

giving data y. Denote the total number of changes to the process by C
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and the times of these changes by s1, s2, . . . , sC . Define sC+1 = 1, denote

yc = y(sc) for c = 1, . . . , C+1, and let y0 be the initial state of the process.

Then the likelihood for α is given by

Lθ(α, y) =

[
C∏
c=1

Q(sc−1)yc−1,yc exp

{∫ sc

sc−1

Q(t)yc−1,yc−1 dt

}]
exp

{∫ 1

sC

Q(t)yC ,yC dt.

}
.

Therefore, for k = 1, . . . , K, the kth component of the score is given by

Uk(α; y) =

(
C∑
c=1

1

Q̃yc−1,yc

∂Q̃yc−1,yc

∂αk

)
+

(
C+1∑
c=1

∫ sc

sc−1

∂Q(t)yc−1,yc−1

∂αk
dt

)
.

For c = 1, . . . , C, if the difference between yc and yc−1 is a network

change, then Q̃yc−1,yc is independent of α and

∂Q̃yc−1,yc

∂αk
= 0. (3.17)

If instead the difference is an adoption of the innovation, by actor i, then

Q̃yc−1,yc ∝ exp(αTai(yc−1)) and

1

Q̃yc−1,yc

∂Q̃yc−1,yc

∂αk
= aik(y(sc−1)). (3.18)

Note that, for c = 1, . . . , C + 1,

Q(t)yc−1,yc−1 = −
∑

ŷ∈M(yc−1)

Q(t)yc−1,ŷ,
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and so

∂Q(t)yc−1,yc−1

∂αk
= −

∑
ŷ∈M(yc−1)

∂Q(t)yc−1,ŷ

∂αk
,

= −
∑

i:zc−1,i=0

∂hi(t)

∂αk
,

= −
∑

i:zc−1,i=0

aik(y(t))hi(t),

= −
∑

i:zc−1,i=0

aik(y(t))hi(t), (3.19)

where hi(t) = h0(t) exp(αTai(y(t))); for simplicity, we suppress the de-

pendence on α in the notation. Therefore, equations (3.17), (3.18) and

(3.19) imply that

Uk(α; y) =
∑
i∈I

aik(y(Ti))−
n∑
i=1

∫ 1

0

(1− zi(t))aik(y(t))hi(t) dt. (3.20)

where I is the set of actors that adopt in (0, 1], and Ti is the adoption

time for actor i.

Next, we consider the moment statistic that we use to estimate α. Let

A be a compact set containing α̂ML and the bounded subsequence of

method of moments estimates. Recall (Norris, 1997) that, for small ∆t,

uniformly for α ∈ A,

Pθ(Y (t+ ∆t) = ŷ|Y (t) = y′) = 1{ŷ = y′}+Q(t)y′,ŷ∆t+O(∆t2). (3.21)

This approximation is uniform on A as Q(t) is bounded and has
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bounded derivative with respect to each component of α (the latter is

true as each element of Q(t) is of the form AeαkB for bounded constants

A and B, for k = 1, . . . , K).

Let RM
m = R(tMm−1) be the set of actors at risk of adopting the innovation

at time tMm−1. To simplify notation, let aMikm = aik(y
M
m−1), zMmi = zi(y

M
m−1)

and ZM
mi = Zi(y

M
m−1). Recall that, for k = 1, . . . , K, the component of

the moment statistics used for method of moments associated with αk

is given by

gMk (α; yM) =
M+1∑
m=2

∑
i∈RMm

aMikm
(
zMmi − Eθ(ZM

mi|Y M
m−1 = yMm−1)

)
,

=
M+1∑
m=2

∑
i∈RMm

aMikm

{
zMmi −

∑
ŷ∈Yi

Pθ(Y M
m = ŷ|Y M

m−1 = yMm−1)

}
,

=

M+1∑
m=2

∑
i∈RMm

aMikm
{
zMmi − Pθ(Y M

m = yMm−1(i ↑ 1)|Y M
m−1 = yMm−1)

}+

O(1/M),

=

M+1∑
m=2

∑
i∈RMm

aMikm
{
zMmi − hi(tm−1)/M

}+O(1/M), (3.22)

where Yi is the set of states such that zi = 1, and where yMm−1(i ↑ 1) is the

same as yMm−1 but with actor i having adopted the innovation. Equation

(3.22) is obtained using the approximation given by (3.21). Then, by the

continuity and boundedness of the transition intensity matrix Q and its



78 CHAPTER 3. DIFFUSION OF INNOVATIONS

derivatives, uniformly on A,

gMk (α; yM) −→
∑
i∈I

aik(y(Ti))−
n∑
i=1

∫ 1

0

(1−zi(t))aik(y(t))hi(t) dt = Uk(α, y).

Therefore, for all k = 1, . . . , K, the difference |gMk (α, yM) − Uk(α, y)| be-

tween the method of moments statistic and the score based on y con-

verges to zero uniformly on A, as M →∞. Therefore

‖gM(α, yM)− U(α, y)‖ −→ 0, (3.23)

as M →∞, uniformly on A.

Let ε > 0 be sufficiently small that there exists α ∈ Awith ‖α−α̂ML‖ ≥ ε.

Then, by the uniqueness of the root of the score U and the compactness

of A, there exists δε > 0 such that if α ∈ A and ‖α − α̂ML‖ ≥ ε then

‖U(α, y)‖ ≥ δε. By the uniform convergence in (3.23), there exists Nε

such that ‖U(α̂MN
MoM , y)‖ < δε for all N > Nε. Therefore ‖α̂MN

MoM − α̂ML‖ <

ε for all N > Nε. So ‖α̂MN
MoM − α̂ML‖ → 0 as N →∞.

Consequences of theorem

In practice, neither the network parameters nor the baseline hazard are

known; these (or in the case of the baseline hazard, its integrals between

observations times) must be estimated simultaneously to the adoption pa-

rameters. However, if we assume that we can estimate these unknown

quantities well, then the theorem indicates that taking frequent observa-
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tions of the process should give an estimate of the adoption parameters

that is close to the maximum likelihood estimate which could be obtained

if the process were observed continuously.

The convergence shown in the theorem is conditional upon the particu-

lar outcome of the process, and so we cannot infer that the method of

moments estimator is asymptotically optimal amongst those that could

be obtained using any method of moment equations (e.g. according to

the definition of optimality given by Godambe (1960)); however, the theo-

rem suggests that, for a real dataset that features frequent observations of

the process, the parameter estimate obtained using these estimating equa-

tions will be a good choice, by virtue of the properties of the maximum

likelihood estimator. In this way, the theorem supports the choice of the

moment statistics that are associated with the estimation of the adoption

effects.

3.5 Example: Glasgow school data

In this section, we apply our model to a real dataset. We analyse data col-

lected as part of the Teenage Friends and Lifestyle Study (West and Sweeting,

1996): the friendship ties between 129 pupils at a school in Glasgow are

recorded at three yearly observations, beginning when the students were

between 12 and 13 years old. The innovation of interest is cannabis smok-

ing, and so an actor becomes an adopter when they first smoke cannabis;

for simplicity, we often refer to ‘smoking’ and ‘smokers’, omitting the
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specification of cannabis, and also that someone may have only smoked

cannabis once, and are not current users. Initially there were 35 pupils

who had smoked cannabis; by the second observation this had risen to

47, and by the third, to 71. Covariates that are included in the analyses

are whether they are female (which is encoded as 1 if they are, and 0 oth-

erwise) and frequency of alcohol consumption (which was self-reported

each year on a scale from 1 to 5, where 1 corresponds to ‘never’ and 5

to ‘more than once a week’). The network effects that are included were

described in Section 2.1.3 with the addition of a gender similarity effect

(which is defined like the smoking similarity effect); this selection has been

inspired by the choices made by Snijders et al. (2007) and Steglich et al.

(2010) in their analyses of the same dataset (where they model tobacco use,

and use a different model to that presented here). We experimented with

a variety of choices for the adoption process effects. Many of the conta-

gion effects described in Section 3.3 were highly correlated when included

jointly in the analysis; those that remain in the final model were chosen as

they were not.

Table 3.1 shows the results of estimating the parameters of this model. For

each of the adoption effects, the final column indicates which effect type

is included, by referencing the equations given in Section 3.3.1. For each

parameter estimate, we assess significance by approximately testing the

null hypothesis that it is zero (the form of this t-type test, and the assump-

tions required, are described by Snijders et al. (2010)). Table 3.1 reports a

guide to the p-values associated with this test for each parameter (except
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Table 3.1: Results for the Glasgow school dataset.

Estimate Std. error Effect eq.

Network Rate Effects

Mean change opportunities (period 1) 11.29 (1.11)
Mean change opportunities (period 2) 8.75 (0.81)

Network Evaluation Effects

Outdegree –1.93∗∗∗ (0.10)
Reciprocity 2.02∗∗∗ (0.11)
Transitive triplets 0.24∗∗∗ (0.03)
Number of actors at distance 2 –0.43∗∗∗ (0.04)
Gender similarity 0.89∗∗∗ (0.10)
Smoking alter –0.08 (0.09)
Smoking ego –0.08 (0.10)
Smoking similarity 0.21∗ (0.09)

Adoption effects

Integrated baseline hazard (period 1) 0.07 (0.07)
Integrated baseline hazard (period 2) 0.14 (0.15)
Average exposure 3.42∗ (1.71) (3.9)
Female –1.12 (0.79) (3.7)
Infection by ‘female’ 0.51 (0.42) (3.8)
Alcohol intake 0.57∗∗ (0.21) (3.7)

† p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001; all t ratios < 0.06.
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for the parameters associated with the baseline rates, as these are known

to be strictly greater than zero, since there are changes in the data between

observations). Also given is a maximum of t ratios which assess conver-

gence of the estimation algorithm for all parameter estimates (see Ripley

et al. (2011)): this is 0.06, which suggests that the convergence is good.

The smoking similarity effect is positive and significant; this suggests that

the students have a predilection for homophily with respect to smoking.

This mechanism could not have been discerned if a static network had

been assumed. The significance of the exposure effect implies that the

initiation of smoking is socially contagious: the higher the proportion of

smokers amongst a non-smoking student’s friends, the higher their hazard

of beginning to smoke. Due to the proportional hazards property of our

model, we can infer from our estimates that, for any actor, if their average

exposure increases by δ ∈ [0, 1] then their hazard increases by a factor of

approximately 31δ (since exp(3.42) ≈ 30.57). Similarly, increasing alcohol

intake by δ ∈ {1, 2, 3, 4} increased an actor’s hazard by approximately 1.8δ

(since exp(0.57) ≈ 1.77). That these parameters can easily be interpreted

in this way is an important advantage of using this model.

3.6 Simulation study

In Section 3.4, we showed the theoretical advantage in collecting data fre-

quently; however, in many cases, a large number of observations will be

impractical; for example, if the network is large then surveying ties will be
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very time consuming. Therefore, in this section we conduct a simulation

study using generated data of just three observations, as a very limited

exploration of the performance of the method of moments estimator. We

generate data and conduct an analysis, and then repeat 1000 times, collat-

ing the results to obtain Monte Carlo estimates of some properties of the

estimator.

The data are generated to be similar to the real dataset considered in the

previous section; this is achieved by taking the initial states of the net-

work and adoption variable directly from the dataset, along with the val-

ues of the covariates for all three observations. Taking the covariates for

all observations does not violate the Markov assumption, since these are

assumed to be exogenous to the stochastic process. Two further observa-

tions of the network and the adoption variable are obtained by simulating

the network according to a model similar to that estimated in the previous

section: the effects and associated parameters are chosen to be similar to

those obtained by the analysis in the previous section. Fewer effects are in-

cluded than in the analysis in the previous section to reduce computation

time and to provide a simpler model to estimate.

Table 3.2 shows the mean parameter estimate and the root mean squared

error (RMSE) for the estimator. We also assess the estimator when used

in conjunction with the hypothesis test described in the previous section.

We assess the appropriateness of the test by calculating, for each analysis

and each parameter, the deviation of the parameter estimate from the true

value divided by the standard error estimate. Under our assumption re-
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Table 3.2: Results for the simulation study with 129 actors.

H0 Mean RMSE α 1− β

Network Rate Effects

Mean change opportunities (period 1) 11.0 10.86 0.92 0.05 -
Mean change opportunities (period 2) 9.0 9.10 0.85 0.03 -

Network Evaluation Effects

Outdegree -2.8 - - - -
Reciprocity 2.0 2.01 0.09 0.03 0.98
Transitive triplets 0.4 0.39 0.03 0.03 0.97
Gender similarity 0.9 0.91 0.10 0.03 0.96
Smoke similarity 0.2 0.21 0.10 0.02 0.38

Adoption effects

Integrated baseline hazard (period 1) 0.05 0.06 0.08 0.09 -
Integrated baseline hazard (period 2) 0.05 0.05 0.07 0.08 -
Average Exposure 3.8 3.86 1.63 0.08 0.48
Alcohol intake 0.6 0.68 0.27 0.06 0.68



3.6. SIMULATION STUDY 85

quired for the test, these test statistics should be approximately standard

normally distributed, and so we compute the proportion of these statis-

tics that exceed in absolute value the upper 97.5% quantile of the standard

normal distribution. If our assumption of normality is reasonable, then

we expect rejection rates (denoted by α) close to 5%. For the integrated

baseline hazards {ρ[Z]
m : m = 2, . . . ,M}, we consider the logarithm of the

parameter, as by inspection of the simulation results, this is less skewed

and more normally distributed. We then estimate the power of the test

(denoted by 1 − β) when applied to each of the parameter estimators, by

finding the proportion of simulations for which a incorrect null hypothesis

that each parameter coordinate is zero is rejected.

Recall that to reduce correlations the similarity effect has a centering term

which depends on each generated dataset. Note that each time this affects

the estimate of the outdegree parameter (by translating it by the centering

term) so the collated results for the outdegree effects are not meaningful

and are hence excluded; we may think of the outdegree effect like a control

variable.

