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Two-mode and one-mode Networks

When considering dynamics of two-mode networks,
the co-evolution of two-mode and one-mode networks
is particularly interesting.

friendship of adolescents and media use;
partying and website contacts;
collaboration and work projects;
etc....

We skip the literature review.
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The two-mode network has
a set N of actors (the ‘actor mode’) and
a setM of groupings (the ‘group mode’);
and the tie i → j for i ∈ N , j ∈M
means that i is a member of grouping j .
Ties can change; node sets are assumed to be non-changing.

The one-mode network is defined on node set N .

Structural patterns of the evolution of
the one-mode network are not discussed now.
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Transitivity for two-mode networks: 4-cycles

For two-mode networks, other structures are important
than for one-mode networks.

We meet each other
in various groups.

Robins and Alexander (2004):
transitivity in bipartite networks expressed by 4-cycles.
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For the combination of a one-mode and a two-mode network,
various mutual influences between the networks are possible.

Actor-level dependencies are meaningful.

mixed activity

mixed popularity
⇒ activity
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Closed triads are impossible in bipartite networks;
but they are possible as mixed patterns. Examples:

One-with-two-mode triads.

One-mode tie⇒
two-mode agreement

Two-mode agreement⇒
one-mode tie
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Actor-based models
Actor-based models are defined here as extensions of
actor-based models for dynamics of single networks
(Snijders 1996, 2001; Koskinen & Edling, 2009).

1 The actors control their outgoing ties.
2 For panel data: employ a continuous-time model

to represent unobserved endogenous network evolution.
3 The ties have inertia: they are states rather than events.
4 The multiple relations together develop stochastically

according to a Markov process.
5 At any single moment in time, only one tie variable

may change: no coordination.
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6 Changes in each network are modeled as
choices by actors in their outgoing ties,
with probabilities depending on ‘objective functions’
of the network state that would obtain after this change.

These objective (‘goal’) functions are specified
separately for each of the R networks.
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Notation

Denote tie variable for r th relation from i to j by

X (r)
ij =

{
1 if i r→ j
0 if not i r→ j ,

where this depends on time t .

By X we denote the collection of all R relations:
array

(
X (r)

ij

)
for r = 1, . . . ,R; i = 1, . . . ,n; j = 1, . . . ,mr

(mr = n if the r th relation is one-mode).
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The statistical model is a process model:

an agent-based simulation model,
which simulates the development of the multiple networks
from one observation to the next;

statistical modeling consists of fitting such a simulation model
to the observed network data, and testing
which model components are required to give a good fit.
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The model is defined by its smallest possible steps,
the ‘microsteps’, which consist of a change in one tie variable:

extend one new tie / withdraw one existing tie.

off

⇒How rapidly does this happen?
rate functions

⇒What is the probability of this particular tie change,
compared to other changes?
objective functions
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Decompose model in :

the average frequency of changes,
rate functions :
λ
(r)
i (x) = rate at which i can change r -relations;

and the probabilities of particular changes,
objective functions f (r)i :
changes in r -relations have higher probabilities
accordingly as f (r)i (x) would become higher,
∼ myopic optimization of f (r)i (x)+ error term.
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Model for rate of change often can be simple:
rate of change λ(r)i (x) depends only on r ,
some relations change faster than others.

Rate of change of relation r is λ(r)+ =
∑

i λ
(r)
i ;

total rate of change is λ(+)
+ =

∑
r λ

(r)
+ .
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Outline of model dynamics / simulation algorithm
Model for microstep (smallest possible change):

1 Next event takes place after time interval
with exponentially distributed length, average duration
1/λ(+)

+ .
Step: Increment t by such a random variable.

2 The probability that this is an event where
actor i may change an r -tie is

λ
(r)
i

λ
(+)
+

.

