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A recurrent problem in the analysis of behavioral dynamics, given
a simultaneously evolving social network, is the difficulty of sep-
arating the effects of partner selection from the effects of social
influence. Because misattribution of selection effects to social in-
fluence, or vice versa, suggests wrong conclusions about the social
mechanisms underlying the observed dynamics, special diligence
in data analysis is advisable. While a dependable and valid method
would benefit several research areas, according to the best of our
knowledge, it has been lacking in the extant literature. In this pa-
per, we present a recently developed family of statistical models
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that enables researchers to separate the two effects in a statisti-
cally adequate manner. To illustrate our method, we investigate
the roles of homophile selection and peer influence mechanisms
in the joint dynamics of friendship formation and substance use
among adolescents. Making use of a three-wave panel measured
in the years 1995–1997 at a school in Scotland, we are able to assess
the strength of selection and influence mechanisms and quantify
the relative contributions of homophile selection, assimilation to
peers, and control mechanisms to observed similarity of substance
use among friends.

1. INTRODUCTION

In social groups, there generally is interdependence between the group
members’ individual behavior and attitudes, and the network structure
of social ties between them. The study of such interdependence is a
recurring theme in theory formation as well as empirical research in the
social sciences. Sociologists have long known that structural cohesion
among group members is important for compliance with group norms
(Durkheim 1893; Homans 1974). Research on social identity theory
identified within-group similarity and between-group dissimilarity as
principles by which populations are subdivided into cohesive smaller so-
cial units (Taylor and Crocker 1981; Abrams and Hogg 1990). Detailed
network studies (e.g., Padgett and Ansell 1993) as well as discussion es-
says (Emirbayer and Goodwin 1994; Stokman and Doreian 1997) made
clear that to obtain a deeper understanding of social action and social
structure, it is necessary to study the dynamics of individual outcomes
and network structure, and how these mutually impinge upon one an-
other. In methodological terms, this means that complete network struc-
ture as well as relevant actor attributes—indicators of performance and
success, attitudes and cognitions, behavioral tendencies—must be stud-
ied as joint dependent variables in a longitudinal framework where the
network structure and the individual attributes mutually influence one
another. We argue that previous empirical studies of such dynamics
have failed to address fundamental statistical and methodological is-
sues. As demonstrated by Mouw (2006) for the case of social capital
effects on individual outcomes, this failure can lead to severe bias in re-
ported results. As an alternative, we present a new, statistically rigorous
method for this type of investigation, which we illustrate in an elaborate
empirical application.
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The example concerns the joint dynamics of friendship and sub-
stance use in adolescent peer networks (Hollingshead 1949; Newcomb
1962). It is by now well-established that the smoking, alcohol, and drug
use patterns of two adolescents tend to be more similar when these ado-
lescents are friends than when they are not (Cohen 1977; Kandel 1978;
Brook, Whiteman, and Gordon 1983). Formulated more generally, peo-
ple who are closely related to each other tend to be similar on salient
individual behavior and attitude dimensions—a phenomenon for which
Fararo and Sunshine (1964) coined the term homogeneity bias. In sta-
tistical terminology, this kind of association is known by the name of
network autocorrelation, a notion originating from the spatial statistics
literature (Doreian 1989). Up until now, however, the dynamic processes
that give rise to network autocorrelation have not been sufficiently
understood. Some theorists evoke influence mechanisms and contagion
as possible explanations (Friedkin 1998, 2001; Oetting and Donner-
meyer 1998)—a perspective largely in line with classical sociological the-
ory on socialization and coercion. Others invoke selection mechanisms,
more specifically homophily (Lazarsfeld and Merton 1954; Byrne 1971;
McPherson and Smith-Lovin 1987; McPherson, Smith-Lovin, and
Cook 2001), while still others emphasize the unresolved tension between
these alternative perspectives (Ennett and Bauman 1994; Leenders 1995;
Pearson and Michell 2000; Haynie 2001; Pearson and West 2003; Kirke
2004). Attempts to overcome this tension on the theoretical level are rare
and in general not geared to statistical analysis, but they employ sim-
ulation (e.g., Carley 1991) or derive properties of long-term equilibria
(Friedkin and Johnsen 2003). For the empirical researcher, these at-
tempts therefore may not be very helpful.

In order to explain network autocorrelation phenomena, a dy-
namic perspective is indeed necessary. Considering the case of network-
autocorrelated tobacco use, a smoker may tend to have smoking friends
because, once somebody is a smoker, he or she is likely to meet other
smokers in smoking areas and thus has more opportunities to form
friendship ties with them (“selection”). At the same time, it may have
been the friendship with a smoker that made him or her start smok-
ing in the first place (“influence”). Which of the two patterns plays the
stronger role can be decisive for success or failure of possible inter-
vention programs—moreover, a policy that is successful for one type
of substance use (say, smoking) may fail for another (say, drinking)
if the generating processes are different in nature. Modeling this as a
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dynamic process using longitudinal network data is necessary to address
the problem adequately (Valente 2003).

The most common format of such data in sociological studies
is the panel design—which introduces some analytical complications,
because the processes of influence and selection must reasonably be
assumed to operate unobservedly in continuous time between the panel
waves. Finally, complete network studies (i.e., measurements of the whole
network structure in a given group) are clearly preferable to personal
(ego-centered) network studies, because selection patterns can best be
studied when the properties of nonchosen potential partners are also
known, and because of the possible importance of indirect ties (two per-
sons having common friends, etc.) that are difficult to assess in personal
network studies. Complete network data, on the other hand, are charac-
terized by highly interdependent observations. This rules out the appli-
cation of statistical methods that rely on independent observations—
i.e., most standard techniques. To our knowledge, no previous study
succeeded in a statistically and methodologically credible assessment
and the separation of selection and influence mechanisms.

In this paper, we show how previous approaches failed to ade-
quately respond to these statistical-methodological challenges, and we
present a new, flexible method that enables researchers to statistically
separate the effects of selection from those of influence. A fundamen-
tal difference with respect to earlier approaches is that our method
formalizes the simultaneous, joint evolution of social networks and be-
havioral characteristics of the network actors in an explicit, stochastic
model. Proposed and described mathematically by Snijders, Steglich,
and Schweinberger (2007), it can be fitted to data collected in a panel
design, where complete networks as well as changeable attributes are
measured. We will call this data type network-behavior panel data, un-
derstanding that “behavior” here stands for changeable attributes in a
wide sense, including attitudes, performance, etc. Model fitting yields
parameter estimates that can be used for making inferences about
the mechanisms driving the evolution process. The new method ex-
tends earlier methodology for the analysis of “pure” network dynamics
(Snijders 2001, 2005) by adding components that allow for the inclusion
of coevolving behavioral variables.

In addition to the already mentioned network autocorrela-
tion phenomena, other aspects of dynamic network-behavior inter-
dependence can in principle be investigated with our models, when
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network-behavior panel data are available. For instance, Granovetter’s
(1982) theory about weak ties as providers of opportunities for chang-
ing individual properties, or Burt’s (1987, 1992) theory about brokerage
and structural competition, can be tested for their validity on the ac-
tor level in a dynamic context where the network and individual actor
characteristics are subject to mutually dependent endogenous change.
More generally, the focus of the research to which our models can be
applied need not include the aspect of partner selection, but it can also
be on the level of individual outcomes. Whenever endogeneity of part-
ner choice is regarded as an obstacle to reliable inferences, the study of
the co-dependent network as a second dependent variable is opportune,
and the modeling proposed here is a potentially useful avenue. A case
in point is the study of causal relations between social capital and labor
market outcomes, as critically reviewed by Mouw (2006). We think that
the modeling presented here has the potential to open new paths for
theory development and testing in many network-related research areas.
In the present paper, however, we restrict attention to a general sketch
of the modeling framework and one illustrative application, the analysis
of selection and influence mechanisms with respect to substance use be-
havior (tobacco and alcohol consumption), based on network-behavior
panel data measured in 1995–1997 at a secondary school in Scotland.