Of the 1000 generated datasets, 834 are included in the analysis; the re-

mainder were removed due to inadequate convergence of the algorithm

(the t ratio that can be calculated to assess convergence of the algorithm

is described by Ripley et al. (2011)); we shall discuss the excluded data

later. As can be seen in Table 3.2, the parameters associated with network

dynamics are estimated very well; the bias and root mean squared are

both low in all cases, and for parameters except the ‘smoke similarity,’ the
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Figure 3.1: Deviation between observed and expected value of the mo-
ment statistic associated with the average exposure effect.

power is very high. The parameters associated with the adoption process

also have quite small bias, and although the root mean squared error is

quite high, the power is reasonable. It is inevitable that the adoption pa-

rameters will be more difficult to estimate than those associated with the

network; the moment statistic associated with the latter are made up of a

sum of (M−1)n(n−1) statistics (Snijders, 2001), whilst the former has just∑M
m=2Rm < (M − 1)n components, where Rm is the number of actors at

risk of adoption at time tm−1. This means that there is less information that

can be used to estimate the adoption process parameters, and this is likely

to be why the results show higher RMSE, and a lower power, for these.

A considerable number of sets of results (16.6%) were excluded due to

unsatisfactory convergence of the algorithm; however, when this is inves-

tigated further, it does not appear to simply be due to limitations in the
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stochastic approximation estimation procedure (which potentially could

have been solved by running the algorithm for further iterations, to ob-

tain more accurate Monte Carlo estimates). Instead, it appears likely that

in these cases the method of moments equations do not have a solution.

This is illustrated for one set of unconverged results in Figure 3.1, which

shows the deviation between the observed and expected amounts for the

moment statistics associated with the average exposure parameter; for a

range of points around the true parameter (θ10 = 3.8) the deviation is not

zero (the other parameters are chosen so that the other components of the

method of moments equations are zero). This suggests that the method of

moments equation does not have a solution. The non-existence of a solu-

tion, and therefore the non-existence of the method of moments estimator,

for some data sets is no surprise, as for regular Cox regression this occurs

also for the maximum likelihood estimator; see Silvapulle and Burridge

(1986).

3.7 Discussion

We have presented a method for modelling the simultaneous evolution of

the diffusion of an innovation with a dynamic social network. Incorpo-

rating both of these processes allows us to create a more realistic model,

and to include as mechanisms of the process both social influence and

homophilous peer selection. The model has been constructed so that the

adoption times follow a proportional hazards model, whilst the dynamics
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of the network are assumed to follow the stochastic actor oriented model

developed by Snijders (2001). In many applications, this model may be

preferable to that which would be obtained using the model given by Sni-

jders et al. (2007), as the latter does not correspond to any known survival

model. The proportional hazards property of the model also enables easy

interpretation of the model parameters.

To estimate the parameters in the model, we have used the method of mo-

ments estimator suggested by Snijders et al. (2007), and shown that for a

given outcome, the estimate obtained is asympotically equivalent to the

maximum likelihood estimate, as the frequency of observations tends to

infinity. We have also examined its performance when applied to data

with only 3 observations, and shown that whilst the estimator appears

approximately unbiased, there is sometimes the problematic lack of a so-

lution to the method of moments equations. We suggest that as high a

number of observations as possible is desirable.

We have also demonstrated the use of the model on a real dataset, involv-

ing a Glaswegian school and the initiation of cannabis smoking amongst

its students, and using the model have identified both peer influence and

selection based on similarity of cannabis use.

The model could be extended and altered in a variety of ways. The most

obvious of these is the addition of a wider variety of adoption effects; the

implementation of the estimation of the model allows a variety of func-

tions of the network and the adoption variable to be added as effects.
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A possible extension of the model could be achieved by increasing the

size of the state space of the adoption variable: instead of being a binary

random variable, it could be defined to take three values; this could then

be used to construct a Knowledge Attitude Practice (KAP) model (Rogers

(1995), Valente et al. (1998)), where the actors must first gain knowledge of

the innovation before they can adopt it. The first state could correspond

to unawareness of the innovation, the second awareness but not practice,

and then finally, the third state adoption. The model could then include

interactions between the value of adoption variable and the contagion ef-

fects, in order to have different dynamics governing the rates of change

between the first and second states, and the second and third. Apart from

the social sciences, this model could be applied to medical statistics; for ex-

ample, we could formulate it as an SIR model (Kermack and McKendrick,

1927) with an endogenous dynamic network.

We could extend the state space even further to use the model to approxi-

mate an inhomogeneous Poisson process (Suhov and Kelbert, 2008). (Hav-

ing an infinite state-space would give this process exactly, but the current

implementation will not allow this; instead it can be made as large as is

computationally feasible). This could be used to model situations where

the behaviour of the actors does not consist of a single innovation, but a

number of events. For example, instead of being interested in the time at

which an actor first initiates a practice, the Poisson process models how

many times they actually perform it.
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Part III

Local network models
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Chapter 4

Local network models

4.1 Introduction

We often interpret that changes to the dynamic social network are driven

by the actors, with each actor in control of their own outgoing ties. It is

therefore natural to assume that the local properties of the ego in the net-

work will be important to this ‘driving’ actor. In this part, we will consider

a class of models where the state of a subnetwork of which the ego actor

is the focal node is actually their only consideration.

When constructing a Siena network model, we select effects which we

hope encapsulate the tendencies of the ego for extending, maintaining

and breaking network ties; the ego can then stochastically maximise these

features of the network, by altering their outgoing ties. In this part, we

consider the situation where these tendencies depend only on the config-

93
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urations of ties to and from actors who are already local to the ego, where

‘local’ is defined with respect to geodesic distance. This essentially will

just place a restriction on which network effects we may include in our

model; however, as we will see, doing this will have computational and

theoretical implications.

A sufficient condition for the plausibility of this model is that an actor has

knowledge of the ties only to and from actors that are ‘local’ to them. For a

large network, it may be reasonable to assume that each actor has only par-

tial knowledge about the state of the network at any given point in time,

and it may be reasonable to further their knowledge will extend only to

those actors to whom they are closest, with respect to geodesic distance.

However, for a small network this may be quite a strong assumption, and

a relaxed alternative would be to say that although an actor may be aware

of further network connections, involving non-local actors, they are unim-

portant to them when they consider which network ties to extend or break.

As we will see, the size of the subgroup of actors deemed local can be

kept relatively small, irrespective of the size of the network, while still

enabling us to include many important mechanisms, such as transitivity,

in our model.

One consequence of presuming this class of model is that there is no place

for a global hierarchy; ego actors will not be aware of the global structure

of the network (or, at least, will not find it important), and so, since the

ego drives the mechanisms, they cannot be incorporated in the model.

Inevitably, this means that this type of model will be unsuitable for some
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research questions; but many, about local structures and hierarchies, can

still be answered.

4.2 Local network models

In this part, we define local network models, a class of Siena models where it

is only the structure of ties for actors that are geodesically ‘close’ to the ego

actor that is important when they make network tie changes. We require

some definitions:

Definition 4.2.1 (Outties). For a network x and an ego i, let õ(i|x) = {j ∈

{1, . . . , n} : xij = 1} be the set of nodes which have an incoming tie from

i.

Definition 4.2.2 (Inties). For a network x and an ego i, let ĩ(i|x) = {j ∈

{1, . . . , n} : xji = 1} be the set of nodes which send an outgoing tie to i.

Definition 4.2.3 (Neighbourhood). Given a network x, and an ego i, let

the neighbourhood of i, denoted byN (i|x), be the union of {i} and the set

of actors that are a(n undirected) geodesic distance of at most one from i:

N (i|x) = {i} ∪ õ(i|x) ∪ ĩ(i|x).

Hanneman and Riddle (2011) refer to this as a one-step neighbourhood

(although they include in their definition not only the set of actors, but

the ties between them).
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For a matrixA of dimension n×n and a vector v such that each component

of v is in the set {1, . . . , n}, let A[v] be the matrix of dimension dim(v) × n

such that, for all i ∈ {1, . . . , dim(v)}, the ith row is given by the vith row of

A. This means that, for j = 1, . . . , n, the (i, j)th component of A[v] is given

by

A[v]i,j = Avi,j.

Definition 4.2.4 (Neighbourhood statistics). For a network x and an ego

i, the neighbourhood statistics are given by the p × n matrix, where p =

|N (i|x)| ≤ 2(1 + xi+ + x+i), given by

N(i|x) =

 x[N (i|x)]

xT[N (i|x)]


The neighbourhood statistics give the incoming and outgoing ties of both

i and i’s (incoming and outgoing) ties.

Definition 4.2.5 (Change contribution for an effect). For all i, j ∈

{1, . . . , n}, given a network x, the change contribution for an effect is the

difference in the value of the effect evaluated at x(i j) and x:

∆ij(x) = si(x(i j))− si(x).

This gives the increase in the effect were ego i to change their relationship

to alter j.
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Definition 4.2.6 (Local network effect). An effect is a local network effect

if, for all i ∈ {1, . . . , n}, and for any two possible states of the network,

x, x̃, such that N(i|x) = N(i|x̃),

∆ij(x) = ∆ij(x̃),

for all j ∈ {1, . . . , n}.

Examples of local network effects include all transitive effects and almost

all covariate effects. Example of non-local network effects include popu-

larity and assortativity effects.

Definition 4.2.7 (Local network models). A local network model is a

Siena network model such that all the effects are local network effects.

Note that we can write the conditional choice probabilities (see (2.5)) in

terms of the change contributions; for a network x, and an ego i, for j ∈

{1, . . . , n},

pij(x; θ) =
exp(βT∆ij(x; θ))∑n
k=1 exp(βT∆ik(x; θ))

, (4.1)

where θ = (ρ, β).

Looking at (4.1), it follows from the definition of a local network model

that, given an ego i and a parameter θ, if two networks have the same

neighbourhoods statistics, the set of choice probabilities for i will be the



98 CHAPTER 4. LOCAL NETWORK MODELS

same. Therefore, for a local network model, an actor’s decision of which

tie to extend or break only depends on the configuration of the ties in and

around their neighbourhood; they are unaffected by changes elsewhere in

the network.

We now derive an alternative, equivalent, definition of a local effect, which

will be useful in determining whether an effect is local or not.

Condition 4.2.1. Given a network x and an ego i, let (l,m) ∈ {1, . . . , n}2

such that l 6= m. Then

1. l 6= i;

2. m 6= i;

3. max{xil, xim, xli, xmi} = 0.

Lemma 4.2. Given a network x and any ego i ∈ {1, . . . , n}, let (l,m) be any

pair in {1, . . . , n}2 such that l 6= m. Then

N(i|x) = N(i|x(l m))

if and only if Condition 4.2.1 holds.

Proof. If we change the network from x to x(l  m), then the lth row

of x and the mth row of xT are the only rows which change. Therefore,

by definition, the neighbourhood statistics change if and only if at least
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one of l or m are in N (i|x). This occurs if and only if Condition 4.2.1

does not hold.

Theorem 4.3. Given a network x and any ego i ∈ {1, . . . , n}, let (l,m) be any

pair in {1, . . . , n}2 such that l 6= m. Suppose that Condition 4.2.1 implies that

∆ij(x; θ) = ∆ij(x(l  m); θ) for all j = 1 . . . , n. Then the effect is a local

effect.

Proof. Fix an ego i ∈ {1, . . . , n}. Let x, x′ be networks such that N(i|x) =

N(i|x′). Then there exists a sequence of networks x(1), . . . , x(P ), for some

P , such that x(1) = x, x(P ) = x′, and for all p = 2, . . . , P ,

x(p) = x(p−1)(l(p)  m(p)),

for some (l(p),m(p)) ∈ {1, . . . , n}2. Furthermore, because none of incom-

ing or outgoing ties for actors in N (i|x) need to change, this can be

chosen so that, for all p = 2, . . . , P ,

N(i|x(p)) = N(i|x(p−1)).

Then Lemma 4.2 implies that, for all p = 2, . . . , P , Condition 4.2.1

holds for (l(p),m(p)) and so, by the statement of the theorem, for all

j = 1, . . . , n,

∆ij(x
(p); θ) = ∆ij(x

(p−1); θ),
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and so

∆ij(x
′; θ) = ∆ij(x; θ).

Therefore the effect is a local effect.

4.3 Categorising polynomial effects

Most network effects can be expressed as polynomials in the elements of

x, where, because the values are all binary, the highest power of any com-

ponent is one. In this section, we describe an algorithm for determining

whether or not a polynomial network effect is a local network effect.

Given an ego i, let j, l,m ∈ {1, . . . , n} such that i 6= j, l 6= m and Condition

4.2.1 applies to (l,m). Then a polynomial effect can be written in the form

si(x) = xijxlmd1j(x) + xijd2j(x) + xlmd3j(x) + d4j(x), (4.4)

where d1j, d2j, d3j and d4j are polynomials that are independent of xij and

xlm (each polynomial has an implicit dependence on i, l and m, but this is

not included in the notation for simplicity). Then

∆ij(x; θ)−∆ij(x(l m); θ) = d1j(x)(1− 2xij)(1− 2xlm).

Then, by Theorem 4.3, the effect is a local effect if ∆ij(x; θ) − ∆ij(x(l  

m); θ) = 0 for all j ∈ {1, . . . , n}, and so for a polynomial effect, if d1j(x) = 0

for all j.
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Example 4.3.1 (Transitive triplets). si(x) =
∑

k,h xikxihxhk. Then the only

summand involving xlm is when h = l and k = m, and so

d1j(x) =


xil j = m,

xim j = l,

0 otherwise,

and so d1j(x) = 0 by Condition 4.2.1. Therefore it is a local effect.

Example 4.3.2 (Indegree popularity). si(x) =
∑

j,h xijxhj . Then

d1j(x) =


1 j = m,

0 otherwise,

which is not zero for all j, and so this is not a local effect.
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Chapter 5

Maximum likelihood

5.1 Introduction

We review the algorithm described by Snijders et al. (2010) used for max-

imum likelihood estimation of a Siena model, and propose changes in or-

der to improve efficiency. Changes will attempt to either decrease compu-

tation times, or to improve mixing. In Section 5.2 we review the existing

Metropolis-Hastings algorithm that is employed in RSiena (Ripley et al.,

2011). In Section 5.3, we suggest a method for speeding the calculations

required by the algorithm. In Section 5.4, we suggest a method intended

to improve the proposal distribution required by the Metropolis-Hasting

algorithm.

Most changes in this chapter will apply only to local models, as described

in Chaper 4; however, in Section 5.6 we will see how the changes, where

103
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applicable, can be used to improve estimation for all models.