Step: Choose r , i with this probability.
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Outline of algorithm – continued

3 For this r and i , actor i may change one outgoing r -tie,
or leave all outgoing tie variables X (r)

ij unchanged.
The probability of changing toward any new situation x
(x differs only in one tie variable from current situation!)
is proportional to

exp
(

f (r)i (x)
)
.
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Step: Given that actor i may change a tie in relation r ,
the event that tie variable X (r)

ij is toggled

(X (r)
ij ⇒ 1− X (r)

ij )
has probability

exp
(

f (r)i

(
x changed in x (r)

ij

))
∑

h exp
(

f (r)i

(
x changed in x (r)

ih

)) .
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Model specification

The objective function can be conveniently modeled as
a weighted sum (cf. generalized linear modeling),

f (r)i (β, x) =
L∑

k=1

β
(r)
k s(r)

ik (x) ,

where s(r)
ik (x) are ‘effects’ and β(r)k their weights,

which jointly drive the dynamics for relation r ,
given the current state of this and all other relations.
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These effects will represent the ‘internal’ dynamics
of the network, as dependent on its own current state,
on exogenous variables (‘covariates’),
and, on the other networks.

Testable hypotheses and ‘control mechanisms’ are represented
by the choice of the effects s(r)

ik (x).
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The simulation procedure mentioned above corresponds
to a continuous-time Markov change on a state space
of multivariate networks.

Estimation

Method of moments, maximum likelihood, Bayesian;
straightforward (sometimes tedious) elaboration of
these methods for the case of dynamics of a single network
(Snijders, 2001; Koskinen & Snijders, 2007;
Snijders, Koskinen & Schweinberger, 2010.)

Score tests useful for testing model extensions
where estimation becomes unstable.
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Example: Research with Vanina Torlo and Alessandro Lomi.

International MBA program in Italy;
75 students; 3 waves.

1 Friendship

2 Advice:
To whom do you go for help if you missed a class, etc.

3 Two mode: organizational preference:
in which organizations are you interested
as potential employer.
A total of 100 organizations were mentioned.
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Results: Friendship, univariate

Effect par. (s.e.)

Out-degree –2.024 (0.237)
Reciprocity 1.604 (0.098)
Transitive triplets 0.183 (0.017)
3-cycles –0.101 (0.028)
Indegree popularity (√) 0.218 (0.060)
Outdegree popularity (√) –0.343 (0.066)
Outdegree activity (√) –0.061 (0.045)
Same nationality 0.253 (0.083)
Sex alter –0.020 (0.072)
Sex ego –0.168 (0.074)
Same sex 0.294 (0.067)
Performance alter –0.021 (0.025)
Performance ego –0.076 (0.025)
Performance similarity 0.795 (0.200)
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Results: Advice, univariate

Effect par. (s.e.)

Out-degree –2.281 (0.334)
Reciprocity 1.329 (0.130)
Transitive triplets 0.317 (0.038)
3-cycles –0.060 (0.064)
Indegree popularity (√) 0.255 (0.056)
Outdegree popularity (√) –0.370 (0.145)
Outdegree activity (√) –0.077 (0.062)
Same nationality 0.460 (0.125)
Sex alter –0.044 (0.095)
Sex ego –0.276 (0.101)
Same sex 0.175 (0.091)
Performance alter 0.124 (0.036)
Performance ego –0.110 (0.036)
Performance similarity 0.746 (0.262)
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Results: Organizational Preference, univariate

Effect par. (s.e.)

Out-degree –2.610 (0.102)
Four-cycles 0.056 (0.009)
Indegree popularity (√) 0.293 (0.048)
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Results: Friendship Co-evolution (1/2)

Effect par. (s.e.)

Out-degree –2.281 (0.256)
Reciprocity 1.288 (0.116)
Transitive triplets 0.158 (0.019)
3-cycles –0.062 (0.032)
Indegree popularity (√) 0.366 (0.066)
Outdegree popularity (√) –0.359 (0.074)
Outdegree activity (√) 0.037 (0.044)
Same nationality 0.191 (0.091)
Sex alter –0.013 (0.076)
Sex ego –0.140 (0.073)
Same sex 0.229 (0.076)
Performance alter –0.019 (0.030)
Performance ego –0.086 (0.028)
Performance similarity 0.760 (0.194)
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Results: Friendship Co-evolution (2/2)

Effect par. (s.e.)

Advice⇒ Friendship 1.653 (0.223)
‘Incoming’ advice⇒ Friendship 0.669 (0.187)
Indegree advice (√)⇒ Friendship pop. –0.157 (0.048)
Outdegree advice (√)⇒ Friendship act. –0.185 (0.076)
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Results: Advice Co-evolution (1/2)

Effect par. (s.e.)