1.1. Overview

We begin with an illustration of the problem of assessing simultane-
ously operating selection and influence processes by identifying three
major methodological obstacles that need to be addressed, and giving
a summary review and critique of prior research methods. The example
of friendship and substance use in adolescent peer groups will play only
a tangential role at this stage. Then, the actor-based model family for
network and behavior coevolution is presented. We illustrate the new
method by applying it to a three-wave data set about the coevolution of
smoking and drinking behavior with friendship networks (Pearson and
West 2003). In these analyses, selection and influence effects are assessed
simultaneously, hence controlling one effect for the other. A simulation
study based on the obtained parameter estimates allows us to draw
quantitative conclusions about the sources of observed network auto-
correlation. In addition to selection and influence on the two substance
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use dimensions, three other possible sources are distinguished: (1) the
carryover of network autocorrelation that already existed at the begin-
ning of the investigated period, (2) selection based on other individual
variables (sex, age, money, dating), and (3) the effects of endogenous
network formation (reciprocity, balance, and network closure). In the
concluding section, the main results of the article are summarized, and
prospective further applications of the new method are sketched.

2. NETWORK AUTOCORRELATION AS AN EMPIRICAL
PUZZLE

The genesis of network autocorrelation is not yet sufficiently under-
stood in many research areas (Manski 1993), and multiple explanatory
propositions and theories coexist. This also holds for the literature on
the effects of peer groups in adolescence, on which we focus here. We can
find several quite specific hypotheses about how friendship networks
coevolve with behavioral dimensions in general, and with tobacco use
and alcohol consumption in particular. The underlying theories posit
conceptually distinct mechanisms which, nonetheless, lead to similar
cross-sectional patterns of network autocorrelation. We confine our
review to a short sketch of the three most prominent mechanisms cov-
ered in extant literature: (1) assimilation, (2) homophily, and (3) social
context.

According to socialization theory, peer groups are responsible
for creating behavioral homogeneity in a group (Olson 1965; Homans
1974). The claim is that adolescents, being influenced by their peers, will
assimilate to the peers’ behavior, hence the finding of similarity among
friends. Applications can be found—for example, in a series of papers
on substance use by Oetting and colleagues (Oetting and Beauvais
1987; Oetting and Donnermeyer 1998), or in Haynie’s (2001) analysis
of adolescents’ delinquency. In this perspective, change primarily takes
place in the individual’s behavior, while the friendship network is treated
as rather static (Friedkin 1998, 2001).

A diametrically opposite approach, in which the network is
treated as dynamic but its determinants as rather static, is taken
by research on friendship formation (Byrne 1971; Lazarsfeld and
Merton 1954; Moody 2002). Here, similarity among friends is explained
by selection—that is, by similar adolescents seeking out each other as
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friends. There can be different reasons why this happens. The most
widely known is homophily, the principle by which similarity in behav-
ior acts as a direct cause of interpersonal attraction (Lazarsfeld and
Merton 1954; McPherson and Smith-Lovin 1987; McPherson et al.
2001). Applications of theories on homophily to adolescents’ substance
use can be found, for example, in Fisher and Bauman (1988), Ennett and
Bauman (1994), Elliott, Huizinga, and Ageton (1985), and Thornberry
and Krohn (1997).

As stressed by Feld (1981, 1982; Kalmijn and Flap 2001), how-
ever, what on the surface looks like homophily may in reality result
from other network formation processes. Different social contexts (set-
tings, foci) can be responsible for the observed similarity of friends,
because when people select themselves to the same social setting, this
will usually indicate prior similarity on a host of individual properties,
while actual friendship formation simply reflects the opportunity of
meeting in this social setting and does not allow us to infer a causal
role of the prior similarity in friendship creation. The argument can be
extended to also cover informal forms of social settings, such as the
opportunity structure of meeting others that is implied by the social
network itself (Pattison and Robins 2002). Endogenous mechanisms of
friendship dynamics, such as network closure or social balance (Feld
and Elmore 1982; van de Bunt, van Duijn, and Snijders 1999), may this
way also lead to similarity of friends and must not be misdiagnosed as
homophilous selection patterns (Berndt and Keefe 1995).

In the terminology of Borgatti and Foster (2003), the main di-
mensions on which these three accounts of network autocorrelation
differ are whether behavior is treated as a consequence of the network
(assimilation) or as its antecedent (homophily, context), and whether
temporal antecedence is also causal (homophily) or only correlational
(context). In the case of adolescents’ substance use in friendship net-
works, it is obvious that all three accounts potentially play a role, as ado-
lescents typically change their networks frequently (Degirmencioglu,
Richards, Tolson, and Urberg 1998) and many of them start experi-
menting with risk behavior such as substance use. As can already be
seen from the brief discussion above, multiple theoretical accounts have
been advanced for explaining network autocorrelation, and a test of
these theories against each other is expedient. Considering that previ-
ous research on substance use found evidence for both selection and
influence processes, this holds all the more in the case of our empirical
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application. In our analyses, we will achieve a separation of assimila-
tion, homophily, and other effects (some related to social context, but
also others), on two substance use dimensions. This separation consists
of hypothesis tests of the different autocorrelation-generating mech-
anisms in one model, and calculation of model-based effect sizes for
these mechanisms.

Our method is certainly not the first attempt to simultaneously
assess selection and influence and to determine the relative strength of
each process. However, it differs from previous approaches by employ-
ing a model that explicitly represents the mutual dependence between
network and behavior, coevolving in continuous time. Such a model
permits a more rigorous statistical treatment than previous methods,
which left the model implicit. Restrictions inherent to our method will
be addressed in the discussion. In the following sections, we will provide
reasons why previous, similar attempts cannot be considered trustwor-
thy. For this aim, a set of criteria (“key issues”) is derived which an ex-
planatory model for network autocorrelation should fulfill. The section
ends with an evaluation of previous attempts at disentangling selection
and influence, making use of these criteria.

2.1. Key Issues and a Typology of Previous Approaches

A few earlier studies tested the competing explanations of network
autocorrelation against each other in longitudinal studies of complete
networks. The earliest publications on this topic seem to be the arti-
cles by Cohen (1977) and Kandel (1978), which represent two of the
three major previous approaches to the study of network autocorre-
lation that we propose to distinguish here. These are the contingency
table approach (Kandel 1978; Billy and Udry 1985; Fisher and Bauman
1988), the aggregated personal network approach (Cohen 1977; Ennett
and Bauman 1994; Pearson and West 2003; Kirke 2004), and structural
equation modeling (Krohn et al. 1996; Iannotti, Bush, and Weinfurt
1996; Simons-Morton and Chen 2005; de Vries et al. 2006). We will
shortly characterize and evaluate these approaches against three key is-
sues that are fundamental for the separation of selection and influence
effects. These are (1) network dependence of the actors, which is essential
in modeling dynamics of network ties, and which precludes the appli-
cation of statistical techniques that rely on independent observations;
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(2) the necessity to control for alternative mechanisms of network evolu-
tion and behavioral change in order to avoid misinterpretation in terms
of homophily and assimilation; and (3) incomplete observations implied
by the use of panel data while the underlying evolution processes operate
in continuous time.