In this chapter, so that notation and descriptions can be easier to under-

stand and simpler, we restrict our attention to network models, and not

the co-evolution network and behaviour model; however, the methods

can all be extended in natural ways for the latter case. We also only con-

sider network models with constant rate functions; the maximum likeli-

hood estimation algorithm for non-constant rates is detailed by Snijders

et al. (2010) but is not yet implemented in RSiena (Ripley et al., 2011). We

consider the case when there are only two observations of the network;

again, this is done for simplicity in explanations, but due to the Markov

properties of the assumed model, the methods extend easily to cases with

more observations. Finally, probabilities and expectations will often have

their dependence on θ supressed, to simplify notation.

5.2 Metropolis-Hasting algorithm

In this section we review the existing algorithm detailed by Snijders et al.

(2010) used to perform maximum likelihood estimation for Siena models.

As described earlier, we assume that the network process moves between

states via ministeps. We refer to a sequence of consecutive ministeps tak-

ing the process from one state to another as a chain. Then, given data

(X(t0), X(t1)) = (x(t0), x(t1)), to find the maximum likelihood estimate,

we want to find θ such that the score function for the observed data is
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zero. This is the same (Gu and Kong, 1998) as choosing θ to solve

Eθ[SXV (θ;X, V )|(X(t0), X(t1)) = (x(t0), x(t1))] = 0, (5.1)

where SXV is the score function for the chain of ministeps V that takes the

process from X(t0) to X(t1). We solve this equation using the Robbins-

Monro algorithm; to do this, we are required to draw samples of V , given

a value for θ. Before explaining how we do this, we require a definition:

Definition 5.2.1 (Toggling). For any i, j ∈ {1, . . . , n}, we say that there is

a toggle to the dyad from one actor i to another actor j to mean that there is

a change in the the relationship from i to j: if a tie currently exists, then

after toggling it no longer does, and vice versa. Note that we assume

the relationship is always non-reflexive, and so toggling a dyad from an

actor to themselves leaves the network unchanged.

To draw samples of the chain of ministeps V , we use the Metropolis-

Hastings algorithm. We create a chain v of ministeps to use as our initial

state, which is constructed so that the first and last states match what is

observed, so that x0 = x(t0) and xR = x(t1), where x(t0) and x(t1) are

our two observations of the network. Let N 2 denote the pairs of all ac-

tors; then, given our data, we know, for all pairs of actors inN 2, the parity

of the number of changes to their relationship: for some pair (i, j) ∈ N 2,

if xij(t0) = xij(t1), then there is an even number of toggles to the dyad,

and conversely, if xij(t0) 6= xij(t1), then the number is odd. We use this
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information to choose a suitable v.

We then propose a new chain ṽ using proposal distribution u(.|v); we ac-

cept the proposed change with probability

α = min

{
1,
p(ṽ)u(v|ṽ)

p(v)u(ṽ|v)

}
, (5.2)

5.2.1 Chain notation

We often denote a chain of ministeps by v. We denote by mi the ith min-

istep in the chain, and by R the number of ministeps in the chain, so that

v = {m1, . . . ,mR}.

For r ∈ {1, . . . , R}, we denote by (ir, jr) the tie that is toggled in minis-

tep mr. For the chain v, there is a corresponding sequence of R + 1 net-

works, which we denote x0, . . . , xR. Given xr−1, the netwok xr is equal to

xr−1(ir  jr).

5.2.2 Proposal distribution

The proposed chain ṽ is obtained by making a small change to v, which

we refer to as an update. There are five different types of updates, and the

type is chosen randomly at each proposed update, using the update type

proposal distribution.
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Definition 5.2.2 (Update type proposal distribution). The update type

proposal distribution is the probability distribution for the type of update

to be used at each proposed update. The sample space is {1, 2, 3, 4, 5} and

we denote the distribution function by pU .

The update type proposal distribution is predetermined before the esti-

mation begins. Every type of update preserves the parity of the number of

changes to every component of x. Before describing the updates, we first

require a definition.

Definition 5.2.3 (Diagonal ministep). A ministep is diagonal if the ego to

make no change to their outgoing ties; i.e. when choosing j ∈ {1, . . . , n}

according to the conditional choice probabilities, the ego i chooses j = i.

The types of updates are:

1. Add a diagonal: insert a diagonal ministep into the chain;

2. Delete a diagonal: delete a diagonal ministep from the chain;

3. Permutation: permute the ordering of some of the ministeps in the

chain;

4. Add a cancelling pair: insert two ministeps which toggle the same

dyad;

5. Delete a cancelling pair: delete two ministeps which toggle the same

dyad.
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Changes of types 1, 2, 4 and 5 are sufficient to ensure that the entire sup-

port of V , the space of chains satisfying the observed data, may be reached,

given any starting point of the Markov chain (Snijders et al., 2010). Type 3

is included to achieve better mixing properties. In Section 5.4, we suggest

an alternative to permuting ministeps.

Since a single update only changes the chain very slightly, given a sampled

chain, we obtain another sample only after making many updates: we

describe this in more detail in Algorithm 1.

5.3 Improving efficiency for local models

When we propose to make an update to the chain, for a subsection of the

chain, we need to recalculate the probabilities of the ministeps; for exam-

ple, if we insert a pair, then we need to recalculate the probabilities of the

ministeps between these two new steps. These calculations involves prod-

ucts of sums of exponentials, and are therefore computationally expensive.

In this section, we consider how these calculations can be simplified.

Given a chain v, Table 5.1 shows how the chain, and the probabilities of

the ministeps, are changed by the addition of a pair of cancelling min-

isteps. The ministeps before the first inserted ministeps are unchanged.

The ministeps after the second inserted ministep have their probabilities

unchanged but their position moved forward by two: the ministep in po-

sition r is now in position r + 2, due to the earlier inserted ministeps. We

need to calculate the probabilities of the inserted ministeps, and also the
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LetR = {1, . . . , R} andR+ = {1, . . . , R + 1};
Given a chain v,
for k = 1, . . . , K do

u ∼ pU ;
if u=1 then

Propose adding a diagonal. For a random r ∈ R+, some l ∈
{1, . . . , n} is chosen and a ministep toggling the dyad (l, l), (it is
diagonal, so no change actually occurs), is inserted before posi-
tion r (if r = R + 1, then the ministep is inserted at the end).

else if u=2 then
Propose deleting a diagonal. For a random r ∈ R, with ir = jr,
ministep mr is deleted.

else if u=3 then
Propose permuting a section of the chain. For a random pair
(r1, r2) ∈ R2, with 0 < r2 − r1 < K, where K is chosen so
to avoid too lengthy calculations, the subsequence of ministeps
mr1 , . . . ,mr2 is randomly permuted.

else if u=4 then
Propose adding a cancelling pair. For a random r1 ∈ R, a dyad
(l,m) is chosen according to the usual choice probabilities, given
the network xr1−1. A random r2 ∈ R is chosen so that r2 ≥ r1

and (ir, jr) 6= (l,m) for all r ∈ {r1, . . . , r2}, and ministeps toggling
(l,m) are inserted before r1 and r2.

else u = 5
Propose deleting a cancelling pair. For a random pair (r1, r2) ∈ R2,
r1 < r2, with (ir1 , jr1) = (ir2 , jr2), ir1 6= jr1 , and (ir, jr) 6= (ir1 , jr1)

for all r ∈ {r1 + 1, . . . , r2 − 1}, mr1 and mr2 are deleted.
end
if proposal is accepted then

v = ṽ.
end

end
return v

Algorithm 1: Metropolis-Hastings algorithm
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Section r m̃r x̃r−1 P(m̃r|x̃r−1)

1 1, . . . , r1 − 1 mr xr−1 P(mr|xr−1)
2 r1 (l,m) xr1−1 P((l,m)|xr1−1)
3 r1 + 1, . . . , r2 mr−1 xr−2(l m) P(mr−1|xr−2(l m))
4 r2 + 1 (l,m) xr2−1(l m) P((l,m)|xr2−1(l m))
5 r2 + 2, . . . , R + 2 mr−2 xr−3 P(mr−2|xr−3)

Table 5.1: Updated chain of ministeps, and their probabilities, after adding
a cancelling pair of ministeps toggling (l,m).

Section r m̃r x̃r−1 P(m̃r|x̃r−1)

1 1, . . . , r1 − 1 mr xr−1 P(mr|xr−1)
2 r1, . . . , r2 − 2 mr+1 xr(l m) P(mr+1|xr(l m))
3 r2 − 1, . . . , R− 2 mr+2 xr+1 P(mr+2|xr+1)

Table 5.2: Updated chain of ministeps, and their probabilities, after delet-
ing a cancelling pair of ministeps mr1 and mr2 which both toggle (l,m).

probabilities of the ministeps m̃r1+1, . . . , m̃r2 , that occur between the two

inserted ministeps.

Similarly, Table 5.2 shows the ministeps and probabilities once a cancelling

pair of ministeps are deleted. The probabilities for the ministeps before

the first deleted ministep, and after the second, are unchanged, but the re-

maining ministeps, now labelled m̃r1 , . . . , m̃r2−2, need to have their proba-

bilities recalculated.

In both cases, for some rmin, rmax ∈ {1, . . . , R}with rmin ≤ rmax, we need to

calculate, for some (l,m) ∈ N 2,

P̃ = (P(mrmin
|xrmin−1(l m)), . . . ,P(mrmax|xrmax−1(l m))).
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Note that, at this point in the algorithm, we have already calculated

P = (P(mrmin
|xrmin−1), . . . ,P(mrmax|xrmax−1)).

We consider local models, and so can use the following theorem:

Theorem 5.3. For a local model, if

N(ir|xr−1(l m)) = N(ir|xr−1)

then

P(mr|xr−1(l m)) = P(mr|xr−1).

Proof. By the definition of a local model, if N(ir|xr−1(l  m)) =

N(ir|xr−1), then for all j = 1, . . . , n,

∆irj(xr−1(l m); θ) = ∆irj(xr−1; θ),

and so

P(mr|xr−1(l m)) =
exp [∆irjr(xr−1(l m); θ)]∑n
j=1 exp [∆irj(xr−1(l m); θ)]

,

=
exp [∆irjr(xr−1; θ)]∑n
j=1 exp [∆irj(xr−1; θ)]

,

= P(mr|xr−1). (5.4)
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By Theorem 5.3, we do not need to calculate every component of P̃ : for

r ∈ rmin, . . . , rmax, if N(ir|xr−1(l  m)) = N(ir|xr−1), then P(mr|xr−1(l  

m)) = P(mr|xr−1) and

P̃r+1−rmin
= Pr+1−rmin

.

This reduces the number of calculations from 1 + rmax − rmin to

#{r ∈ {rmin, . . . , rmax} : N(ir|xr−1(l m)) 6= N(ir|xr−1)}.

For each r ∈ rmin, . . . , rmax, whether or not N(ir|xr−1(l  m)) = N(ir|xr−1)

can be easily found using Lemma 4.2. In virtually all cases, checking

whether the neighbourhood statistics are unchanged rather than calculat-

ing every probability should speed up calculations.

5.3.1 Example

In this section, we consider three real datasets to assess the effect of chang-

ing the calculations in the way described in this section. We consider three

real observed networks, each of different sizes, in order to also see how the

computational saving varies with network size. The networks we consider

are:

1. A network of size 32 of friendship ties between university freshmen
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(van de Bunt et al., 1999).

2. A network of size 50 consisting of friendship ties for a set of female

Glaswegian school childen (West and Sweeting, 1996), which we will

refer to as the s50 dataset.

3. A network of size 129 of friendship ties between Glasgwegian school

children (West and Sweeting, 1996), which we will refer to as the

Glasgow dataset.

For all three datasets we use two observations, so that there is one basic

rate parameter to estimate. The model we choose consists of the network

effects outdegree, reciprocity, transitive triplets, 3-cycles and smoking similarity.

For the first 2 datasets, we also include a drinking similarity effect, and for

the third, a gender similarity effect.

We perform Siena estimation runs using the default specifications, using

first the original algorithm, and then using method described in this sec-

tion. We repeat this 50 times.

The average computation times are shown in Figure 5.1. There is a re-

duction in time taken of 17%, 43% and 68%, for the first, second and third

datasets, respectively; the standard deviation of the fractions of time taken

by the new method compared to the original method is very small in all

cases (less than 0.01). Therefore the improvement increases with network

size, as we would expect (an actor’s neighbourhood is a larger proportion

of the total network for smaller network, so a higher proportion of min-

isteps will need to be recalculated than for a large network, when many
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ministeps will feature egos outside the actor’s neighbourhood).

5.4 Improving the proposal distribution

Any proposal distribution (subject to regularity conditions) will eventu-

ally deliver samples from the target distribution (Gilks et al., 1996). How-

ever, the rate of convergence to the stationary distribution will depend

on the proposal distribution. If the proposal distribution gives small ac-

ceptance rates, then the Markov chain will remain static for many of the

iterations, and so will be slow to converge. If instead the moves proposed

are very ‘small’, and do not make a significant change to the random vari-

able (in our model, the chain of ministeps) then acceptances rates may be

high, but the Markov chain will move very slowly around the support of

the target distribution.

In the current algorithm by Snijders et al. (2010), a ministep in the chain

may be moved only by a permutation of what will usually be a small sec-

tion of the chain. This typically has high acceptance rates but only achieves

a small amount of mixing, since each of the ministeps which moves only

does by a small amount (relative to the entire length of the chain). In Sec-

tion 5.4.1 we propose to move a single ministep to any position in the

chain. Only one ministep is moved in this proposal, but by a potentially

large distance, and so this move will arguably achieve better mixing.

In this section, we still consider only local models; in Section 5.6, we con-

sider modifying this proposal so it can be used with non-local models.
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Figure 5.1: Computation times for a Siena analysis of the three datasets
described in Section 5.3.1.
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5.4.1 Moving a tie

We suggest making a update by taking a ministep from the existing chain

and changing its position in the chain, where the position is chosen de-

pending on the probability of the resulting chain; note the similarity be-

tween this type of update and Gibbs sampling (Casella and George, 1992).

We randomly choose r1 ∈ {1, . . . , R} and remove the tie change (i, j) :=

(ir1 , jr1) from this position. Then the chain has lengthR−1, and we denote

this new reduced chain v′. We then insert a tie change to (i, j) directly

before position r2 ∈ {1, . . . , R} of v′ (r2 = R means that the tie change is

inserted at the end of v′). We want to choose r2 according the probabilities

of the resulting chains.