Out-degree –2.357 (0.409)
Reciprocity 0.551 (0.173)
Transitive triplets 0.251 (0.043)
3-cycles –0.082 (0.060)
Indegree popularity (√) 0.328 (0.057)
Outdegree popularity (√) 0.016 (0.162)
Outdegree activity (√) 0.049 (0.074)
Same nationality 0.460 (0.125)
Sex alter 0.052 (0.104)
Sex ego –0.175 (0.109)
Same sex 0.050 (0.099)
Performance alter 0.147 (0.044)
Performance ego –0.056 (0.040)
Performance similarity 0.478 (0.276)
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Results: Advice Co-evolution (2/2)

Effect par. (s.e.)

Friendship⇒ Advice 1.782 (0.269)
‘Incoming’ friendship⇒ Advice 0.266 (0.203)
Indegree friendship (√)⇒ Advice pop. –0.293 (0.076)
Outdegree friendship (√)⇒ Advice act. –0.318 (0.061)
Org. pref. agreement⇒ Advice 0.232 (0.079)
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Results: Organizational Preference Co-evolution

Effect par. (s.e.)

Out-degree –1.984 (0.438)
Four-cycles p > 0.20
Indegree popularity (√) –0.189 (0.338)

Friendship⇒ Org. pref. agreement 0.294 (0.118)
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Thus, organizational preference is
influenced by preference of friends.
When the dynamics of organizational preference is analyzed
without influences of friends or advisers,
we find a strong ‘indegree popularity’ (‘Matthew’) effect
as well as a four-cycle effect.

The co-evolution between friendship and organizational
preference shows that these effects emerge from the influence
between friends.
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Thus, organizational preference is
influenced by preference of friends.
When the dynamics of organizational preference is analyzed
without influences of friends or advisers,
we find a strong ‘indegree popularity’ (‘Matthew’) effect
as well as a four-cycle effect.

The co-evolution between friendship and organizational
preference shows that these effects emerge from the influence
between friends.
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The univariate approach yielded a significant 4-cycle effect.
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The univariate approach yielded a significant 4-cycle effect.
This disappeared in the multivariate approach,
because friendship leads to agreement on org. pref.
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The univariate approach yielded a significant 4-cycle effect.
This disappeared in the multivariate approach,
because friendship leads to agreement on org. pref.

If I agree with my friends about organizations ...
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The univariate approach yielded a significant 4-cycle effect.
This disappeared in the multivariate approach,
because friendship leads to agreement on org. pref.

If I agree with my friends about organizations ...
and we tend to make multiple choices ...
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The univariate approach yielded a significant 4-cycle effect.
This disappeared in the multivariate approach,
because friendship leads to agreement on org. pref.

If I agree with my friends about organizations ...
and we tend to make multiple choices ...
then I will agree with persons about multiple organizations,
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The univariate approach yielded a significant 4-cycle effect.
This disappeared in the multivariate approach,
because friendship leads to agreement on org. pref.

If I agree with my friends about organizations ...
and we tend to make multiple choices ...
then I will agree with persons about multiple organizations,
& indegree differences between organizations are reinforced.
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Discussion

⇒ Testing cross-network dependencies in
dynamics of multiple networks gives interesting
new possibilities for hypothesis testing.

⇒ Elaborated along the lines of actor-based modeling.

⇒ Compared to modeling dynamics of single networks,
this approach attenuates the Markov assumption
by extending the state space to a multiple network.
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⇒ Elaborated along the lines of actor-based modeling.

⇒ Compared to modeling dynamics of single networks,
this approach attenuates the Markov assumption
by extending the state space to a multiple network.
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⇒ Testing cross-network dependencies in
dynamics of multiple networks gives interesting
new possibilities for hypothesis testing.

⇒ Elaborated along the lines of actor-based modeling.

⇒ Compared to modeling dynamics of single networks,
this approach attenuates the Markov assumption
by extending the state space to a multiple network.
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⇒ New perspectives possible by combining one-mode and
two-mode networks.

⇒ The method is being made available in Siena.
This will work for a small number (e.g., 2–6) of networks,
and a limited number of actors (up to a few hundred).

⇒ Models for larger networks are under development.
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