These key issues are interrelated, as will become clear in our dis-
cussion of the limitations of how they are handled by earlier proposed
methods. Especially in view of the third key issue, a consideration of
data formats is opportune. Panel data, measured at only a few discrete
time points, are the most common longitudinal format in sociologi-
cal studies, and social network research is no exception. The temporal
incompleteness of panel data makes it impossible to unequivocally iden-
tify which process is responsible for an observed change, even if only
the network or only the behavior changes from one observation to the
next—simply because a change on the respective other dimension may
also have happened, but there has been a change back to the original
value afterward during the same period. The two columns on the left in
Figure 1 illustrate such situations. Suppose that the pair of pupils in the
middle column is observed at time points t0 and t1. At both moments,
they are nondrinkers, but while they are unconnected at t0, there is a uni-
lateral friendship tie between them at t1. At first sight, we might diagnose
a pattern of homophilous selection. However, the unobserved process
that generated these data may have looked fundamentally different, as
illustrated in the brackets. A while after the observation at t0, the actor
on the right may have started drinking, say, because he did not have any
friends. The actor on the left may have noticed that and started a thera-
peutic friendship with the new drinker. Under these circumstances, the
drinker quit drinking again. Only now, the network is observed again
at t1. In this scenario, the processes actually happening have nothing to
do with homophilous selection, and to diagnose the observations as un-
equivocal evidence for selection is plainly wrong. Nonetheless, literally
all quantitative studies on the topic that we are aware of commit this
error. As the example illustrates, alternative mechanisms of network
formation as well as behavior change need to be controlled for in order
to preclude such misinterpretation. A similar scenario, sketched in the
left of Figure 1, illustrates how homophilous selection (taking place
shortly before observation moment t1) can be misdiagnosed as social
influence (the default interpretation of the observed data when the hap-
penings in the brackets are neglected). The longer the time intervals
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t0

t1

t0

t1

FIGURE 1. Illustrations for two of the three “key issues” mentioned in the text: incomplete
observation of changes (left and middle column) and alternative mechanisms (all
columns).

are between observations, the higher the chances that such alternative
trajectories happen. Calculations based on our empirical study suggest
that on top of the observed changes, another 7–10% of changes remain
unobserved because they cancel each other out before observation. In
studies on adolescent behavior, time intervals of one year are the rule,
while scenarios as sketched in Figure 1 can reasonably be assumed to
take place within a few months. The use of retrospective questions for
assessing the particular relationship’s history (Kirke 2004) in principle
could remedy this predicament. However, retrospective social network
information is rare and prone to unreliability (Bernard et al. 1985), so
this remedy leads to other problems.

The problem of alternative generating mechanisms is not limited
to situations where the data are incompletely observed. In the column
on the right of Figure 1, the newly created tie could result from ho-
mophilous selection (and indeed would be unequivocally diagnosed as
such by previous approaches in the literature). However, it could also
result from a purely structural mechanism known to play a strong role
in friendship formation—namely, triadic closure. Having a common
friend at t0 may be the reason why at t1, a tie is established between
the two previously unrelated actors. The message is that even if we can
assume that no unobserved changes have taken place, there still is in-
terpretative leeway concerning the mechanisms responsible for a given
observed change. Controlling for such mechanisms as far as possible is
a criterion that previous research largely has failed to address.

Next to the temporal aspect of data collection, the cross-sectional
design is also important in distinguishing selection from influence
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effects. There are two ideal types of social network studies: (1) ego-
centered network studies, in which for a random sample of individuals
(the egos), the network neighbors and their properties are assessed; and
(2) complete network studies, in which for a given set of actors, all rela-
tional links in this set are assessed, and the assumption is made that for
the research question being addressed, links outside of this set are less
consequential and by approximation can be neglected. For the present
purpose, an ego-centered network design is inadequate because even
in a panel study, such data do not provide information about other,
potential relational partners that were not selected. This precludes a
meaningful assessment of selection processes. For adequately measur-
ing selection effects, a meaningful approximation of the set of potential
relational partners must be made, whose individual properties must be
known irrespective of whether they actually become partners or not.
In studies of complete networks, these data are available for all actors
in the network. Thus, a necessary condition for conducting a complete
network study is that the delineation of the network gives a reasonable
approximation to the set of the actual and potential relational part-
ners. However, this information comes at the price of dependence of
observations, which rules out the application of the common statistical
procedures, as these rely on independence of residuals. Depending on
the exact nature of the data-generating process, such procedures can be
biased toward conservative as well as liberal testing (Kenny and Judd
1986; Bliese and Hanges 2004), and therefore lack reliability.

2.2. An Assessment of Previously Used Analytical Methods

There have been earlier attempts to separate selection effects from in-
fluence effects, which we categorize in three main groups: (1) modeling
frequencies in a contingency table, (2) analyzing characteristics aggre-
gated from the personal network, and (3) structural equation modeling.
Here, we will briefly characterize these methods, in this order, and high-
light the degree to which they meet the requirements on the three key
issues introduced.

In the contingency table approach, dyads of mutually chosen
best friends are typically cross-tabulated according to whether or not
the two pupils’ friendship remains stable between first and second mea-
surement, and whether or not their behavior falls in the same, binary
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category. Influence is typically assessed by studying the subsample of
respondents who named the same best friend in both waves, while se-
lection is assessed on the subsample of changing friendship ties. For
both mechanisms, probabilities of change toward a behaviorally ho-
mogeneous friendship are calculated, and based on these probabilities,
predictions are generated for the whole sample of dyads. Significance
tests for the two mechanisms are then derived by comparing these pre-
dictions to the observed data, under the assumption of dyad indepen-
dence. Prominent research that employs variants of this approach are
Kandel’s (1978) seminal study of marijuana use, educational aspira-
tions, political orientation, and delinquency at New York State high
schools, Billy and Udry’s (1985) study of adolescents’ sexual behavior,
and Fisher and Bauman’s (1988) investigation of adolescents’ smok-
ing and alcohol consumption. Our key issue of network dependence,
here in the shape of inadequately assuming dyad independence, is usu-
ally acknowledged as an acceptable weakness in this research. The two
other key issues, though, remain fully unaddressed. The use of incom-
pletely observed data in particular puts a question mark over the results.
Because the categorization of dyads in the contingency table is based
only on the observed states at the beginning and at the end of the
observation period, the possibility of multiple explanatory trajectories
linking these observations (as shown in Figure 1) is ruled out. Alterna-
tive generating mechanisms, finally, can to some degree be controlled
for in this approach; see Fisher and Bauman (1988) for an example.
However, triadic effects such as network closure or balance cannot be
controlled because of the restriction to dyads.

The studies we summarize as taking an aggregated personal net-
work approach follow an explicit two-stage strategy. First, the network
data are collapsed into summary statistics on the actor level, indicating
the actor’s network position and properties of his personal network.
Second, these reduced data are analyzed under independence assump-
tions. Implicit in this approach is the assumption that all change is
observed and sufficiently reflected in the chosen statistics. The inde-
pendence assumptions used in the second stage are clearly erroneous,
which means that the studies cannot establish a firm statistical conclu-
sion concerning processes of influence and selection. Next to leaving
all our key issues unresolved, however, there are additional problems
with this approach. One is related to the arbitrariness in the choice
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of the particular preprocessing algorithm. While Ennett and Bauman
(1994), Pearson and Michell (2000), and Pearson and West (2003) make
use of the negopy software (Richards 1995), which categorizes respon-
dents into the four sociometric positions—group member, peripheral,
liaison, and isolate—Cohen (1977) relies on a definition of sociomet-
ric groups proposed by Coleman (1961), while Kirke (2004) relies on
the identification of weak components provided by the GRADAP soft-
ware (Sprenger and Stokman 1995). The different options available at
this preprocessing stage are manifold, and their consequences are not
well-understood. More importantly, though, the reliance on the output
of such algorithms implies that network positions and neighborhood
properties are used as if they were exogenously determined actor at-
tributes. Further mutual interdependencies in the network structure, or
the specific identity of the peers, are not taken into account. A “group
member” at one observation may still be identified as a “group member”
at the subsequent observation, yet the groups referred to may consist
of completely different peers. In such a situation, even the assumption
that “the group” exerted social influence in the period in-between seems
dubious. Also, the selection of specific peers cannot be modeled in an
actor-based analysis, and accordingly, the study of influence processes
is not controlled for selection. As partial solution to the problem of
peer identity, the actor-level statistics obtained in the first stage can be
combined with an analysis on the dyad level under a contingency table
approach; see Ennett and Bauman (1994) for an example.