Let rmin < r1 be the position of the tie change to (i, j) before the one at

position r1 (define rmin = 0 if there is no earlier change to (i, j)). Similarly,

let rmax > r1 be the position of the next tie change to (i, j) after r1 (define

rmax = R if no such change occurs). Then we choose r2 = r, where r ∈

{rmin + 1, . . . , rmax}, with probability proportional to

πr = p(v′r), (5.5)

where v′r denotes the chain of ministeps if we take v′ and insert a tie change

to (i, j) before position r (e.g. v′r1 = v).

Calculating πrmin
, . . . , πrmax can be made more efficient using the following

recursive formulae. Considering v′ (and the corresponding sequence of
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networks x′0, . . . , x′R−1), we calculate {πr : r = rmin + 1, . . . , rmax} using

πr =


ArBrpr−1, r < r1,

Br

Ar
pr−1, r ≥ r1,

(5.6)

where

Ar =


1 if N(ir|x′r−1) = N(ir|x′r(i j)),

p((ir, jr)|x′r−1)

p((ir, jr)|x′r−1(i j))
, otherwise,

and

Br =


1 if N(i|x′r−1) = N(i|x′r),

p((i, j)|x′r)
p((i, j)|x′r−1)

, otherwise.

The conditions are easy to check, using Lemma 4.2. We choose r2 accord-

ing to the probabilities (πrmin+1, . . . , πrmax)/π+; the acceptance probability

is 1.

5.5 Optimising the proposal distribution

We now have six types of Metropolis-Hastings steps and must update the

update type proposal distribution accordingly, so that it now has sample

space {1, 2, 3, 4, 5, 6}. In this section we will use simulation studies to try

to make a good choice for the update type proposal distribution.
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Before estimation, we must choose the total number of steps K, and pU(1),

. . . , pU(6), or equivalently, choose K1, . . . , K6, where for i = 1, . . . , 6,

Ki := E(number of steps of type i) = KpU(i).

The Siena default chooses K based on the observed data, and then uses

K1 = 0.05K,K2 = 0.05K,K3 = 0.2K,K4 = 0.3K,K5 = 0.3K (0.1K steps

are reserved for those dealing with missing data, which we do not con-

sider in this chapter). In this section, we aim to explore what might be a

good choice once we incorporate the new 6th type of step. To simplify the

problem, we keep the following default proportions:

K1 = K2;K4 = K5;K4 = 6K1.

This reduces the problem to three dimensions: we must choose K3, K6,

and L = K1 +K2 +K4 +K5.

Ripley et al. (2011) recommends that autocorrelations at lag 1 of the scores

of the chains in Phase 3 be kept below 0.4 in order to give sample paths

that are not too highly correlated; we will follow this advice, and look for

values of (L,K3, K6) which, on average, achieve this.

We propose replacing permutations with moves, and so, to simplify the

problem further we compare two separate cases:

1. Use permutations and no moves: K3 > 0;K6 = 0;

2. Use moves and no permutations: K3 = 0;K6 > 0.
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We now have two two-dimensional problems. For case 1, we try to find

pairs (L,K3) which give good autocorrelations, and then for case 2, pairs

for (L,K6). We will then compare results for the two cases, using optimal

pairs. In Section 5.5.1 we consider the s50 dataset, and then in Section

5.5.2, the Glasgow dataset.

5.5.1 Example 1: s50 data

Using the first two observations of the s50 dataset, the current default

choice in Siena gives L = 420 and K3 = 120. We consider a model with

network effects outdegree, reciprocity, transitive triplets, smoking similarity

and drinking similarity and find that these defaults do not give sufficiently

small autocorrelations for this choice of model, and so we need to explore

how to increase them.

Choosing pairs

We explore pairs for case 1 by considering increments of 420 for L and

120 for K3: see Algorithm 2. The algorithm begins by following advice

given by Ripley et al. (2011): we begin our search for an optimal pair for

(L,K3) by beginning with the default values, and then increasing the total

number of steps K while keeping K3/L constant, until we achieve small

autocorrelations. The results from this are given in the diagonal of Table

5.3: beginning with (L,K3) = (420, 120), we found that we need to in-

crease to (L,K3) = (1680, 480) to achieve small autocorrelations. We then
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successively increase and decrease values for K3 and L, filling in the off-

diagonals of the table.

We may also finish the process (or proceed to the next step of the algo-

rithm) if computation times become excessively long, or if it seems un-

likely that small autocorrelations will be found in the current direction.

We then repeat the algorithm for case 2, varying K6 instead of K3; in this

case, we started with (L,K6) = (420, 60), using a smaller number of moves

than the default number of permutations because moves are more compu-

tationally demanding. We also use increments of 60 when increasing K6,

for the same reason.

Evaluating pairs

The results showing autocorrelations and computation times for various

pairs are shown in Tables 5.3 and 5.4; each entry is based on averages ob-

tained from five analyses using the specified pairs for (L,K3) and (L,K6),

respectively.

Now that we have found some pairs which achieve sufficiently small au-

tocorrelations (which we have labelled (A), . . . , (E) in Tables 5.3 and 5.4),

we increase the number of repetitions from 5 to 50 and consider the t con-

vergence statistics; see Figure 5.2. Ripley et al. (2011) says that we can

interpret that the algorithm is ‘converged’ when t < 0.1 and ‘nearly con-

verged’ when t < 0.2. Looking at the plot, there is not a large difference

between any of these five pairs. We can therefore eliminate pair (B) due to



5.5. OPTIMISING THE PROPOSAL DISTRIBUTION 121

1.
i = 1; (L,K3) = (420, 120);
while AC(L,K3) > 0.4 do

i = i+ 1;
(L,K3) = (420i, 120i);

end
(LC , K3,C) = (L,K3);
i = 1;
while L > 420 do

while AC(L,K3) < 0.4 do
L = LC − 420i;
K3 = K3,C ;
i = i+ 1;

end
(LC , K3,C) = (L,K3);
while AC(L,K3) > 0.4 do

L = LC ;
K3 = K3,C + 120i;
i = i+ 1;

end
(LC , K3,C) = (L,K3);

end

2.
i = 1;
while K3 > 120 do

while AC(L,K3) < 0.4 do
L = LC ;
K3 = K3,C − 120i;
i = i+ 1;

end
(LC , K3,C) = (L,K3);
while AC(L,K3) > 0.4 do

L = LC + 420i;
K3 = K3,C ;
i = i+ 1;

end
(LC , K3,C) = (L,K3);

end

Algorithm 2: Finding pairs with small AC
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Table 5.3: Using permutations with s50 data: autocorrelations and compu-
tation times for different pairs of (L,K3), where K6 = 0.

L

420 840 1260 1680

K3 AC Time AC Time AC Time AC Time

120 0.60 340s
240 0.49 646s
360 0.43 999s 0.41 1163s
480 0.44 842s 0.40(A) 1055s 0.35(B) 1386s
600 0.45 921s
720 0.41 1003s
840 0.49 866s 0.38(C) 1114s

Table 5.4: Using moves with s50 data: autocorrelations and computation
times for different pairs of (L,K6), where K3 = 0.

L

420 840 1260

K6 AC Time AC Time AC Time

60 0.53 387s 0.44 541s 0.41 740s
120 0.45 452s 0.37(D) 678s
180 0.41 565s
240 0.40(E) 685s

the large computation time (shown in Table 5.3). There is little to choose

between (A) and (C), and between (D) and (E), but we can see that the

computation time is reduced using moves rather than permutations (by

more than a third).
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Figure 5.2: Maximum t convergence statistics using different values of
(L,K3, K6) with autocorrelations at most 0.4.



124 CHAPTER 5. MAXIMUM LIKELIHOOD

5.5.2 Example 2: Glasgow data

We now consider the first two observations of the Glasgow dataset, which

has 129 actors. We consider a model with network effects outdegree, reci-

procity, transitive triplets, smoking similarity and gender similarity. The cur-

rent default choice in Siena gives L = 1680 and K3 = 480, and, as with the

s50 data, we find that in this case, these values do not give sufficiently

small autocorrelations for this choice of model.

We follow the same method as in Section 5.5.1 to find pairs of (L,K3) and

(L,K6) that give sufficiently small autocorrelations, but using increments

of (1680, 480) for case 1, and (1680, 240) for case 2. The results are shown in

Tables 5.5 and 5.6. The results give a number of pairs of both (L,K3) and

(L,K6) that provide sufficiently small autocorrelations, so we now need to

compare the times and convergence statistics to find the optimal pairs.

Since in the previous section, looking at 50 repetitions to look for differ-

ences in t convergences statistics did not provide much further informa-

tion, and because in this section, computation times in case 1 are very long,

we consider the t convergence statistics based on just 5 repetitions. These

are shown in Figure 5.3, and we see that the maximum convergence statis-

tics are generally quite low, and in almost all cases are less than 0.2. The

variance of the statistics is fairly high in some cases (which could just be

because we use only 5 repetitions in each case). If we say that a pair is

optimal if the mean and variance of the maximum convergence statistic is

low, then we would probably conclude that pair (E) is the optimal choice
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Table 5.5: Using permutations with Glasgow data: autocorrelations and
computation times for different pairs of (L,K3), where K6 = 0

L

1680 5040 8400 10080 11760 13440 15120 16800

AC AC AC AC AC AC AC AC
K3 (Time) (Time) (Time) (Time) (Time) (Time) (Time) (Time)

0 0.39(A)
(59551s)

480 0.66 0.38(B)
(9059s) (60512s)

960 0.40(C)
(61573s)

1440 0.56 0.38(D)
(26593s) (62892s)

1920 0.38(E)
(65298s)

2400 0.45 0.37(F)
(44456s) (68832s)

2880 0.45 0.42 0.41 0.36(G)
(53358s) (64173s) (68512s) (73082s)

3360 0.42 0.38(H)
(62113s) (68417s)

3840 0.44 0.39(J) 0.40(I)
(61080s) (67026s) (71319s)

4320 0.43 0.40(K)
(57535s) (64030s)

4800 0.44
(60063s)

5760 0.43
(64823s)

Table 5.6: Using moves with Glasgow data: autocorrelations and compu-
tation times for different pairs of (L,K6), where K3 = 0

L

1680 3360 5040

K6 AC Time AC Time AC Time

240 0.58 10139s
480 0.45 20428s 0.41 25866s
720 0.46 18338s 0.38(L) 24166s 0.35(M) 30804s
960 0.44 22519s



126 CHAPTER 5. MAXIMUM LIKELIHOOD

●

●

●

●

0.08

0.12

0.16

0.20

A:(1
68

00
,0

,0
)

B:(1
68

00
,4

80
,0

)
C:(1

68
00

,9
60

,0
)

D:(1
68

00
,1

44
0,

0)
E:(1

68
00

,1
92

0,
0)

F:
(1

68
00

,2
40

0,
0)

G
:(1

68
00

,2
88

0,
0)

H:(1
34

40
,3

36
0,

0)
I:(

13
44

0,
38

40
,0

)
J:

(1
17

60
,3

84
0,

0)
K:(1

00
80

,4
32

0,
0)

L:
(3

36
0,

0,
72

0)
M

:(5
04

0,
0,

72
0)

(L, K3, K6)

M
ax

im
um

 t 
co

nv
er

ge
nc

e 
st

at
is

tic

Figure 5.3: Maximum t convergence statistics using different values of
(L,K3, K6) with autocorrelations at most 0.4.

of those using permutations and pair (M) is the optimal choice of those us-

ing moves. The distribution of the convergence statistics results for these

two pairs are similar, and the average autocorrelations are slightly lower

for pair (M). Looking at the average computation times, which are 65298

seconds for pair (E) and 30804 seconds for pair (M), we can conclude that

the optimal pair using moves is more than twice as fast as the optimal pair

using permutations.
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5.6 Non-local models

We now consider a modification of the new update type which can be used

with non-local models.

The recursive formula that was used to calculate {πr = p(v′r) : r = rmin +

1, . . . , rmax} (see equations (5.5) and (5.6)) is no longer applicable for a non-

local model, and so calculation of this will be very time consuming. In-

stead we propose to choose r2 according to the probabilities

(π̃rmin+1, . . . , π̃rmax)/π̃+,

where

π̃r =


ArBrpr−1, r < r1,

Br

Ar
pr−1, r ≥ r1,

(5.7)

and where

Ar =


p((ir, jr)|x′r−1)

p((ir, jr)|x′r−1(i j))
, if ir ∈ {i, j} or jr ∈ {i, j},

1 otherwise,

and

Br =


p((i, j)|x′r)
p((i, j)|x′r−1)

, if ir ∈ {i, j} or jr ∈ {i, j},

1 otherwise.
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We then accept the update with probability

min

{
1,
p(ṽ)π̃r1
p(v)π̃r2

}
.

This should hopefully give a high proportion of accepted updates, because

in many cases

(π̃rmin+1, . . . , π̃rmax)/π̃+

will be fairly close to

(πrmin+1, . . . , πrmax)/π+.

Example

We consider the s50 data, and modify the model considered earlier in this

section, and include a distance-2 effect instead of the drinking similarity

effect, so that we have a non-local model.

We use the results from Section 5.5.1, and considering pairs (A), (C), (D)

and (E) from Tables 5.3 and 5.4 as our optimal pairs (we exclude (B) due

to a high computation time), we compare

(A) using permutations, with (L,K3, K6) = (1260, 480, 0);

(C) using permutations, with (L,K3, K6) = (840, 840, 0);

(D) using moves, with (L,K3, K6) = (840, 0, 120);

(E) using moves, with (L,K3, K6) = (420, 0, 240).
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Figure 5.4: Proportion of accepted ‘move’ updates for a non local model
using different values of (L,K3, K6)

We consider the results based on 10 repetitions of the analyses.

Firstly, in Figure 5.4 shows the proportion of ‘move’ update types using

pairs (D) and (E); in both cases, the proportion is very high, on average

0.92 and 0.99, respectively. This confirms our hope that there would be a

high proportion of accepted ‘moves’.

Figure 5.5 shows the maximim autocorrelations for pairs (A), (C), (D) and

(E). Looking at this plot, we conclude that (C) does not give sufficiently

small autocorrelations, but that the others do.

Figures 5.6 and 5.7 show the computation times and the maximim au-

tocorrelations and maximum convergence t statistics, respectively. The

t statistics are better for (E) than for (D), and this also has a lower compu-
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Figure 5.5: Maximum autocorrelations for a non local model using differ-
ent values of (L,K3, K6).

tation time; we conclude that our optimal pairs using permutations and

moves are (A) and (E) respectively. (E) has improve t statistics compare to

(A), and computation times reduced by around 37%; we can conclude that

the ‘move’ update type is an improvement over the permutation, even for

non-local models.

