

Dynamics of Valued Networks

Longitudinal Modeling of Valued Networks		
Assumptions: actor-driven models		
Each actor "controls" his outgoing ties		
collected in the row vector $(X_{i1}(t),, X_{in}(t))$.		
Actors have full information on all variables.		
4. The change process is decomposed into sub-models:		
 me change process is decomposed into sub-models. waiting times until the next opportunity 		
for a change made by actor <i>i</i> :		
rate functions $\lambda_i(\alpha, x)$;		
2. probabilities of changing X_{ij} ,		
conditional on such an opportunity for change:		
depend on <i>objective functions</i> $f_i(\beta, x^0, x)$.		
The distinction between rate function and objective function		
separates the model for how many changes are made		AT26
from the model for <i>which</i> changes are made.		¢.
-		
© Tom A.B. Snijders Oxford & Groningen Dynamics of Valued Networks	June, 2023	5/22
	-	
Longitudinal Modeling of Valued Networks		
A useful approach is not to regard the tie values		
as numerically meaningful, but as ordered thresholds		
with potentially qualitative differences.		
This enables questions such as:		
Do reciprocity, transitivity, covariate values,		

Longitudinal Modeling of Valued Networks Level Networks		
Level networks		
In this approach the valued networks is considered as a series of level networks or stacked digraphs $X^{(r)}$.		
Each positive tie value defines a dichotomization threshold:		
$i \stackrel{r}{ ightarrow} j$ is defined by $X_{ij} \geq r$		
for $r = 1,, R$; define this relation as the digraph $X^{(r)}$.		
Example: friendship in categories 'unknown' = 0, 'acquaintance' = 1, 'friend' = 2, 'close friend' = 3.		
The processes leading to network structure and network dynamics are treated as (potentially) qualitatively different		
for crossing each of the thresholds $r - 1 \Rightarrow r$.		(Į)
© Tom A.B. Snijders Oxford & Groningen Dynamics of Valued Networks	June, 2023	7/22

Longitudinal Modeling of Valued Networks Level Networks

Level networks as a multivariate network

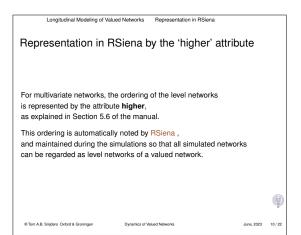
The array of level networks $X = (X^{(1)}, X^{(2)}, \dots, X^{(R)})$ is treated as a multivariate network, subject to the **restriction that**

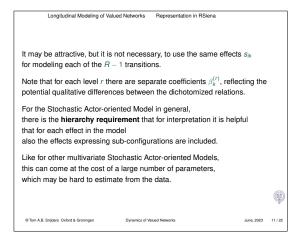
 $X^{(r)} \geq X^{(r+1)} \quad \text{ for all } r, 1 \leq r < R.$

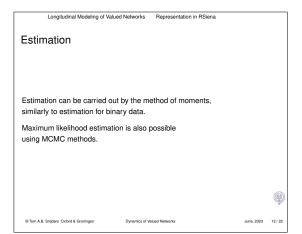
This means that $x_{ij}^{(r)}$ can change from 1 to 0 only if $x_{ij}^{(r+1)} = 0$; and it can change from 0 to 1 only if $x_{ii}^{(r-1)} = 1$.

This implies that the multinomial choices have smaller option sets; since there will be fewer 1s than 0s, this is an issue especially for changes from 0 to 1, and it may be advisable to use the outdegree at level r - 1(perhaps log- or sqrt-transformed) as a 'control' effect for level rby specifying the effect (using made-up names for r = 2) outActIntn(..., name="X2", interaction1="X1").