The third type of studies that we distinguish here employ struc-
tural equation models, specified as a cross-lagged panel or a latent
trajectory model, to assess selection and influence (Krohn et al. 1996;
Iannotti et al. 1996; Simons-Morton and Chen 2005; De Vries et al.
2006). This approach has been used for data collected using complete
network as well as personal network designs. An advantage of this ap-
proach over the other two is the relative ease with which selection and
influence effects can be simultaneously assessed in the same analysis,
controlling one for the occurrence of the other. The dependent vari-
able for selection is defined here not at the dyadic level but by using a
variable expressing peer behavior, which is an aggregate of the personal
network, usually defined as the average behavior of the current peers.
In cross-lagged model specifications, there are paths from previous-
wave respondent behavior to current-wave peer behavior, and from
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previous-wave peer behavior to current-wave respondent behavior. In
this setup, the estimated path coefficient from lagged peer behavior to
current respondent behavior is taken as a measure of peer influence,
while the coefficient for the path from lagged respondent behavior to
current peer behavior is taken as an indicator for selection effects. By
estimating separate effects for old friends and new friends, the interpre-
tation of path coefficients in terms of selection and influence is possi-
ble, at least conceptually. However, the method still neglects the three
key issues of incomplete observations (estimated path coefficients di-
rectly link the observed variables to each other), alternative generating
mechanisms (selection being modeled at an aggregate level precludes
expressing alternative mechanisms at the dyadic or triadic level), and—
here especially important—the interdependence of observations. When
this approach is applied to complete network data, the individual re-
spondent, whose behavior figures centrally in one observation, will also
appear among the peers for other observations. This clearly violates in-
dependence of observations, which is one of the crucial assumptions of
structural equation modeling. While the use of ego-centered data would
solve this problem, it is not an option because it effectively precludes the
study of selection processes, as outlined earlier. Mouw (2006) identifies
a number of other limitations of the cross-lagged panel specification
for the case of ego-centered data, in particular that this specification
controls insufficiently for stable unobserved differences between respon-
dents.

To summarize: the three analytical strategies covered here all
follow a two-stage procedure. In the first stage, the network data are
collapsed into individual-level variables (e.g., local density, centrality,
indicators of group position, peer behavior) or dyad-level variables (be-
havioral homogeneity), which in the second stage figure as variables
in more conventional analyses—as dependent variables for assessing
selection effects, and as independent variables for assessing effects of
social influence. The shortcomings of such approaches are related to
the key issues introduced earlier. The stage of collapsing networks
into individual- or dyad-level data remains arbitrary and does not do
full justice to the structural aspect of evolving networks. In particu-
lar, the use of such collapsed variables artificially freezes their values
at the last preceding observation, which negates their endogenously
changing nature and inhibits the study of potentially important feed-
back mechanisms between network and behavior that are unobserved.
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Alternative mechanisms that may be responsible for observed changes
are generally difficult to control for in such models, especially when
they express triadic or higher-order network effects such as closure or
structural balance. Finally, due to the problem of nonindependence of
actors and dyads, the first step of data reduction does not deliver data
that meet the requirements of the statistical procedures applied in the
second-stage analyses.

3. A NEW APPROACH: MODELING THE COEVOLUTION
OF NETWORKS AND BEHAVIOR

A more principled statistical approach is possible by basing the data
analysis on an explicit probability model for network-behavior coevo-
lution that deals in a satisfactory way with the three key issues of net-
work dependence, control for alternative mechanisms, and unobserved
changes in between observation moments. A computational model,
which can be analyzed by means of computer simulations, is likely to be
the only satisfactory way to proceed. There is a rich tradition in compu-
tational models for networks, and a smaller literature in which network
ties as well as individual attributes change endogenously. Some exam-
ples are Carley (1991), Macy et al. (2003), and Ehrhardt, Marsili, and
Vega-Redondo (2007). In part of this literature the changing attributes
refer to strategies played in games (e.g., Eguı́luz et al. 2005). Research
in the physics literature on models of mutually dependent networks
and attributes is reviewed by Gross and Blasius (2008). This literature
is mainly oriented toward deriving macrolevel properties of data sets
implied by models defined by relatively simple behavioral rules—but it
is not very useful for purposes of statistical inference. Statistical mod-
els for cross-sectional data with mutually dependent network ties were
proposed by Robins, Elliott, and Pattison (2001) and Robins, Pattison,
and Elliott (2001), and are further discussed by Robins and Pattison
(2005). For our purpose of longitudinal statistical analysis, we make
use of the model proposed by Snijders and colleagues (2007), which
is an extension of earlier modeling work by Snijders (2001, 2005) for
networks without coevolving behavioral dimensions. This model has a
transparent definition as a stochastic process, and it is sufficiently flex-
ible to incorporate a wide variety of alternative mechanisms. The pro-
cess of network-behavioral coevolution is modeled here as an emergent



344 STEGLICH ET AL.

group-level result of interdependent behavioral changes occurring for
single actors, and network changes occurring for pairs of actors. One
major characteristic of this model is its assumption that changes may oc-
cur continuously between the observation moments. Models for panel
data that assume unobserved changes at arbitrary moments between
panel waves are particularly attractive for modeling feedback between
multiple variables. Such models are called continuous-time models,
and they were proposed for discrete variables by Coleman (1964) and
discussed for continuous variables, for example, by Arminger (1986)
and Singer (1998). Holland and Leinhardt (1977) proposed to use
continuous-time models specifically for network dynamics.

Handling the dynamic mutual dependence of the network ties
and the individual behavior requires a process model that specifies these
dependencies in a plausible way. The way to achieve this is based on the
second major characteristic of this model, which is its actor-based archi-
tecture. An explicit actor-based approach is in line with extant theories
of individuals who act in the context of a social network. For exam-
ple, for the study of friendship networks, taking the network actors as
the foci of modeling seems natural, as commonly invoked mechanisms
of friendship formation (like homophily, reciprocity, or transitive clo-
sure) are traditionally formulated and understood as forces operating
at the actor level, within the context of the network; the same holds
for mechanisms of behavioral change (like social influence). Modeling
these changes in an actor-based framework implies that actors are as-
sumed to “make” the change, by altering either their outgoing network
ties or their behavior. The central model components will be the actors’
behavioral rules determining these changes.

3.1. Action Rules and Occasions to Act

Some assumptions need to be made for the model to be tractable.
Changes in network ties and behavior are assumed to happen in con-
tinuous time, at stochastically determined moments. This allows us to
tackle the key issue of unobserved changes. We follow the principle,
proposed by Holland and Leinhardt (1977) for network dynamics, to
decompose the change process into its smallest steps. This is a way to ob-
tain a relatively parsimonious model, and its implementation combines
in a natural way with the continuous time parameter. Distinguishing
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between the network changes of an actor and his behavior changes, this
principle rules out the possibility that changes in network ties and in
actor behavior, or changes by two different actors, occur at the same
time point. An example for such forbidden simultaneous changes would
be binding contracts of the type “when you start smoking, I’ll become
your friend.” While such bargaining is clearly possible in reality, we
will here model it as two subsequent changes, the connection of which
cannot be enforced. Given the present application of the model to
the evolution of substance use and friendship ties, such an assump-
tion seems reasonable—in other applications, it could be relaxed. The
compound change that is observed between two observations thus is
interpreted as resulting from many small, unobserved changes that oc-
curred between the observation moments. The assumption that at any
given moment, not more than one tie variable or one behavior variable
can change, enables us to keep the rules that govern actors’ behavior
relatively simple, relieving us from the burden of explicitly modeling
the totality of changes between two measurements all at once, an ad-
vantage of continuous-time modeling put forward already by Coleman
(1964). Here, this assumption provides an elegant and simple way of ex-
pressing the feedback processes inherent in the dynamic process, where
the currently reached state is also the initial state for further develop-
ments, and where the probabilities for specific changes can depend, in
perhaps complicated ways, on the entire current network-behavior con-
figuration. The continuous-time nature of the model this way allows to
pragmatically express the total dynamics according to a simple set of
behavioral principles, with the observed, complex patterning accruing
over time. In a framework without unobserved changes between ob-
servation moments, the same complex patterning could be expressed
only by a larger number of more complicated effects, which would ob-
scure the potentially much more simple mechanisms that may govern
the change process. For example, the model then would need a separate
component to represent the probability that three previously discon-
nected actors form a clique at the next observation—whereas in our
model this can be represented as the resultant of the more basic pro-
cesses of single tie formation, reciprocation, and transitive closure. The
actor-based model allows us to represent network dependencies and
also to represent alternative generating mechanisms that are endoge-
nous to the network or dependent on observed actor variables—two
of our key issues. There is a cost to this approach, however. Because
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TABLE 1
Schematic Overview of the Model Components

Occurrence Rule of Change

Network changes Network rate function Network objective function
Behavioral changes Behavioral rate function Behavioral objective function

we cannot know which precise trajectory of small changes happened
from one observation to the next, we have to rely on data augmentation
procedures and simulation-based inference for estimating our models.
In the simulations of the model that are employed in the estimation
procedure, the first observation in the panel data set is not modeled but
conditioned upon, and used only as the starting values in the simulation
of network ties and behavior. This implies that the evolution process is
modeled without contamination by the contingencies leading to the ini-
tial state, and that no assumption of a dynamic equilibrium needs to be
invoked. For changes of network as well as behavior, we distinguish the
temporal occurrence of opportunities for the different types of changes,
and the rules of change followed by the actors, once they face such an
opportunity.