5.7 Effective sample size

In this chapter, we used maximum autocorrelations at lag 1 as a metric

to avoid too highly correlated samples; an alternative method, commonly

used in MCMC diagnostics, is to consider effective sample size (Hoff, 2009).

There are various formulae for calculating effective sample size (Thiébaux
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Figure 5.7: Maximum t convergence statistics for a non local model using
different values of (L,K3, K6).
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and Zwiers, 1984); we consider

n

1 + 2
∑∞

k:ρk≥0.05 ρk
,

where ρk is the autocorrelation at lag k (Kass et al., 1998). This gives us

an effective sample size for each component of our vector-valued score.

Figure 5.8 shows the effective sample size for each of these components

for a single analysis of the s50 dataset (using the effects described in Sec-

tion 5.5.1), using different values of (L,K3, K6). We saw earlier that there

seemed to be little difference in autocorrelations between (A), (C), (D) and

(E), but that the latter two had lower computation times. We now see that

(D) has a higher effective sample size, and (E) has the lowest, and so we

may conclude that (D) is the optimal choice.

5.8 Summary of results

Combining the results of Sections 5.3 and 5.4, the methods described in

this chapter give the following improvements:

• For the s50 dataset and a local model, computation times are re-

duced by 63%, so that the algorithm is nearly three times as fast;

• For the Glasgow dataset, and a local model, computation times are

reduced by 85%, so that the algorithm is nearly seven times as fast.

• For a s50 data and a non-local model, computation times are re-
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Figure 5.8: Effective sample sizes by parameter for a local model using
different values of (L,K3, K6).

duced by 37%.

Evaluating the methods on a non-local model for the Glasgow dataset was

computationally unfeasible, mainly because we would need to compare

it to the original method, which would be prohibitively slow; however,

looking at the results above, we can assume that they would be a reduction

of more than that achieved for the s50 data (i.e. more than 37%).

In Section 5.7, we briefly considered using effective sample size as a diag-

nostic for the MCMC simulations, as an alternative to autocorrelations at

lag 1. One possible way of using effective sample size could be that, rather

than specifying that the autocorrelations must be kept below 0.4, and then

rejecting an analysis afterwards if it did not achieve this, when running the
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estimation procedure, keep generating samples until an effective sample

size of some prespecified value is achieved. It would be interesting to see

how using effective sample size as a metric would affect the results seen

in this chapter.



Part IV

Importance Sampling in

Maximum Likelihood Estimation
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Chapter 6

Introduction

As we have seen in the previous part, simulation with maximum like-

lihood estimation is computationally expensive. It is therefore very im-

portant that we put the simulations to best use. In this part, we apply

importance sampling (Cappé et al., 2005), bridge sampling (Gelman and

Meng, 1998), and thermodynamic integration (Neal, 1993) to improve the

use of the simulated data for estimating standard errors and performing

likelihood ratio tests. In this chapter, we will describe the assumptions

needed to construct strongly consistent estimators of ratios of likelihoods

and ratios of expectations.

As in the previous chapter, we restrict our attention to network models,

only consider network models with constant rate functions and assume

that there are only two observations of the network; again, the final as-

sumption is made for simplicity in explanations, and the methods extend

easily to cases with more observations.

137
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6.1 Simulations in siena07

Denote D = {(X(t0) = x(t0), X(t1) = x(t1))}. Throughout the Siena max-

imum likelihood estimation algorithm, we simulate chains of ministeps

which take us from one observation to the next, hence conditioning on D:

for some θ ∈ Θ, we simulate

v ∼ pθ(.|D).

Recall from Section 2.3.1 that the Robbins-Monro stochastic approximation

algorithm uses three phases; in this part, we are interested in Phases 2 and

3. In Phase 2, there are nsub subphases (the default value is nsub = 4).

For Subphase k ∈ {1, . . . , nsub}, we have a sequence of parameter values

θk1, . . . , θkn2 , for some n2k, and for each one, we simulate a single chain: for

i ∈ {1, . . . , n2k},

v2ki ∼ pθki(.|D).

In Phase 3, we simulate n3 chains using our final parameter estimate θ̂: for

i ∈ {1, . . . , n3},

v3i ∼ pθ̂(.|D).

So, from Phases 2 and 3, we have a set of n21 + . . . + n2nsub + n3 simulated

chains.

In this chapter, we will use the simulations from Phase 3; later, in Chapter

8, we will also use those from Phase 2.
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6.2 Importance sampling

Importance sampling can be used to construct an estimator of the expec-

tation of a function of a random variable with distribution g using simula-

tions from a different distribution f (Cappé et al., 2005).

The basic idea is that if we draw X from f then

a(X) =
g(X)

f(X)
h(X)

is an estimator of Eg(h(Y )), where Y is a random variable with distribu-

tion g. If the support of g is contained within the support of f then this

estimator is unbiased:

Ef
(
g(X)

f(X)
h(X)

)
=

∫
x

(
g(x)

f(x)
h(x)

)
f(x)dx =

∫
x

g(x)h(x)dx = Eg(h(Y )).

There are a number of reasons why we may prefer to estimate Eg(h(Y ))

using a(x), where x ∼ f rather than h(y), where y ∼ g. One reason is for

variance reduction: comparing the variances of the two estimators, if we

assume that the support of f and g are the same, then

Varg(h(Y ))− Varf (a(X)) =

∫
x

(
1− g(x)

f(x)

)
h2(x)g(x)dx,

which could be negative (or positive), depending on the choice of f . An-

other reason is that it may be easier to sample from f than from g; or, as

will be the case in this chapter, we may find that we already have simu-
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lated samples using f , and can effectively re-use them, using importance

sampling, to estimate quantities of the form Eg(h(Y )), for some g 6= f . This

will be useful for reducing computation times.

In this chapter, we describe how to use the reuse the chains simulated in

Phase 3 to estimate ratios of likelihoods and ratios of expectations.

Definition 6.2.1 (Importance weight). Given a chain vsim simulated ac-

cording to pθsim(.|D), the importance weight is a function of θ ∈ Θ, given

by

w(θ; vsim, θsim) =
pθ(v

sim)

pθsim(vsim)
.

Note that the probabilities in the ratio are not conditional on D.

For simplicity in the notation, we define importance weights with a second

notation, which will be used when it is more convenient.

Definition 6.2.2 (Importance weights). Given a set of data v3 =

(v31, . . . , v3n3) of n3 chains, simulated according to pθ̂(.|D), the impor-

tance weights are n3 functions of θ ∈ Θ, denoted by w(θ; v3) =

(w1(θ; v3), . . . , wn3(θ; v3)), where, for k = 1, . . . , n3,

wk(θ; v3) = w(θ; v3k, θ̂).
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Assumption 1. The total rate parameter λ (the expected number of ministeps

in the chain) lies in a finite interval: there exists L <∞ such that λ ∈ [0, L].

For the remainder of this part we assume that Assumption 1 holds.

As mentioned in the previous chapter, the proposal distribution allows

us to reach any chain that satisfies the observed data, given any starting

point, and so the Markov chain is irreducible.

Assumption 2. The Markov chain of chains generated by the Metropolis Hast-

ings algorithm is positive recurrent.

This assumption is unproven for our Markov chain, which has a count-

able, but not finite, state space; however, we could slightly modify our

model, and instead of assuming that the number of ministeps in the chain

is distributed as a Poisson random variable, we could truncate the space,

making the restriction that there is some finite maximum number of min-

isteps. We would then have a finite state space, and positive recurrence

would be guaranteed (Norris, 1997).
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Theorem 6.1. Let F be a function of a chain such that there exists a constant

cF such that |F (V )| < cFM(V ), where M(V ) is the number of ministeps in the

chain. Then, for every θ ∈ Θ,

IS(θ) =
1

n3

n3∑
k=1

wk(θ; v3)F (v3k),

is an unbiased estimator of

µ(θ) =
pθ(D)

pθ̂(D)
Eθ(F (V )|D).

Moreover, given Assumption 2, for every θ ∈ Θ, it is strongly consistent.

Proof. For k = 1, . . . , n3,

Eθ̂(wk(θ; v3)F (Vk)|D) =

∫
v|D

pθ(v)

pθ̂(v)
F (v)pθ̂(v|D)dv, (6.2)

=
pθ(D)

pθ̂(D)

∫
v|D

F (v)pθ(v|D)dv, (6.3)

=
pθ(D)

pθ̂(D)
Eθ(F (V )|D), (6.4)

and so the estimator is unbiased.

Given Assumption 2, by the Birkhoff ergodic theorem (see, e.g. Norris

(1997)), to show that the estimator is strongly consistent, it is sufficient

to show that µ(θ) is bounded. By Assumption 1,

∣∣∣∣∣pθ(D)

pθ̂(D)
Eθ(F (V )|D)

∣∣∣∣∣ ≤ cFL

pθ̂(D)
<∞.
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Note that, in Theorem 6.1, and elsewhere in this part, we use the term

strongly consistent to mean that, conditional on the observed data D, as we

increase the number of simulated chains, the estimator converges almost

surely to the quantity of interest.

Note further that the score of a chain satisfies the condition required by

the function F .

Corollary 6.5.
1

n3

n3∑
k=1

wk(θ; v3),

is an unbiased estimator of
pθ(D)

pθ̂(D)
,

and, given Assumption 2, it is strongly consistent.

Proof. This follows from Theorem 6.1, substituting F = 1.
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Corollary 6.6. Let FA and FB be functions of a chain such that there exists a

constant c such that |FA(V )| < cM(V ) and |FB(V )| < cM(V ), where M(V )

is the number of ministeps in the chain. Then, given Assumption 2, for every

θ ∈ Θ,

IS(θ) =
A

B
,

where

A =
1

n3

n3∑
k=1

wk(θ; v3)FA(v3k),

and

B =
1

n3

n3∑
k=1

wk(θ; v3)FB(v3k),

is a strongly consistent estimator of

Eθ(FA(V )|D)

Eθ(FB(V )|D)
.

Proof. By Theorem 6.1,

A
a.s.−→ Eθ̂(A|D) =

pθ(D)

pθ̂(D)
Eθ(FA(V )|D)

and

B
a.s.−→ Eθ̂(B|D) =

pθ(D)

pθ̂(D)
Eθ(FB(V )|D).

Therefore, by the continuous mapping theorem,

IS(θ)
a.s.−→ Eθ(FA(V )|D)

Eθ(FB(V )|D)
.
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6.2.1 Entropy

Entropy is a measure of disorder: in the form we will consider here it

measures the disorder of a finite length vector of real numbers.

Definition 6.2.3 (Entropy).

Entropy(x1, . . . , xn) = − 1

log n

n∑
i=1

(
xi
x+

)
log

(
xi
x+

)
.

In our definition we normalise by dividing by the logarithm of the length

of the vector; we do this so that the entropy always lies in the interval [0, 1].

We will use entropy to diagnose poor importance weights, as described by

Kong (1992). For a set of importance weights w(θ; v3), where v3 ∼ θ̂, we

can calculate

e(θ; v3) = Entropy(w1(θ; v3), . . . , wn3(θ; v3)),

for every θ ∈ Θ. If the entropy is low, this indicates that variance of the

importance weight is high; there will be a small fraction of samples with

large weights, and a large number with small weights. This implies a small

effective sample size, where the estimate is mostly based on only a few

samples.

Throughout this part, we will use entropy as a rejection criteria for sets

of importance weights: we will choose a minimum allowed entropy, and

then reject weights if and only if their entropy is too small. Low entropy
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could happen because the parameter value θ may be too far from θ̂, and

so a possible remedy if we need to reject a set of importance weights is to

simulate data again using a parameter value that is closer to θ.



Chapter 7

Likelihood ratio test

7.1 Introduction

A likelihood ratio test can be performed to compare the fit of nested mod-

els (Neyman and Pearson, 1928; Wilks, 1938), which can then be used for

model selection. There are a number of reasons why a likelihood ratio

test is appealing. The test statistic is easy to interpret: the likelihood ratio

tells us how much more likely one model is compared to the other. It is

also transformation invariant, unlike the Wald test (Sorensen and Gianola,

2002). If we are considering simple hypotheses, the likelihood ratio test is

the uniformly most powerful test (Neyman and Pearson, 1933).

In practice, however, given the intractability of the likelihood of the ob-

served data for a Siena model, calculating ratios of likelihoods is difficult.

In this chapter we will consider methods of using Monte Carlo simula-

147
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tions to do this. The methods are inspired by those described by Gelman

and Meng (1998).

7.2 Likelihood ratio test

Recall that we denote the observation of the data by D = {(X(t0) =

x(t0), X(t1) = x(t1))}. Then, to perform a likelihood ratio test, given a

null hypothesis

H0 : θ ∈ Θ0,

and an alternative hypothesis

H1 : θ ∈ Θ \Θ0,

we are required to estimate the test statistic

T = 2 log

(
supθ∈Θ{L(θ|D)}
supθ∈Θ0

{L(θ|D)}

)
= 2 log

(
pθ̂(D)

pθ̂0(D)

)
, (7.1)

which we then compare to a χ2
p distribution, where p = |Θ| − |Θ0| (Wilks,

1938).

In this chapter, we will suggest and compare three methods for estimating

T : fast forward selection, bridge sampling, and thermodynamic integra-

tion. In Section 7.3 we will describe these three methods. Then, in Section

7.4, we will describe a method for evaluating the difficulty of various hy-

pothesis tests, for use when we perform simulation studies. In Section 7.5,
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we will perform simulation studies to compare the three methods.

7.3 Approximating the test statistic

In this section, we describe three methods for approximating the test statis-

tic. Firstly, we require an informal definition:

Definition 7.3.1 (Model [informal]). In this chapter, we say model to mean

a set of Siena model effects; for example, if we are modelling a dynamic

network, a set of network effects. When we talk about choosing a model,

we mean choosing a set of effects.

7.3.1 Fast forward selection

In this section, we will describe ‘fast forward selection’, a quick way of

performing multiple likelihood ratio tests using one set of simulated data.

This may be used for forward model selection.

For some modelM0, we can use the Siena algorithm to estimate the max-

imum likelihood estimate θ̂0. Phase 3 will give us simulated chains v3.