© Tom A.B. Snijders Oxford & Groningen

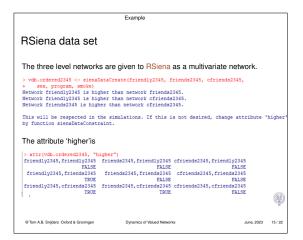

Definition of the stacked relations model

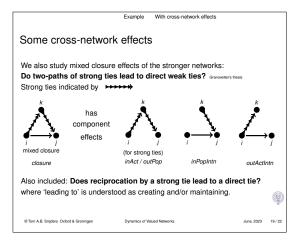

In this model, each threshold transition $r - 1 \Rightarrow r$, i.e., dependent network $X^{(r)}$ subject to restriction $X^{(r-1)} \ge X^{(r)} \ge X^{(r+1)}$, has a specific objective function


$$f_i^{(r)}(\beta, x^0, x) = \sum_{k=1}^L \beta_k^{(r)} \, s_{ik}^{(r)}(x^0, x) \, .$$

Consider two subsequent states x^0 and x; note that these can differ in at most one tie value.

Change from $x_{ij}^0 = r$ to $x_{ij} = r + 1$ is based on comparing the network states according to objective function $f_i^{(r+1)}$; change from $x_{ij}^0 = r - 1$ to to $x_{ij} = r$ is based on comparing the network states according to objective function $f_i^{(r)}$. Also for each transition there is a separate rate function $\lambda_i^{(r)}(\alpha, x)$.




	Example				
2. Example: Stud	dies Gerhard van de Bunt				
Longitudinal study: pane	el design.				
7 waves (numbered	, ,				
van de Bunt, van Duijn,	& Snijders, Comp. & Math. Org. Theory, 5 (1999), 167 – 192.				
We use waves 2–5 (om	itting startup processes).				
Categories recoded her	e as follows:				
0	unknown or troubled relation known, neutral relation				
2					
3					
• • • • • • • • • • • • • • • • • • •					

		Examp	le					
Average deg	rees for sepa	rate tie va	ues:					
	observation	1	2	3	4	5		
	av. degree,	value ≥ 1	17.9	17.3	18.7	20.4		
	av. degree,	value \geq 2	4.5	5.4	6.7	7.5		
	av. degree,	value 3	1.7	2.0	2.4	2.8		
Aggregated	changes betv	veen subse	equent o	bserva	ations			
	d about diago			0000110				
	Ū		, ,					
			to					
	froi	n O	1	2	3			
	0	1920	548	122	21			
	1	15	1265	164	3			
	2	0	114	271	73			
	3	0	1	22	189			
Note that transitions between values r and q for $ r - q \ge 2$							¢	
will be modeled as the result of at least 2 micro-steps.								
	om A.B. Snijders Oxford & Groningen Dynamics of Valued Networks							

	Example	
> vdb.ordered2345		
	es: friendly2345, friends2345, cfriends2345	
Number of observa		
Nodeset	Actors	
Number of nodes	32	
Dependent variabl	e friendly2345	
Type		
Observations	4	
Nodeset	Actors	
Densities	0.58 0.56 0.6 0.66	
Dependent variabl	e friends2345	
Туре	oneMode	
Observations		
Nodeset	Actors	
Densities	0.14 0.18 0.22 0.24	
Dependent variabl		
Туре		
Observations	4	
Nodeset		
Densities	0.053 0.066 0.077 0.091	
Constant covariat	es: sex, program, smoke	
	345 is higher than network friends2345.	
	345 is higher than network cfriends2345.	
Network friends23	45 is higher than network cfriends2345.	Æ
This will be resp	ected in the simulations.	
If this is not de	sired, change attribute 'higher'.	