These model components, summarized in Table 1, will be
sketched below in a formal probabilistic operationalization, using the
application to substance use in high school as an illustration. Formally,
the model is a continuous time Markov process, where the totality of
possible combinations of network ties and actor behavior figures as
the state space. While the model in principle is equipped for analyzing
the coevolution of multiple dimensions of networks and behavior, we
consider—for ease of presentation—the case of one network variable X
and one dependent actor variable Z only (in the empirical section, we
will give an example with two behavioral dimensions). In the following,
first some notational conventions are introduced, and then the formal
model is sketched. A detailed mathematical account of our model is
given in Snijders and colleagues (2007).

3.2. Notation and Data Requirements

The outcome variables for which the model is defined are the chang-
ing network and the changing actor behavior—which may be called
endogenous, since they evolve as a function of each other. Indepen-
dent (exogenous) variables can be individual or dyadic, changing or
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unchanging. We make use of the following notation. The network is
assumed to be based in a group of N actors—for example, a cohort of
pupils at the same school, or business firms active in the same period
in the same industry. The network is denoted by x, where xij(t) stands
for the value of the directed relationship between actors i and j at time
point t. Examples for such relational variables are friendship between
the pupils of a year group, advice among employees in an organiza-
tion, or share ownership between business firms. We assume that x is
dichotomous—that is, xij = 1 stands for presence of a tie and xij = 0 for
absence. Next, z denotes the behavioral variable, with zi(t) standing for
the score of actor i at time point t. Examples here are the smoking be-
havior of pupils, the performance of employees, or the activity in a given
market segment of a business firm. We assume that behavioral dimen-
sions are measured on a discrete, ordinal scale represented by integer
values (e.g., dichotomous scales). Finally, v and w denote actor-level
and dyad-level exogenous covariates, respectively (for ease of presenta-
tion here assumed to be constant over time), with v(k)

i standing for the
score of actor i on actor covariate k, and w(k)

ij standing for the dyadic
covariate k measured for the pair (ij). Typical actor covariates are sex,
age, or education of a pupil or an employee, or number of employees of a
business firm. Examples for dyadic covariates could be a classmate rela-
tion between pupils in a year group, an organizational hierarchy between
employees, or the geographical distance of business firms.

We consider the case of network-behavior panel data, where the
network and behavioral data are collected for a finite set of time points
only (say, t1 < t2 < · · · < tM), with at least M = 2 waves. In the fol-
lowing section, the data are indicated by lowercase letters (networks
x(t1) , . . . , x(tM), behavior z(t1) , . . . , z(tM), etc.), while the stochastic
model components (of which these data are assumed to be realizations)
are indicated by uppercase letters (network model X(t) and behavioral
model Z(t)). The formal model is obtained by spelling out the submod-
els indicated in Table 1 and integrating them into the overall model.
Although the objective functions are the most important model compo-
nents, for ease of presentation we first explain the model for occurrence
of changes.

3.3. Modeling Opportunities for Change

The assumption was already mentioned that at any single moment,
only one tie variable or one behavioral variable may change. More
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specifically, it is assumed that at stochastically determined moments,
one actor gets the opportunity to change one of his or her outgoing
tie variables, or to change his or her behavior. Such opportunities for
change are called micro steps. It is also allowed that the actor does
not make a change but leaves things as they are. The frequency by
which actors have the opportunity to make a change is modeled by
rate functions, one for each type of change. The main reason for having
separate rate functions for the behavioral and the network changes is
that practically always, one type of decision will indeed be made more
frequently than the other. In information flow networks, for example,
we can expect that the actors’ individual properties (here: knowledge
states) change more quickly than their network ties. In group formation
processes, where the behavioral dimensions may represent attitudes, the
opposite may be true. In the application to substance use and friendship
at high school, we would expect more frequent changes in the network
than in substance use, caused by (1) the addictive nature of substance
use and (2) the students’ social orientation phase in adolescence.

The first observations of network ties x(t1) and behavior z(t1)
serve as starting values of the evolution process — that is, they are not
modeled themselves but conditioned upon, and only the subsequent
changes of network ties and behavior are modeled. In order to obtain
a Markov process, waiting times between micro steps must have expo-
nential distributions, as this is the only distribution with the lack of
memory property (Norris 1997). For each actor i and for network and
behavioral changes alike, we model the waiting time until actor i takes
a micro step by exponentially distributed variables Ti

net and Ti
beh with

parameters λi
net > 0 and λi

beh > 0, i.e., the waiting times are distributed
such that Pr(T > t) = exp(−λt) for all t > 0. The parameters of these
distributions indicate the rate (or speed) at which the respective change
is likely to occur; the expected waiting time is 1/λ. Since actual waiting
times between changes are not observed, more complicated modeling
is unwarranted. It is further assumed that all waiting times are indepen-
dent, given the current state of network and behavior. Properties of the
exponential distribution imply that, starting from any given moment in
time (e.g., the moment of the preceding micro step), the waiting time
until occurrence of the next micro step of either kind by any actor is
exponentially distributed with parameter

λtotal =
∑

i

(
λnet

i + λbeh
i

)
. (1)
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The probability that this is a network micro step taken by a
particular actor i is given by

λnet
i

/
λtotal, (2)

and the probability that this is a behavior micro step taken by a partic-
ular actor i is given by

λbeh
i

/
λtotal. (3)

There may be heterogeneity in the activity of actors — some ac-
tors may change their network ties, or their behavior, more quickly than
others. Such activity differences may be caused by individual properties
(e.g., by sex differences) or by an existing network structure (e.g., by the
number of ties an actor already has). We can incorporate such activity
differences between actors by letting the parameters λ that govern the
rate functions depend on actor attributes and network positions, as in
Snijders (2001, 2005). In this paper, however, we limit the discussion
to model specifications where both types of rate functions are constant
across actors, and depend only on the periods between panel waves.
Accordingly, from here onward, the lower index m of a rate λtype

m will
denote a time period, 1 ≤ m ≤ M, not an individual anymore.

3.4. Modeling Mechanisms of Change

What happens in a micro step is modeled as the outcome of changes
made by the actors. Micro steps can be of two kinds, corresponding
to network changes or behavioral changes. For network changes, the
micro step consists of the change of one tie variable by a given actor.
Say x is the current network and actor i has the opportunity to make
a network change. The next network state x′ then must be either equal
to x (i.e., keep the current situation) or deviate from x in exactly one
element in row i (i.e., change the tie variable linking actor i to one
other actor). From these N possible outcomes, it is assumed that i
chooses that value x′ for which fnet

i (x, x′, z) + εnet
i (x, x′, z) is maximal.