For any modelM, let the corresponding parameter space be denoted by

ΘM and the score function for a chain v by SM(θ|v). Then there exists

a constant c < ∞ such that |SM(θ|v)| < cM , where M is the number of

ministeps in v. Then, given Assumption 2, so that there is sufficient mixing
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in the chains simulated in Phase 3, we know from Corollary 6.6 that

ISM(θ; v3) =
1
n3

∑n3

k=1wk(θ; v3)SM(θ|v3k)
1
n3

∑n3

k=1wk(θ; v3)

is a strongly consistent estimator of

Eθ(SM(θ|V )|D) = SM(θ|D).

The solution to SM(θ|D) = 0 gives us θ̂M, the maximum likelihood es-

timate for M. Therefore, following the method suggested by Gelman

(1995), estimating the solution to

SM(θ|D) = 0,

by the solution to

ISM(θ; v3) = 0. (7.2)

gives us a method of estimating θ̂M. We can solve equation (7.2) using a

root finding method such as Newton-Raphson. Using Newton-Raphson

requires calculation of the derivative of ISM(θ; v3) at every value of θ ∈ Θ.
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Claim 7.3. The derivative of ISM(θ; v3) is given by

∂ISMi

∂θj
=

1

n3

n3∑
k=1

w∗k

[(
Skj −

1

n3

n3∑
h=1

w∗hShj

)
Ski +

∂Ski
∂θj

]
,

where Sk = SM(θ|v3k) and

w∗k =
wk(θ; v3)

1
n3

∑
hwh(θ; v3)

.

Proof. Firstly,
∂wk(θ; v3)

∂θj
= Skjwk(θ; v3),

and so

∂w∗k
∂θj

=
w′k
w̄
− wk
w̄2

(
1

n3

∑
h

w′h

)
=
wkSkj
w̄
− wk
w̄2

(
1

n3

∑
h

whShj

)
,

= w∗k

[
Skj −

1

n3

∑
h

w∗hShj

]
,

We can rewrite ISM(θ; v3) as

ISM(θ; v3) =
1

n3

n3∑
k=1

w∗k(θ; v3)SM(θ|v3k),

and so

∂ISMi

∂θj
=

1

n

n∑
k=1

[
∂w∗k
∂θj

Ski + w∗k
∂Ski
∂θj

]
,

=
1

n

n∑
k=1

w∗k

[(
Skj −

1

n

n∑
h=1

w∗hShj

)
Ski +

∂Ski
∂θj

]
.
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This means, that for any modelM, we can try to find an approximation of

the corresponding maximum likelihood estimate θ̂M, using our single set

of simulated data v3. Given our estimate of θ̂M, by Corollary 6.5,

1

n3

n3∑
i=1

wi(θ̂M; v3)

is an unbiased (and, given Assumption 2, strongly consistent) estimator of

pθ̂M(D)

pθ̂0(D)
,

and so, if one ofM0 andM is nested in the other, we can use this estimate

to perform a likelihood ratio test.

This means we can perform what we will refer to as ‘fast forward selec-

tion’: for a null hypothesis H0 :M0, let H11 :M1, . . . , H1K :MK , for some

K, be a variety of alternative hypotheses such that, for k ∈ {1, . . . , K},M0

is nested inMk. We can then apply Algorithm 3 to perform all these tests

using a single set of simulated data.

Possible limitations

If the maximum likelihood estimate for an alternative hypothesis is far

from that for the null hypothesis, then it is likely that, when solving the

Newton-Raphson equation, the entropy of the importance sampling weights
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input : Model M0,M1, . . . ,MK , such that, for k = 1, . . . , K, M0 is
nested inMk.

output: For k = 1, . . . , K, test statistic for the test H0 :M0, H1 :Mk.
Estimate MLE θ̂0 forM0;
Generate chains using θ̂0, giving us N samples v;
for k = 1, . . . , K do

Estimate θ̂k by solving ISMk
(θ; v) = 0;

Estimate kth test statistic by

T̂k = 2 log

(
1

N

N∑
i=1

wi(θ̂k; v)

)
.

end
return T̂1, . . . , T̂K

Algorithm 3: Fast forward selection

will become small: as described in Section 6.2.1, if this happens, we will

reject the importance weights, because we do not believe an estimate ob-

tained using them will be reliable. If this happens, we cannot find a solu-

tion, and do not obtain an estimate of the test statistic.

7.3.2 Bridge sampling

In this section, we describe performing a single likelihood ratio test, using

an algorithm inspired by the methods of Gelman and Meng (1998). Let

M0 andM1 denote our null and alternative models, respectively. We use

the Siena algorithm to find the corresponding maximum likelihood esti-

mates, θ̂0 and θ̂1. This gives us sets of data simulated from each of these
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parameters:

v0 = (v01, . . . , v0n3) ∼ θ̂0,

and

v1 = (v11, . . . , v1n3) ∼ θ̂1.

Let w̄(θ; vj) denote the mean of the importance weights for the samples

drawn according to θ̂j , for j = 0, 1. Then w̄(θ̂1; v0) and w̄(θ̂0; v1) are un-

biased estimators of
pθ̂1

(D)

pθ̂0
(D)

and
pθ̂0

(D)

pθ̂1
(D)

, respectively. However, as was dis-

cussed in the previous section, if θ̂0 and θ̂1 are far from one another, then

these estimates may not be very good. As previously described, we can

use the entropy of the weights to diagnose if the estimates are likely to be

poor.

In this section we apply bridge sampling, as defined by Meng and Wong

(1996), to improve upon these estimates.

Single bridge sampling

Firstly, note that, for any density q, and any θ ∈ Θ,

Eθ
(
q(v)

pθ(v)

∣∣∣D) =

∫
v|D

pθ(v|D)

pθ(v)
q(v)dv =

1

pθ(D)

∫
v|D

q(v)dv,

and so, for any θ0, θ1 ∈ Θ,

Eθ0
(

q(v)
pθ0 (v)

|D
)

Eθ1
(

q(v)
pθ1 (v)

|D
) =

pθ1(D)

pθ0(D)
.
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Therefore, in this section, we consider estimating
pθ̂0

(D)

pθ̂1
(D)

using estimators

of the form

r(q) =

1
n3

∑n3

k=1
q(v0k)
pθ̂0

(v0k)

1
n3

∑n3

k=1
q(v1k)
pθ̂1

(v1k)

.

Considering independent samples, Gelman and Meng (1998) show that

the optimal choice for q is given by

qopt(v) ∝
pθ̂1(v)pθ̂0(v)

pθ̂1(v) + pθ̂0(v)
.

We refer to this as the bridge density.

Proposition 7.4. Given Assumption 2,

r(qopt) =

1
n3

∑n3

k=1
qopt(v0k)

pθ̂0
(v0k)

1
n3

∑n3

k=1
qopt(v1k)

pθ̂1
(v1k)

, (7.5)

is a strongly consistent estimator of

pθ̂0(D)

pθ̂1(D)
.

Proof. Let C be the normalising constant for qopt. Then qopt ≤ Cpθ̂0 and

qopt ≤ Cpθ̂1 . For j = 0, 1, let Fj(v) = qopt/pθ̂1−j . Then, by Theorem 6.1,

and setting θ = θ̂1−j ,

1

n3

n3∑
k=1

qopt(vjk)

pθ̂j(vjk)

p→ Eθ̂1−j

(
qopt(V )

pθ̂1−j(V )

∣∣∣D) =
1

pθ̂1−j(D)

∫
v|D

qopt(v)dv
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Therefore, by the continuous mapping theorem,

r(qopt)
p→
pθ̂0(D)

pθ̂1(D)
.

We therefore can estimate the likelihood ratio using r(qopt). The method

used to apply single bridge sampling is summarised in Algorithm 4.

The intuition that the estimate r(qopt) should be better than either w̄(θ̂1; v0)

or w̄(θ̂0; v1) comes from the fact that qopt should be ‘closer’ in some sense

to both pθ̂1 or pθ̂0 than they are to each other. However, if θ̂1 and θ̂0 are very

far apart, then even qopt may be too far from pθ̂1 or pθ̂0 . We can diagnose

this by looking at the entropy of either w(θ̂1; v0) or w(θ̂0; v1). If we decide

that the entropy is too low, then we will need to consider multiple bridge

densities.

Multiple bridge sampling

Firstly, let us generalise the ratio r(q) given in equation (7.5): for two sets of

data v1 and v2, simulated according to parameters θ1 and θ2, respectively,

define a ratio given by

r(v1, v2) =
rtop(v1)

rbottom(v2)
, (7.7)
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input : ModelsM0 andM1 such thatM0 is nested inM1.
output: Test statistic for the test H0 :M0, H1 :M1.
Estimate MLEs θ̂0 and θ̂1 for modelsM0 andM1, respectively;
for j ∈ {0, 1} do

Generate chains using parameter θ̂j , giving us N samples vj ;
end
Estimate T by

T̂ = −2 log (r) ,

where

r =

1
n3

∑n3

i=1

pθ̂1
(v0i)

pθ̂0
(v0i)+pθ̂1

(v0i)

1
n3

∑n3

i=1

pθ̂0
(v1i)

pθ̂0
(v1i)+pθ̂1

(v1i)

. (7.6)

return T̂

Algorithm 4: Single bridge sampling

where

rtop(v1) =
1

n3

n3∑
i=1

pθ2(v1i)

pθ1(v1i) + pθ2(v1i)
,

and

rbottom(v2) =
1

n3

n3∑
i=1

pθ1(v2i)

pθ1(v2i) + pθ2(v2i)
.

Then, if we assume sufficient mixing of the simulated chains, by Proposi-

tion 7.4 this is a strongly consistent estimator of

pθ1(D)

pθ2(D)
.

Therefore, for a sequence of parameters θ1, . . . , θK , for some K, suppose

we simulate corresponding independent sets of sufficiently mixed data
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v1, . . . , vK . Then we can combine the ratios in what Gelman and Meng

(1998) describe as a ‘telescoping fashion’:

K−1∏
i=1

r(vi, vi+1).

This is then a strongly consistent estimator of

pθ1(D)

pθK (D)
.

Hence choosing θ1 = θ̂0 and θK = θ̂1 (or vice versa) will give us a likelihood

ratio estimator.

For the remaining parameters {θk : 1 < k < K}, it makes sense intuitively

to choose them to lie on a path from θ̂0 to θ̂1: for such a path θ(t), we will

choose

θk = θ(tk),

where 0 < t2 < . . . < tK < 1. In this Chapter, we propose choosing

t2, . . . , tK by considering entropy: at the jth iteration of our algorithm,

given chains vj simulated using θj , we choose tj+1 to be as large as pos-

sible while keeping the entropy of the importance weights w(θ(tj+1); vj)

sufficiently high (see Algorithm 5 for details). This algorithm requires the

choice of two tuning parameters: c and N , where c is the minimum en-

tropy allowed, and N is the number of samples that we draw to make up

each set of chains.
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input : ModelsM0 andM1 such thatM0 is nested inM1.
output: Test statistic for the test H0 :M0, H1 :M1.
Estimate MLEs θ̂0 and θ̂1 for modelsM0 andM1, respectively;
Set j = 1, θ∗ = θ̂1, tmax = 0, z = 1;
while tmax < 1 do

Generate chains using parameter θ∗, giving us N samples v∗;
if j > 1 then

Set
z = z/rbottom(v∗)

end
Use interval bisection to approximate tmax, the largest t ∈ [0, 1] such
that Entropy(w(θ(t); v∗)) > c, for some constant c, where

θ(t) = tθ̂0 + (1− t)θ∗.

(Here we make the assumption that Entropy(w(θ(t); v∗)) is roughly
increasing in t);
Set

z = zrtop(v∗),

and θ∗ = θ(tmax);
Set j = j + 1;

end
Generate chains using parameter θ̂0, giving us N samples v∗;
Set

z = z/rbottom(v∗).

Estimate T by
T̂ = −2 log (z) .

return T̂

Algorithm 5: Multiple bridge sampling
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7.3.3 Thermodynamic integration

We can estimate the test statistic by using an identity used in thermody-

namic integration (Neal, 1993), given by

log

(
pθ̂1(D)

pθ̂0(D)

)
=

∫ 1

0

dθ

dt
· S(θ(t)|D)dt,

where θ(t) is a path from θ̂0 to θ̂1. If we consider the path θ(t) = tθ̂1 + (1−

t)θ̂0, then

log

(
pθ1(D)

pθ0(D)

)
= (θ1 − θ0) ·

∫ 1

0

S(θ(t)|D)dt, (7.8)

≈ 1

H + 1
(θ1 − θ0) ·

H∑
h=0

S(θ(h/H)|D). (7.9)

Snijders et al. (2010) execute a likelihood ratio test for Siena models using

this approximation, by estimating S(θ(h/H)|D) by drawing samples from

pθ(h/H)(.|D); however, this is computationally expensive, especially if H is

not very small.

Instead, we propose using importance sampling: for h = 0, . . . , H , we can,

by Corollary 6.6, consistently estimate S(θ(h/H)|D) by

r(h; v3) =
1
n3

∑n3

k=1 wk(θ(h/H); v3)S(θ(h/H)|v3k)
1
n3

∑n3

k=1wk(θ(h/H); v3)
,

where v3 is data simulated according to some parameter θ ∈ Θ (in practice,

either θ̂0 or θ̂1).
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As with bridge sampling, estimates may become poor as we move away

from the parameter used to simulate the chains, so we can apply Algo-

rithm 6. This algorithm requires the choice of three tuning parameters: H ,

c and N .

7.4 Evaluating the difficulty of the test

In Section 7.5, we will perform simulation studies and conduct likelihood

ratio tests on simulated data. Before we simulate data from a specified

model and set of parameters, we would like to be assess how difficult it

will be for an algorithm to detect the true model. For example, if we were

to include an effect, but choose the associated parameter value to be very

small in size, then it might be impossible to detect that we included that

effect in the true model. To address this, we consider the relative impor-

tance of the included effects, using the method developed by Indlekofer

and Brandes (2013). For each effect, a measure is constructed by consider-

ing how conditional choice probabilities for a mini-step change when that

effect is removed from the model. These are normalised across all effects

to give a measure of relative importance.