		Example	Estimation res	ults		
Results for a	hooio n	adal				
Results for a	Dasic II	lodel				
	null ⇒	known	known \Rightarrow	friendly	friendly =	> friend
Effect	par.	(s.e.)	par.	(s.e.)	par.	(s.e.)
outdegree (density)	-0.801 [†]	(0.434)	-1.458***	(0.156)	-1.710***	(0.379)
reciprocity	-0.573†	(0.330)	0.995***	(0.213)	1.064*	(0.484)
transitive triplets	0.108***	(0.021)	0.169***	(0.031)	0.283*	(0.119)
same sex	0.872*	(0.341)	0.178	(0.148)	1.016**	(0.382)
program similarity	2.480***	(0.476)	0.643***	(0.195)	0.108	(0.398)
lower outd. activity	-	-	0.016	(0.013)	0.029	(0.040)
[†] p < 0.1; * p < 0.05; ** p <						
convergence t ratios all < 0.05. 0	Overall maximum con	vergence ratio 0.08.				
Note the difference	es for recip	rocity, tran	sitivity, sam	e sex, ar	nd same pr	ogram.
						(B)
© Tom A.B. Snijders Oxford & Gri	oningen	Dynamics of Va	ued Networks		June,	2023 17/22
		Example	Estimation res	ults		
The previous ('bas	ic') model	is not hiers	archical [.]			
The previous (bas	sic / moder	IS HOL HIER	u chicai.			
k		k		k	k	
		.		•	1	
T		/`\	. .	<u> </u>	ſ	
é — ,**•			"• •	, — , •	é—	→●
7 7		7] 7	Ĵ	7	7
transitive triplet		two-pat		vo-in-star	two-ou	ıt-star
transTrip	without	inAct / ou	tPop	inPop	ou	tAct
To make conclusion	ons about ti	ransitivity a	is a mechar	nism,		
the other three effe	ects should	be added	, at all level	s.		
						,
						(i)

	E	Example	With cross-net	work effects		
Results for exte	ended n	nodel				
	$null \Rightarrow k$	nown	known \Rightarrow	friendly	friendly ⇒	friend
Effect	par.	(s.e.)	par.	(s.e.)	par.	(s.e.)
outdegree (density)	0.330	(0.979)	-1.697***	(0.191)	-1.707***	(0.403)
reciprocity	-0.684	(0.428)	0.595	(0.581)	0.886 [†]	(0.526)
transitive triplets	0.051	(0.038)	0.204***	(0.047)	0.274*	(0.119)
same sex	1.214*	(0.476)	0.056	(0.161)	1.064**	(0.390)
program similarity	2.898***	(0.742)	0.778***	(0.233)	0.133	(0.404)
reciproc. with stronger	0.624	(0.864)	3.387	(9.202)	_	
indeg. stronger pop.	0.238 [†]	(0.133)	-0.352**	(0.111)	_	
outdeg. stronger activ.	0.147	(0.144)	-0.060	(0.062)	_	
closure of stronger	0.613†	(0.337)	1.279†	(0.773)	_	
outdeg. weaker activ.	_		0.023	(0.015)	0.032	(0.042)

[†] p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.01; convergence t ratios all < 0.06. Overall maximum convergence ratio 0.10.

'stronger' indicates the stronger relation, and 'weaker' the weaker relation, as an explanatory variable.

Reciprocity of 'friendly' with 'friend' has such large estimate and standard error, that it should be tested by a score-type test ('Donner-Hauck phenomenon', see manual, Section 8.1) applied to the estimated model where this parameter is 0.

This led to $\chi^2 = 2.56$, d.f. = 1; p(two-sided) = 0.11.

The comparison between the basic and the extended model shows that effects of covariates (same sex, same program) are quite robust, while effects of reciprocity and transitivity are a bit different, in part because of larger standard errors (extended model may be a bit too extended), in part because the effects of transitivity for the transition null ⇒ known is taken up by the mixed closure of the friendly relation, and the effect of reciprocity for the friendly relation is taken up by the mixed reciprocity with 'real' friendship.

For tests of reciprocity and transitivity, note that *p*-values given here are two-sided, whereas the test should be a one-sided test so the *p*-values for positive estimates can be divided by 2.

© Tom A.B.	Sniiders	Oxford &	Groningen

Dynamics of Valued Networks

June, 2023 21 / 22

	Discussion		
Discussion			
 having many paramete ⇒ How much complexity ⇒ Signed (i.e., positive & in a similar way, using use the network of pos 	n become quite 'full' in the sense of rs because of the hierarchy principle should we entertain in practice? negative) networks can be handled the 'disjoint' attribute: itive ties and the network of negative networks in the multivariate approac	ties	
			ø
© Tom A.B. Snijders Oxford & Groningen	Dynamics of Valued Networks	June, 2023	22/22