Here z is the current vector of behavior scores, fnet is a deterministic
objective function that can be interpreted loosely as a measure of the
actor’s satisfaction with the result of the network decision (“what the



350 STEGLICH ET AL.

actor strives for when changing network ties”), and εnet is a random
disturbance term representing unexplained change. By making some
convenient standard assumptions about the distribution of the random
component (McFadden 1974; Pudney 1989), the choice probabilities
can be expressed in multinomial logit shape,

exp
(
fnet
i (x′, z)

)/∑
x′′

exp
(
fnet
i (x′′, z)

)
, (4)

where the sum in the denominator extends over all possible next network
states x′′. This model for tie probabilities was used also by Snijders
(2001) and Powell and colleagues (2005).

In a behavioral micro step, following again the parsimonious
modeling principle that changes occur in the smallest possible steps, it
is assumed that a given actor either increments or decrements his score on
the behavioral variable by one unit, provided that this change does not
step outside the range of this variable; it is also assumed that the score
is not changed. The modeling is completely analogous to that of the
network micro steps. If z is the current vector of behavior scores for all
actors, and i is the actor allowed to change his behavior, let z′ denote the
vector resulting from an allowed micro step. It is allowed that i chooses
that value z′ for which fbeh

i (x, z, z′) + εbeh
i (x, z, z′) is maximal, where

now fbeh is a different deterministic objective function that again can be
interpreted as the actor’s satisfaction with the result of the behavioral
decision, and εbeh again is a random disturbance term representing
unexplained change. By making appropriate assumptions about the
distribution of the random component, choice probabilities can also be
expressed in multinomial logit shape,

exp
(
fbeh
i (x, z′)

)/∑
z′′

exp
(
fbeh
i (x, z′′)

)
, (5)

where now the sum in the denominator extends over all possible next
behavior states z′′. This type of model, for changes in an ordinal variable
not combined with network ties, was used also by Chan and Munoz-
Hernandez (2003).

It may be noted here that the model formulation in terms of
choice models does in no way imply that we assume actors to be
fully strategically rational, let alone that estimated parameters for the
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objective functions express respondents’ actual preferences. Because
the states’ evaluations in terms of the objective function are being com-
pared immediately after a contemplated micro step, the actors’ behavior
lacks the strategic element of considering reactions from other actors.
The model therefore can best be viewed as an instantiation of myopic
rationality, following Luce’s (1959) rationality axioms.

The focus of modeling is on the deterministic parts, defined by the
objective functions f. A high degree of flexibility is achieved by modeling
these as linear combinations of effects that express the dependence of
network and behavior on each other as well as on externally given
variables. The term exogenous will be used for effects depending on
such external variables, while endogenous effects depend on the current
values of the dependent variables (networks and behavior). For network
changes, the objective function has the general shape fnet

i (x, x′, z) =∑
h βnet

h snet
h (i, x, x′, z), where statistics snet

h stand for the effects, weighted
by parameters βnet

h whose size is determined by fitting the model to the
data. Analogously, the objective function for behavioral changes has
the form fbeh

i (x, z, z′) = ∑
h βbeh

h sbeh
h (i, x, z, z′). The statistics, or effects,

must be defined on substantive grounds based on theory and field
knowledge. They are arbitrary from the point of view of mathematical
modeling, although in practice it is an advantage that they are not
too complicated computationally. The most important network and
behavior effects depend only on the new states x′ and z′, not on the
previous states x and z, and their weights β can be interpreted as the
degree to which the actors have a tendency to change into a direction
where the network-behavioral state has high values for these effects. A
selection of possible endogenous network effects snet

h is given in Table 2,
while a similar selection of effects sbeh

h for behavioral changes is given
in Table 3. These components are based on indicators of structural
positions in networks that are of fundamental importance in social
network analysis (Wasserman and Faust 1994). The second column
of these tables contains the formulas of the statistics that express the
respective effects.

In these tables, similarity of the behavioral scores of two ac-
tors i and j is defined as simij = 1 − |zi − zj|/rangeZ, where the range
of behavioral scores is defined as the maximum minus the minimum of
observed values. By this definition, similarity is standardized to the unit
interval, sim = 0 indicating maximally dissimilar scores and sim = 1
indicating identical (i.e., maximally similar) scores. For the calculations
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of the statistics in the tables, similarity is further centered around the
empirical average over all measurement points. Such centering reduces
estimation difficulties caused by collinearity. Therefore, the covariates
and behavioral variables are also centered (which, in this case, can be
seen back in the formulas). The balance effect for network evolution
(Davis 1963; Mizruchi 1993) contains a measure of structural similarity
strsimij = ∑

h (b − |xih − xjh|) that is analogous to similarity, where b is
a parameter used for standardization. In network terms, this may be
regarded as a measure for structural equivalence regarding outgoing
ties (Lorrain and White 1971). The tables can naturally give only a
glimpse of the complexity and richness of modeling that becomes pos-
sible within the proposed framework and may be elaborated in future
research.

3.5. Integration of Model Components and Model Estimation

The total model specification for network-behavioral coevolution con-
sists of the first wave observations x(t1) and z(t1) as the initial state of the
stochastic process, the rate functions defining the rates of occurrence of
network or behavioral micro steps by specific actors as sketched above,
and the choice probabilities for each possible micro step. As a whole, the
model belongs to the class of continuous time Markov chains (e.g., Norris
1997). The description given above allows us to construct a computer
simulation of this process and also to specify the so-called intensity
matrix which is the mathematical characterization of the Markov chain
process (cf. see Snijders et al. 2007).

For given sets of parameter values, the evolution model can be
implemented as a stochastic simulation algorithm that can be used
to generate network and behavioral data according to the postulated
dynamic process. Since the model is a Markov chain, the simulation
algorithm is defined by giving the step of a single change in the process.
We start out at some network-behavior configuration (x(t), z(t)). First,
a waiting time is drawn from the exponential distribution with param-
eter (1), and the time parameter t is incremented by this waiting time.
The process stops when time exceeds the end time of the period. If it
continues, using probabilities (2) and (3), it is determined whether the
next event is a network change or a behavior change, and who is the
actor making the change. The change to be made is chosen according
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to probabilities (4) or (5), respectively. The process repeats itself until
the end of the period is reached. At that point, the resulting simulated
network-behavior configuration can be evaluated.

The model is too complex to allow for closed-form calculations of
probabilities, expected values, etc., which is why direct ways of parame-
ter estimation such as maximum likelihood are not easily implemented.
However, the simulation algorithm can be employed to determine pa-
rameter estimates as those values under which simulated and observed
data resemble each other most closely. This idea is instantiated in the
method of moments estimation routine, which is used in the empirical
section of this paper. To define it, each model parameter θ. must be
matched with a statistic S. that can be evaluated on a given data set (be
it simulated or observed), and which defines an estimation equation for
this parameter by demanding that the expected value over simulations
is equal to the observed value of the statistic. The vector of parameter
estimates is obtained as the joint solution to the corresponding system
of equations. For network-behavior coevolution models, Snijders and
colleagues (2007) proposed the following four types of statistics for the
four types of model parameters according to Table 1:

Network rate, period m θ. = λnet
m S. =

∑
ij

|Xij(tm+1) − xij(tm)|

Behavior rate, period m θ. = λbeh
m S. =

∑
i

|Zi(tm+1) − zi(tm)|

Network objective θ. = βnet
h S. =

∑
m

∑
i

snet
h (i, X(tm+1), z(tm))

function effects

Behavior objective θ. = βbeh
h S. =

∑
m

∑
i

sbeh
h (i, x(tm), Z(tm+1))

function effects

The expected value over simulations of each of these estima-
tion statistics S. can be understood as a function of the vector θ of all
model parameters, and it is typically monotone increasing in its “own”
parameter. Under mild regularity conditions (nondegeneracy of the ma-
trix D of partial derivatives of statistics S by parameters θ), parameters
can be uniquely identified. Notice the “cross-lagged” combination of
simulated data at the end of an observation period with observed data
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at the beginning of the period, on which the estimation statistics for ob-
jective function parameters are based. Here it is ensured that selection
and influence processes that result in the same cross-sectional patterns
can be empirically distinguished, provided that the lagged statistic is
reasonably stable over time.