We apply the following algorithm before performing simulation studies:

for each model under consideration, we

1. estimate the parameters given this model, using the observed data

and method of moments estimation;
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input : ModelsM0 andM1 such thatM0 is nested inM1.
output: Test statistic for the test H0 :M0, H1 :M1.
Estimate MLEs θ̂0 and θ̂1 for modelsM0 andM1, respectively;
Set j = 1, θ∗ = θ̂1, hmin = 0, hmax = 0;
while hmax < H do

Generate chains using parameter θ∗, giving us N samples v∗;
if j > 1 then

Set
z = z/rbottom(v∗)

end
Use interval bisection to approximate hmax, the largest integer h ∈
{hmin, hmin +1, . . . , H} such thatEntropy(w(θ(h/H); v∗)) > c, for some
constant c, where

θ(t) = tθ̂0 + (1− t)θ∗.

(Here we make the assumption that Entropy(w(θ(t); v∗)) is roughly
increasing in t);
Store

zj =
1

H + 1
(θ1 − θ0) ·

hmax∑
h=hmin

r(h; v∗).

if hmax < H then
Set hmin = hmax + 1, θ∗ = θ(hmax)/H) and j = j + 1.

end

end
Estimate T by

T̂ =
∑
j

zj.

return T̂

Algorithm 6: Thermodynamic integration
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Table 7.1: Effects included in each model (density and reciprocity included
in every model).

Effects

Model TT 3C B DS

1 × × × ×
2 × × ×
3 × × ×
4 × ×
5 × × ×
6 × ×
7 × ×
8 ×
9 × × ×

10 × ×
11 × ×
12 ×
13 × ×
14 ×
15 ×
16

2. calculate the relative importance of the effects, R1, . . . , Rp, where p is

the number of effects in the model.

3. If minj{Rj} < c/p, for some constant c < 1, then we say that at least

one of the effects has too small relative importance. We decide that

it is unlikely that the true model will be detected if we performed a

simulation study, so we do not use this model as a generating model.

In the simulations in Section 7.5, all the models we consider have outde-

gree and reciprocity effects, and the remaining effects in a model will lie

within the set {transitive triplets, 3-cycles, betweenness, drinking similarity}.

This gives us 16 potential models, the order of which is given in Table 7.1.
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Table 7.2: Relative importance of effects.

Effects

Model peval TT 3C B DS peval minj{Rj}

1 6 0.11 0.04 0.19 0.08 0.22
2 5 0.12 0.04 0.2 0.20
3 5 0.15 0.01 0.09 0.05
4 4 0.16 0.01 0.03
5 5 0.15 0.19 0.07 0.37
6 4 0.16 0.2 0.62
7 4 0.16 0.09 0.36
8 3 0.17 0.51
9 5 0.13 0.22 0.08 0.40

10 4 0.13 0.22 0.54
11 4 0.15 0.08 0.34
12 3 0.16 0.48
13 4 0.42 0.14 0.55
14 3 0.46 0.69
15 3 0.11 0.32

In Table 7.2 we show the relative importance for the effects (we do not

show those for outdegree and reciprocity, as in all cases they never have

minimum importance).

Choosing, say, c = 0.5 as the minimum value allowed for peval minj{Rj},

indicates that for models 6, 8, 10, 13 and 14, all effects are important enough

that we hope that they could be detected in a test.

7.5 Simulation studies

In this section we will consider data simulated from Model 8 as the effects

for this models have large enough minimum relative importance that we
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hope that it will be possible for a test to detect the true model.

We firstly consider using fast forward selection, since this is the quickest

of our three methods. We will then apply the other two methods to tests

where fast forward selection did not perform well.

7.5.1 Fast forward selection

Model 8 is nested in Models 1 to 7, while only Model 16 is nested in Model

8. Therefore, to examine the type 1 and type 2 errors of the test, we con-

sider performing the following tests: for j = 1, . . . , 7,

H0 : Model 8, H1 : Model j,

and

H0 : Model 16, H1 : Model 8.

We generate 50 datasets according to Model 8, and, for each simulated

dataset, attempt to perform the eight tests using fast forward selection.

Recall that a potential problem with fast forward selection is that we may

fail to find an estimate using the Newton-Raphson method, either because

the method does not converge to a solution, or because the entropy be-

comes too small. So, for each of the tests, we firstly want to see the percent-

age of datasets for which we succeed in estimating the test statistic; these

results are given in Table 7.3. We see that 6 of the 8 tests have good sucess

rates at solving the Newton-Raphson equation and finding an estimate of
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Table 7.3: Fast forward selection with θ0 = (6.2,−2.50, 2.11, 0.58, 0, 0, 0).

Test H0 H1 d.o.f. Estimated (%)

1 8 1 3 64
2 8 2 2 78
3 8 3 2 80
4 8 4 1 82
5 8 5 2 80
6 8 6 1 86
7 8 7 1 98
8 16 8 1 22

the test statistic (75% or higher). The first test, which has the largest degree

of freedom between null and alternative models, has a lower success rate

of estimation: intuitively, it is plausible that having more effects in the al-

ternative model means the estimation will be more difficult. The final test,

where the null hypothesis is false, has a low success rate.

Of the cases where we do successfull obtain a test statistic, we want to

look at the distribution of the test statistic, and the quality of the results.

In Figure 7.1, we compare the empirical distribution of the test statistics

with the corresponding χ2
k distributions (where k is the relevant degrees of

freedom); in these tests the null hypothesis is true, and so if our estimation

of the test statistics are good, then we would expect the empirical and

theoretical distributions to look similar.

Another way of assessing the performance of the test is by finding the type

1 error under different rejection criteria (i.e. different significance levels).

Figure 7.2 shows the type 1 error (estimated by proportion of rejected null

hypotheses) for significance levels between 0 and 0.2, for the first seven
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tests. Because the null hypotheses are true and the empirical distributions

of the test statistics should be close to the relevant χ2
k distributions (where

k is the relevant degrees of freedom), the type 1 error should be close to the

significance level. If, for a particular test and significance level, the type

1 error is higher, it indicates an overly aggressive test, where the true null

hypothesis is rejected too often; conversely, if the type 1 error is lower,

it indicates an overly conservative test, where the true null hypothesis is

rejected too rarely. For the first two tests, the results are quite good, with

type 1 errors close to the significance levels; however, in other cases, the

test seems quite variable, with results indicating that for some hypotheses

it will be overly aggressive and, for others, overly conservative.

Figure 7.3 shows the empirical distribution of the test statistic compared to

the χ2
1 distribution, and the power of the final test for different significance

levels between 0 and 0.002, where by power we mean the proportion of

cases where the null hypothesis is correctly rejected (because, for this test,

it is not true). Although we saw in Table 7.3 that, for this test, the estima-

tion of the test statistic had a low success rate, with only 22%, Figure 7.3

shows that, conditional on the estimation being successful, the test statis-

tic almost always takes values much higher than would be expected for a

χ2
1 distributed random variable, and thus the test has very high power.

These results show that, if we perform fast forward selection and the Newton-

Raphson procedure is successful then the test results have high power, but

variable type 1 error. Although the type 1 errors are not very close to the

significance levels, given the fast forward selection is so quick to perform
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(if we use the simulations obtained in Phase 3 of the parameter estimation

algorithm), they are close enough that it could still be worth employing

this method, but taking a cautious approach to the results obtained. For

example, if we wanted to perform a test using a particular significance

level then if our test result gave a test statistic with a p value very far from

this (either much smaller or much larger), we may be happy to accept the

result, but if it is at all close to the significance level, then we may need

to decide that the test is inconclusive. Moreover, if the estimation of the

test statistic fails, we will need to try one of the other two, more time-

consuming, methods.
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7.5.2 Bridge sampling and thermodynamic integration

We now consider performing Test 1,

H0 : Model 8, H1 : Model 1,

and Test 8,

H0 : Model 16, H1 : Model 8,

using both bridge sampling and thermodynamic integration. As before,

we consider data generated from Model 8, so that, in the first case, the

null hypothesis is true, whilst in the second, it is false.

Model 8 vs. Model 1

In this section, we will use both bridge sampling and thermodynamic in-

tegration to perform the test

H0 : Model 8, H1 : Model 1,

since estimating test statistics in this case seemed quite difficult with fast

forward selection. Recall that we need to choose tuning parameters c

and N to perform bridge sampling, and c, N , and H to perform ther-

modynamic integration.. In this section, we consider c ∈ {0, 0.4, 0.8},

N ∈ {100, 500, 1000} and H ∈ {10, 20}, giving us 9 different bridge sam-

pling estimates and 18 different thermodynamic integration estimates for

each dataset. We use 100 simulated datasets.
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Figure 7.4: For different values of (c,N), the empirical distribution of test
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ing χ2
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bridge sampling; (middle) thermodynamic integration, H = 10; (bottom)
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Figure 7.5: Type 1 errors for different significance levels, using different
values of (c,N) and: (top) bridge sampling; (middle) thermodynamic in-
tegration, H = 10; (bottom) thermodynamic integration, H = 20.
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In Figure 7.4, we see how the empirical distribution of the test statistics

compares to the χ2
1 distribution. Because the null hypothesis is true, we

would hope these to be similar: there is only small differences between

graphs, but we see across all estimates there is a slight tendency for the

test statistic to be larger than we would expect.

Figure 7.5 shows the type 1 error for different significance levels between

0 and 0.2, for all estimates. We see overall that the test is too aggressive,

with slightly too high type 1 errors, and too many rejected null hypothe-

sis; however, we see that bridge sampling generally gives the best results,

with type 1 errors closest to the significance levels. Looking at the bridge

sampling results, the results are not very sensitive to the choice of c and

N (although the results are slightly better with N = 1000). Looking at the

thermodynamic integration results, it is surprising to see that increasingH

from 10 to 20 does not seem to improve results. We also see that results are

more sensitive to the choice of c and N , with the test becoming aggressive

as you decrease either.

In Figure 7.6 we plot the times taken to estimate the test statistics; the

times include the time taken to generate all simulated chains, and to cal-

culate likelihoods, and finally to calculate the test statistics, but not the

time taken to estimate the maximum likelihood estimates for both the null

and alternative models; this means, in practice, given two nested models

of interest, the total time taken to estimate parameters and perform would

be the times stated plus twice the time taken to perform Phases 1 and 2

(but not Phase 3) of the Siena estimation procedure (twice because we are
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considering two models).

As we would expect, computation times are increasing with increases in c,

N , andH . Generally, bridge sampling is the slowest, taking slightly longer

than thermodynamic integration with H = 20, and around twice as long

as thermodynamic integration with H = 10.

Looking at all the plots together, we would probably conclude that bridge

sampling is the best method; given a (c,N) pair, the time taken is longer,

however, since the type 1 errors are better, we can choose a small (c,N)

pair with bridge sampling if we want to reduce computation times, and

still achieve better type 1 errors than using thermodynamic integration

with a higher (c,N) pair.

Model 16 vs. Model 8

Since, for the previous test, bridge sampling seemed to give the best re-

sults, we will now use it to perform the test

H0 : Model 16, H1 : Model 8,

since using fast forward selection was not very successful (because the

Newton-Raphson method usually failed to find a solution). As with the

previous test, we consider c ∈ {0, 0.4, 0.8} andN ∈ {100, 500, 1000}, giving

us 9 different bridge sampling estimates. We use 50 simulated datasets.

Figure 7.7 shows, for different values of c andN , the empirical distribution
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Figure 7.6: Time taken to perform test for different values of (c,N) and:
(top) bridge sampling; (middle) thermodynamic integration, H = 10; (bot-
tom) thermodynamic integration, H = 20.
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of the test statistics, the power for different significance levels between 0

and 0.005, and the times taken to estimate the test statistics. The times

taken are similar to those seen in the previous test. As we saw with fast

forward selection, the power of the test is very high; we are able to reject

the test for 100% of the simulated datasets, using any pair of (c,N), with a

significance level of less than 0.0025.

7.6 Discussion

In this chapter we proposed three methods for estimating the test statistic

required to perform a likelihood ratio test. We saw that the first method,

fast forward selection, enables us to perform the test very quickly, but does

not have very accurate results, and quite often will fail to find the solu-

tion required to actually estimate the statistic. Given its speed, it could be

worth using were we in an exploratory mode, and we wanted to quickly

compare many models.

Of the other two methods, multiple bridge sampling seemed to outper-

form thermodynamic integration. Even with small numbers for the tun-

ing parameters (c,N), the power of the tests was very high, and the type 1

errors close to their theoretical counterparts.

Unlike fast forward selection, it is not possible to perform multiple tests

simultaneously (because we are required to simulate data from the both

of the parameters specified by the null and alternative hypotheses), but as

long as we keep the number of models under consideration fairly small,
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Figure 7.7: Using bridge sampling and different values of (c,N): (top) em-
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this method should provide accurate estimates of the test statistics, en-

abling us to compare different models, thus giving us an effective method

for performing model selection.
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Chapter 8

Standard error estimation

8.1 Introduction

Accurate estimation of the covariance matrix for the maximum likelihood

estimate is very important: it is necessary for detecting high correlations

between different model effects, and for finding reliable standard errors

for the parameters, which can be used to perform significance tests (as

is done in Section 3.5). However, in the current RSiena estimation proce-

dure, it can also be very time-consuming when using maximum likelihood

estimation, with a large amount of simulated data required for stable re-

sults.

In this chapter we propose a method for improved estimation of the co-

variance matrix for the maximum likelihood estimate. Recall from Sec-

tion 2.3.1 that this matrix is estimated using data simulated in Phase 3 of

181
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the estimation procedure. In this chapter, we propose using importance

sampling to incorporate the data simulated in Phase 2 into our estimates

(while still using the Phase 3 data), and show that this leads to improved

performance.

In Section 8.2, we will briefly review how the covariance matrix is cur-

rently estimated in RSiena, before proposing estimates using importance

sampling and the data simulated in the different subphases of Phase 2.

We will then propose an approximate way of combining this estimates

into one final estimate. In Section 8.3 we will apply the method to a real

dataset, and show that the proposed estimate has an improved perfor-

mance, in terms of bias and variance.

8.2 Covariance matrix estimation

Recall from Section 6.1 that we denote the observation of the data by D =

{(X(t0) = x(t0), X(t1) = x(t1))}. Recall further that we generate many

chains of ministeps, after conditioning on D, so that for each chain the

observation of the data holds, and the state of the process is correct at the

observation times. In Phase 3, we know our final parameter estimate, and

generate n3 chains, so that, for i ∈ {1, . . . , n3}

v3i ∼ pθ̂(.|D).