The iterative procedure by which parameter estimates and stan-
dard errors are obtained is described in detail by Snijders (2001) and by
Snijders and colleagues (2007), and it can be sketched as follows. The
iterations start at a parameter value θ̂0, and at step k they have reached
the current trial parameter value θ̂k. The process is then simulated ac-
cording to this parameter value, yielding simulated statistics Ssim

k . After
this simulation, the parameter is updated according to the equation
θ̂k+1 = θ̂k − ak+1D−1

0 (Ssim
k − Sobs), where D0 is an approximation of the

matrix of partial derivatives of statistics S by parameters θ evaluated at
θ0, where Sobs is the observed vector of estimation statistics, and where
ak is a sequence of numbers that approach zero at rate k−c; c is chosen
from the interval 0.5 < c < 1 so as to obtain good convergence prop-
erties. The final estimate is defined as a tail average of the trial values,
θ̂ = 1

R

∑R
r=1 θ̂ r0+r, where the initial number of trials r0 is long enough

for a suitable burn-in period, and R is large enough to obtain a stable
estimate. Standard errors of the estimate θ̂ are calculated as the square
roots of the diagonal elements of the approximate covariance matrix
of the estimator function θ̃ , evaluated at the estimate, as given by the
equation covθ̂ (θ̃ ) = D−1

θ̂
�θ̂ (S)Dθ̂ . Here �θ̂ (S) stands for the matrix of

simulated covariance of the vector of estimation statistics, evaluated at
the estimate, and D is again the (approximate) derivative matrix, now
evaluated at the estimate.

Parameter estimation for this type of model has been broadly
categorized as “third generation problems” in applied statistics
(Gouriéroux and Monfort 1996) and it is computationally intensive.
Depending on the data set and the model, it is possible—but rare—that
the algorithm does not converge in a satisfactory way. This happens
for models that are complicated in the sense that there are too many
parameters relative to the variation in the data, or when effects are
highly correlated in the data. Nonconvergence may also be an indicator
of model misspecification. In the large majority of cases, however, with
data sets ranging between 30 and a few hundred actors, and when the
amount of change between successive waves is not too large while the
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amount of change between the first and last waves is large enough, our
experience is that convergence results are good.

3.6. Interpretation of Model Parameters

As a consequence of the actor-based nature of modeling and the de-
composition of observed transitions from one observation to the next
as a sequence of unobserved small changes, special attention needs to
be paid to the interpretation of the estimated model parameters. The
parameters of the rate functions can be related directly to the speed
of the evolution process—keeping in mind that they reflect frequencies
of opportunities for change, not frequencies of actual change, and that
actors who are near the optimum of their objective functions will have
a smaller probability of utilizing their opportunity for change. The pa-
rameters of the objective functions, however, relate in a more indirect
way to the observed global dynamics of network and behavior. From
a perspective of agency, these functions can be regarded as satisfaction
measures of the actors with their local network-behavioral neighbor-
hood. At a less construing level, they can be thought of descriptively, as
a summary expression of the behavioral rules that are likely to be fol-
lowed by the actors, given the observed data. These objective functions,
together with the current network-behavior configuration, imply spe-
cific global dynamics as emergent property of the individual changes,
in which network actors are mutually constraining each other and mu-
tually offering opportunities to each other in a feedback process. In
order to understand how the estimated parameters of the objective
functions relate to the global dynamics observed, the Markov prop-
erty of the process model needs to be invoked. This property implies
that corresponding to the parameters there is a stationary (equilib-
rium) distribution of probabilities over the state space of all possible
network-behavior configurations. Because the data configuration ob-
served in the first wave of the panel will often not be in the center of
this equilibrium distribution, the model defines a nonstationary process
of network-behavioral dynamics, starting at the first observation and
then “drifting” toward those states that have a relatively high probabil-
ity under the equilibrium distribution; for the mathematical principles,
see Norris (1997), for example. The dynamics as well as the station-
ary distribution of all but the simplest cases of these models are too
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complex for analytic calculations, but they can be investigated by com-
puter simulation.

For the “immediate interpretation” of the parameters of the
objective functions, it can be useful to consider the odds of some-
what idealized micro steps (this is similar to the interpretation of pa-
rameters obtained by logistic regression). Suppose an actor i is in a
situation to make a network micro step, and suppose two alterna-
tive courses of action result in networks xA and xB. From the lin-
ear shape of the objective function and the multinomial logit prob-
abilities for micro steps, the odds for these outcomes can be derived
as Pr(xA)/Pr(xB) = exp(

∑
h βnet

h [snet
h (xA) − snet

h (xB)]), in simplified no-
tation. As can be seen from this formula, the odds depend on the
degree to which the two networks differ on the actor-specific statis-
tics snet

h (see again Table 2), these differences being weighted by the
model parameters. Likewise, if the actor is in a situation to make a
behavioral micro step and is considering two alternative courses of ac-
tion resulting in behavioral vectors zA and zB, the odds are given by
Pr(zA)/Pr(zB) = exp(

∑
h βbeh

h [sbeh
h (zA) − sbeh

h (zB)]).
By way of example, let us assume that in a simple model

specification, the function fnet
i (x, x′, z) = −2.0

∑
j x′

ij + 2.5
∑

j x′
ijxji +

1.0
∑

j x′
ijsimij was estimated as a typical network objective function,

while the behavioral objective function was estimated as fbeh
i (x, z, z′) =

−1.0(z′
i − z̄) − 0.5(z′

i − z̄)2 + 2.5(
∑

j xijsim′
ij)/(

∑
j xij), also quite typi-

cal. The primes indicate those elements in the formulas the values of
which are under the control of actor i and may be changed in a micro
step that is governed by the objective function in which they occur.
The network objective function contains three effects: (1) the outdegree
effect (with parameter estimate βnet

out = −2.0), (2) the reciprocity effect
(with parameter estimate βnet

rec = 2.5), and (3) the similarity effect (with
parameter estimate βnet

sim = 1.0). In the behavioral objective function,
the model contains three more effects: (1) an effect with two parameters
determining the basic shape of the distribution of the variable, (2) one
linear (with estimate βbeh

lin = −1.0) and one quadratic (with estimate
βbeh

quad = −0.5) effect, and (3) an effect of average similarity to neighbors
(with parameter estimate βbeh

av.sim = 2.5). We now address the question
of how these parameter values can be interpreted, starting with the
network objective function.

The parameter attached to the outdegree effect in the network
objective function has a negative sign, which indicates that observed
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network densities are low. If the objective function were constant zero
(i.e., if the outdegree parameter and all other parameters are zero), the
network micro steps would, according to the odds formula above, lead
in the long run to a network of density 0.5. In other words, 50% of all
possible ties would be present in such equilibrium networks. Empirical
densities in most social networks are much lower than 0.5, and therefore,
the outdegree parameter (which models the general tendency of the
actors to send out ties in the network, hence indirectly also the density
of the network) is typically strongly negative. If we for the moment
disregard the other parameters, the value of –2.0 for the outdegree
parameter means that upon an opportunity for change, the odds for
any tie to be present versus absent are exp(−2.0) ≈ 0.135.

The reciprocity parameter accounts for the observed degree of
reciprocity in the networks. If the objective function consisted only of
the outdegree effect and if the reciprocity parameter was zero, the micro
steps would in the long run lead to a network in which the incoming
and outgoing ties are independent. In such a situation, reciprocated
ties in sparse networks would be very unlikely. However, many sparse
social relations, such as friendship, exhibit a relatively high degree of
reciprocation. For modeling these relations, the reciprocity parameter
(which models the general tendency of the actors to reciprocate incom-
ing ties by sending back an outgoing tie) is typically strongly positive.
The objective function value associated with a reciprocated tie is calcu-
lated by adding to the outdegree parameter value (for having the tie) the
reciprocity parameter value (for the additional property of reciprocity),
which amounts to a net value of –2.0 + 2.5 = 0.5 for a reciprocated tie.
Making use of the odds formula above, the odds of reciprocating an
incoming tie versus not reciprocating it are exp(0.5) ≈ 1.65.