Recall that the covariance matrix for a maximum likelihood estimator can
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be approximated by the inverse of the observed information (Efron and

Hinkley, 1978). The observed information can be expressed (Orchard et al.,

1972) as the difference between two positive definite symmetric matrices

Aθ and Bθ, so that

−dS(θ|D)

dθ
= Aθ −Bθ,

where

Aθ(V ) = Eθ
(
−dS(θ|V )

dθ

∣∣∣D) ,
and

Bθ(V ) = Covθ

(
S(θ|V )

∣∣∣D) .
We can obtain Monte Carlo estimates of Aθ and Bθ using the chains sim-

ulated in Phase 3; we denote their difference, which is our estimate of the

observed information, by Σ̂0.

8.2.1 Estimating the observed information in Phase 2

Recall from Section 6.1 that, in Phase 2, we simulate chains according to

different parameter values: we have nsub subphases, and in the kth sub-

phase, we have a sequence of parameter values θk1, . . . , θkn2 , for some n2k,

and for each one, we simulate a single chain: for i ∈ {1, . . . , n2k},

v2ki ∼ pθki(.|D).
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In this section we will suggest assumptions under which we can construct

strongly consistent estimators of the observed information, using the sim-

ulations from Phase 2. Recall from Section 2.3.1 that at each step we up-

date the parameter using our Robbins-Monro iterative scheme, and so, for

i ∈ {2, . . . , n2k}, the parameter θki depends on both v2ki−1 and θki−1. This

means that, prior to estimation, we consider each parameter as a random

variable. Because the parameters are no longer a fixed constant value,

we need to modify the assumptions and results from Chapter 6 showing

strong consistency of importance sampling estimators.

Assumption 3. The maximum value of an effect, for any state of the network,

is bounded: there exists finite S such that, if P is the set of effect indices,

max
{i∈N ,j∈P,X∈X}

{|sij(X)|} < S.

Note that this assumption is satisfied by all effects considered in this thesis;

for the remainder of this part we assume that Assumption 3 holds.

Assumption 4. The parameter space Θ is a closed and bounded interval, with

the total rate parameter bounded away from zero: Lmin < λ < Lmax, for finite

Lmax and Lmin > 0.
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Lemma 8.1. There exists dmin > 0 such that

inf
θ∈Θ

pθ(D) > dmin.

Proof. Firstly, Assumptions 3 and 4 imply that there exists a constant

C <∞ such that, for any x1, x2 ∈ X , and any β such that (ρ, β) ∈ Θ,

exp
(
βT (si(x1)− si(x2))

)
< C.

Then the probability of a ministep given a change opportunity is

bounded below by 1/nC := mmin <∞. This means that the probability

of a chain of length k is bounded below by mk
min.

Now, let kmin be the shortest length of a chain satisfying the data D.

Then, for θ ∈ Θ,

pθ(D) =
∞∑

k=kmin

Pθ(M = k)P(D|M = k),

≥
∞∑

k=kmin

(λmmin)ke−λ

k!
,

= e−Lmax(1−mmin)P(W ≥ kmin), (8.2)

where W ∼ Pois(Lminmmin), by Assumption 4 .
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Assumption 5. The Markov chain ((V2kj,Θkj))j≥1 of chains and parameter

values generated in the kth subphase is irreducible and positive recurrent.

Theorem 8.3. Let

F (θ|v) = −
(
dS(θ|v)

dθ
+ S(θ|V )[S(θ|V )− S(θ|D)]T

)
.

Given Assumptions 3,4 and 5, for every θ ∈ Θ,

IS(θ) =
A(θ)

B(θ)
, (8.4)

where

A(θ) =
1

n2k

n2k∑
i=1

wi(θ; v2k)F (θ|v2ki),

and

B(θ) =
1

n2k

n2k∑
i=1

wi(θ; v2k),

is a strongly consistent estimator of the observed information −dS(θ|D)
dθ

.

Proof. Let Θi denote the (random variable) parameter used to simulate

the ith chain in Subphase k.

For i = 1, . . . , n2k, let Ai(θ) = wi(θ; v2k)F (θ|v2ki), so that

A(θ) =
1

n2k

n2k∑
i=1

Ai(θ).
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Following a similar method as in Theorem 6.1,

E(Ai(θ)|D) = EΘi [E(Ai(θ)|D,Θi)] ,

= EΘi

[
pθ(D)

pΘi(D)
E(F (θ|V )|D)

]
,

= EΘi

(
1

pΘi(D)

)
pθ(D)Eθ(F (θ|V )|D), (8.5)

and, by Lemma 8.1,

E(Ai(θ)|D) ≤ 1

dmin

Eθ(F (θ|V )|D) <∞.

Then, by Assumption 5 and the Birkhoff ergodic theorem,

A(θ)
a.s.−→ Eπ

(
1

pπ(D)

)
pθ(D)Eθ(F (θ|V )|D),

where π is the invariant distribution of the Markov chain. Similarly,

B(θ)
a.s.−→ Eπ

(
1

pπ(D)

)
pθ(D),

and so, by the continuous mapping theorem,

IS(θ)
a.s.−→ Eθ(F (θ|V )|D) = −dS(θ|D)

dθ
.



188 CHAPTER 8. STANDARD ERROR ESTIMATION

Theorem 8.3 shows that we can construct an estimator of the observed

information in Subphase k, for k = 1, . . . , nsub, given by

Σ̂k = IS(θ̂),

using the function defined in equation (8.4).

8.2.2 Combining the estimates

We now have nsub +1 estimators for the observed information, denoted by

Σ̂0, . . . , Σ̂nsub . We would like to combine these to create an overall estimator

which will hopefully be more efficient than Σ̂0.

We will consider a linear combination

Σ̂(α) = α0Σ̂0 + . . .+ αnsubΣ̂nsub ,

where
∑

i α = 1.

Proposition 8.6. An approximately optimal choice for α0, . . . , αnsub is given by

αk ∝
1∑

i,j Var
(

Σ̂kij

) ,
for k = 0, . . . , nsub, where optimal means that E

(
‖Σ̂(α)− Σ‖2

)
is minimised,

where Σ is the true observed information and ‖.‖ denotes the Frobenius norm.
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Sketch proof. Let

f(α) = E
(
‖Σ̂(α)− Σ‖2

)
=

p∑
i,j=1

fij(α),

where α = (α0, . . . , αnsub) and

fij(α) = E
([

Σ̂(α)ij − Σij

]2
)
.

Then, for all i, j = 1 . . . , p,

fij(α) = Var
(

Σ̂(α)ij

)
+
[
E
(

Σ̂(α)ij − Σij

)]2

, (8.7)

≈ Var
(

Σ̂(α)ij

)
, (8.8)

by the strong consistency of Σ̂(α). Now, we assume that the depen-

dency between Σ̂l and Σ̂k, when l 6= k, is small, and so

fij(α) ≈
nsub∑
k=1

α2
kVar

(
Σ̂kij

)
. (8.9)

Then

f(α) ≈
∑
i,j,k

α2
kVar

(
Σ̂kij

)
. (8.10)

Then the approximately optimal choice for α can be found by minimis-
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ing the Lagrangian

Λ(α, λ) = λ

(
1−

∑
k

αk

)
+
∑
i,j,k

α2
kVar

(
Σ̂kij

)
,

which gives us that

αk ∝
1∑

i,j Var
(

Σ̂kij

) .

We construct jackknife estimates of the variances: for i, j = 1, . . . , p,

V̂ar
(

Σ̂kij

)
=
n− 1

n

n2k∑
h=1

(
Σ̂

(−h)
Jkij − Σ̂Jkij

)2

,

where Σ̂
(−h)
Jk is what we would obtain for Σ̂k were the hth observation re-

moved, and

Σ̂Jk =
1

n2k

n2k∑
h=1

Σ̂
(−h)
Jk .

Then our final estimate of the observed information is given by:

Σ̂ =

nsub∑
k=0

Σ̂k∑p
i,j=1 V̂ar

(
Σ̂kij

)
nsub∑
k=0

1∑p
i,j=1 V̂ar

(
Σ̂kij

) .
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8.2.3 Practical Implications

In the top plot of Figure 8.1 we see an example of how the estimate of

one component of θ varies throughout the estimation procedure: we see

that in early subphases, the estimate varies a lot, while in Subphase 4, it

does not (and in Phase 3, it is fixed at its final value). Looking at the early

fluctuations, we may have doubts about the quality of the estimate of the

information at the early subphases. However, as we see in the bottom plot

of Figure 8.1, our choice of α means that the early subphases have little

contribution to the final estimate, and so hopefully potential inaccuracies

in early subphases will not cause problems in the final estimate.

8.3 Example: s50 data

We consider the first two observations of the s50 dataset, and fit a model

with outdegree, reciprocity, transitive triplets, 3-cycles, betweenness, drink-

ing ego, drinking alter, and drinking similarity. We estimate the model

parameters and covariance matrix (with the latter being estimated in the

usual way, using simulations from Phase 3 only), and repeat this N = 100

times. We obtain a final estimate of the covariance matrix by averaging

the 100 estimates of the information matrix (because each estimate is ap-

proximately unbiased, assuming that the parameter estimates are close to

the maximum likelihood estimate) and then taking the inverse: we denote

the final overall estimate by V̂ . Each time, we estimate the covariance ma-

trix using n3 = 2000 Phase 3 iterations, but, in this section, we consider
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Figure 8.1: Top plot shows how the estimate of one component of θ (the
rate parameter) varies throughout the estimation procedure, in Phases 2
and 3; bottom plot shows the corresponding values of (α0, . . . , α4).
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the results had we stopped Phase 3 at different values of n3. To compare

the performance of the original method with the method proposed in this

chapter, we consider these questions:

1. For a given n3, does the proposed method improve estimation of the

covariance matrix, and if so, by how much?

2. How much time can we save? If the proposed method does per-

form better, how much can we reduce the number of Phase 3 simula-

tions, while still obtaining a comparable performance to the original

method?

8.3.1 Improving performance

In this section, we assess how much the proposed method improves esti-

mation of the covariance matrix, for different values of n3. In Figures 8.2,

8.3, 8.4 and 8.5, we see the densities of the estimates of the variances of

each of the parameter (i.e. the diagonals of the covariance matrix). We

see that the bias (compared to our overall best estimates) and variance are

reduced using the new method. As we would expect, the change is largest

for smaller values of n3. Recall from Section 8.2 that the original method

estimates the observed information by the difference of two positive def-

inite matrices; this can lead to negative estimates of the variances for the

parameters (as can be seen for n3 = 500 and n3 = 1000, in Figures 8.2 and

8.3), which is clearly undesirable. Using the new method, for each choice

of n3, and each parameter, no variance estimate is negative.
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Figure 8.2: n3 = 500; the density of the estimates of the variance (results
using the new proposed method are shown in red, and the translucent
distribution shows results using Phase 3 simulations only). The vertical
line shows the overall best estimate, obtained by taking the inverse of the
average of the information matrices across all N = 100 repetitions.
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In Figure 8.6, we see how the ratio between root mean squared error for

the new method compared to the original method varies with n3, for all 81

components of the covariance matrix. We would expect to see that the ra-

tios are close to zero for very small n3, since the original method has a very

small number of simulations to use for estimation, and so should perform

badly. As n3 → ∞, we would expect to see that the ratios would tend to

1, as more weight will be placed on the Phase 3 simulations, and the con-

tributions of the Phase 2 simulations will be unimportant. In practice, it

seems like the ratios will converge to 1 quite slowly: at n3 = 1000, almost

all of the 81 components have a root mean squared error that is at least

halved, and even at n3 = 2000, the ratios are still between less than 0.5 and

about 0.75. We can conclude from these results that using the new method

improves upon the original method, with a very large improvement when

n3 is quite small.

8.3.2 Saving time

In Section 8.3.1, we saw that the bias, variance and root mean squared

error was reduced using the new method, for values of n3 up to 2000. In

this section, we consider how much time could be saved using the new

method. For a given n3, let Morig
n3 and Mnew

n3
denote the matrices of root

mean squared errors for the components of the covariance matrix using
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Figure 8.6: Ratio of root mean squared error for all components of the
covariance matrix against the number of simulations in Phase 3, n3.
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the original and new method, respectively. Now, let n̂3(n3) be defined as:

n̂3(n3) = min
n≥50

{
n : max

i,j

{
(Mnew

n )ij

(M
orig
n3 )ij

}
≤ 1

}
.

So n̂3(n3) is the smallest number of simulations needed such that the root

mean squared error using the new method is smaller than the root mean

squared error using the original method with n3 simulations, for all com-

ponents of the covariance matrix. In other words, if you were going to

use the original method, and n3 simulations in Phase 3, this number tells

you how many simulations you would need to use with the new method,

without (hopefully) making the root mean squared error increase. Figure

8.7 shows the results for different values of n3. The graph shows that, for

n3 smaller than about 1400, the root mean squared error is smaller using

the new method with only 50 simulations in Phase 3. For larger n3, this

increases, but still n̂3(n3) is always much smaller than n3: for n3 = 2000,

it is still less than 1000. This shows that substantial time can be saved in

Phase 3 using this new method.

8.4 Discussion

In this chapter, we have seen that we can use chains simulated in Phase

2 to improve estimation of the covariance matrix for the maximum like-

lihood estimate. We used importance sampling to construct estimates of

the information matrix using Phase 2 simulations, and have shown that in-
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Figure 8.7: Proposed n̂3 to obtain a smaller root mean squared error, for
all components of the covariance matrix, using the new method, than that
obtained using n3 and Phase 3 simulations only.
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corporating theses estimates into the final covariance matrix estimate may

reduce mean squared error, especially when the number of Phase 3 iter-

ations is quite small. We could use this in two ways: firstly, by keeping

the number of Phase 3 iterations the same, we can expect an improve-

ment in estimation of the covariance using this new method. Secondly, if

we would like the estimation procedure to be faster, using this method it

appears that we can still get a reasonable estimate with a very small num-

ber of Phase 3 iterations. The latter could be very beneficial if we want

to explore various models, and we are interested in quickly seeing rough

approximations of standard errors.

In Section 8.2.3, we suggested that information estimates from the early

Phase 2 subphases may be inaccurate, but argued that due to the fact they

would only contribute little to the final estimate, this would not matter too

much. It would be interesting to compare our results to those obtained by

just excluding early subphases completely.
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