The positive similarity effect in our example indicates that actors
tend to have ties to similar others rather than to dissimilar ones; the
odds are ceteris paribus 2.72 for a tie to a maximally similar actor versus
a maximally dissimilar actor. By including this effect, homophilous
selection based on the behavioral variable can be modeled.

So far, the odds calculations referred only to the existence of
a tie versus nonexistence, but they could also be more complex. For
instance, the odds of reciprocating an incoming tie to a dissimilar ac-
tor versus creating a unilateral, unreciprocated tie to a similar one are
exp(0.5 + 2.0 − 1.0) ≈ 4.48. As in logistic regression, the calculation of
odds becomes more complex as the model has more components and
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as one is willing to distinguish more variable configurations. We must
keep in mind that all odds calculations are model-derived and refer to
artificial comparisons, since they hold only under a ceteris paribus as-
sumption. Accordingly, for determining their validity, they need to be
considered in light of how the actual data look—here reflected in the
empirical values of the statistics s—and whether a specific odds calcula-
tion derived from an estimated model refers to situations that frequently
occur in the data (then validity is less problematic) or not (then calcu-
lation of the odds in question may be an unwarranted extrapolation).
In general, the more effects one is willing to consider (and estimate) si-
multaneously, the less analytically tractable the model-explained global
dynamics get, and the more one needs to consult simulations for learn-
ing about what an estimated model means in terms of global network
properties.

In the example above, we now consider the behavior objective
function, which contains three more parameters. The first two are
the linear and quadratic shape parameters, which model the shape
of the long-term distribution of the behavior variable. Let us assume
that the possible scores on the behavioral variable range from 1 to 5
and that the observed average over all time points is at z̄ = 3. The
centered behavior variable then ranges from –2 to +2. Disregarding
the third parameter for the moment, the two shape parameters de-
fine a parabolic objective function with maximum at the centered
behavior score of –1, which corresponds to value 2 on the original
scale. This means that in the long run, the distribution of respon-
dents’ behavior scores will also be unimodal with a maximum at
score value 2. Odds calculations can also be done for behavioral mi-
cro steps. For instance, comparing a move from the average score of
3 to the optimum score of 2 with the option of staying at score 3,
the odds are exp(−1.0[(2 − 3) − (3 − 3)] − 0.5[(2 − 3)2 − (3 − 3)2]) ≈
1.65, meaning that in direct comparison, the move down to 2 is more
likely (62%) than the stay at 3 (38%).

The third parameter, positive average similarity, indicates a
propensity of the actors to behave in the same manner as their friends
do—that is, to assimilate to them. Consider the same actor as above
with score 3 on the behavior, and assume he has five friends, four of
which are scoring 3 or higher, and one of which is scoring 2 or lower.
Then for the above comparison of staying at score 3 versus moving
down to score 2, the actor would get more dissimilar to the four friends
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scoring high while getting more similar to the one friend scoring low.
Average similarity to friends would decrease by 0.5 (the sum of similar-
ity changes to all actors) divided by 5 (the number of friends), and the
new odds can be calculated by multiplying the odds from above with the
new contribution exp(6.0 × (−0.5/5)) ≈ 0.549, such that we altogether
get odds of 0.549 × 1.65 ≈ 0.90 for moving down to 2 instead of staying
at 3. Due to the additional effect of assimilation to friends, the binary
probabilities now change to slightly favoring staying at 3 (52%) over
moving down to score 2 (48%).

In the total model, both selection and influence effects were
included in the same model specification (though in different parts).
Therefore, the effects are controlled for each other—that is, they are
statistically separated. In order to assess the empirical evidence for
either effect, we need to take a closer look at the standard errors and
test the hypothesis that the effect is nil. In the empirical part reported
in the following section, we will address these issues in more detail. We
will also give examples of simulation-based inference regarding global
network dynamics in the shape of an investigation of the determinants
of network autocorrelation.

4. THE CO-EVOLUTION OF FRIENDSHIP AND SUBSTANCE
USE

In this section, the use of the techniques introduced above will be
demonstrated. In an example application, we investigate the interplay
of friendship dynamics and the dynamics of substance use among ado-
lescents, the substances studied being alcohol and tobacco. On both
dimensions, network autocorrelation is a well-documented fact, and
on both dimensions, influence as well as selection were advanced as
explanatory mechanisms (Napier, Goe, and Bachtel 1984; Fisher and
Bauman 1988; Ennett and Bauman 1994; Andrews et al. 2002). The
purpose of the present investigation is to decide between the different
underlying theories, for the social environment in which our data were
collected, by assessing the strength of their corresponding mechanisms.
By fitting actor-based models, we are able to overcome the three key is-
sues we identified: the actor-based way of modeling ensures that depen-
dencies in the data can be sufficiently accounted for, the simultaneous
modeling of network and behavioral evolution ensures that selection



SEPARATING SELECTION FROM INFLUENCE 363

and influence can be controlled for each other as well as for other
mechanisms of network and behavior change, and the continuous-time
model controls for invisibility of changes between panel waves.

4.1. Questions Addressed

The investigation addresses three main questions:

1. To what degree can influence and selection mechanisms account
for the observed coevolution of substance use and friendship ties in
our data?

2. Does the answer to this question differ between the use of tobacco
and the use of alcohol?

Finally, in order to explicitly address the issue of separating selection
and influence and quantify the amount of observed substance use
similarity among friends, we ask:

3. Which amount of network autocorrelation on the substance use
dimensions can be accounted for by selection mechanisms, by in-
fluence mechanisms, or by other ‘control’ mechanisms?

4.2. Data

The data were collected in the Teenage Friends and Lifestyle Study
(Pearson and Michell 2000; Pearson and West 2003). Tracing a year
cohort at a secondary school in Glasgow, Scotland, friendship networks,
smoking behavior, alcohol consumption, and other lifestyle variables
were measured at three time points in successive academic years, starting
in February 1995 when the pupils were 12–13 years old and ending in
January 1997. The panel contained a total of 160 pupils, of which
150 were present in the first wave, 146 in the second, and 137 in the
third. Social networks were assessed by asking pupils to name up to six
friends from their year group. They were also asked about “adolescent
issues” such as lifestyle, taste in music, smoking behavior, and alcohol
and drug consumption. We focus here on the dynamics of smoking
and alcohol consumption only; analyses of other variables in this study
can be found in Steglich, Snijders, and West (2006, taste in music) and
Pearson, Steglich, and Snijders (2006, cannabis use).
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FIGURE 2. Observed distribution of substance use in the three waves.

The network variable of interest is the friendship relation between
pupils. If pupil i reported pupil j as his friend, this was coded as xij =
1, otherwise xij = 0. The two dimensions of substance use are smoking
zsmoke, which ranged from 1 (nonsmokers) to 3 (regular smokers, i.e.,
more than one cigarette per week), and alcohol consumption frequency
zalcohol, which ranged from 1 (not at all) to 5 (more than once a week).
The distribution of these variables at the three measurement points can
be seen in Figure 2.

To indicate the magnitude of network autocorrelation that occurs
in these data, we consider the two most widely used standardized mea-
sures of network autocorrelation, the coefficients proposed by Moran
(1948) and Geary (1954). The two coefficients measure slightly different
aspects of the association between behavioral homogeneity and pres-
ence versus absence of a relational tie, as illustrated by the formulas,
which is why it is useful to study them both in parallel to check va-
lidity of our results (Cliff and Ord 1981). The I-coefficient proposed
by Moran is based on cross-products of behavioral scores of relational
partners. Values close to zero indicate that relational partners are not
more similar than one would expect under random pairing, while val-
ues close to one indicate a very strong network autocorrelation. Geary’s
c-coefficient is based on squared differences on the behavioral variable
between relational partners. Values close to one are expected under
random pairing, while values close to zero indicate strong behavioral
homogeneity—in this sense, Geary’s measure is an inverse indicator of
network autocorrelation. In formulas, the coefficients are defined as
follows:
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FIGURE 3. Observed network autocorrelation.

I =
n

∑
ij

xij(zi − z̄)(zj − z̄)

⎛
⎝∑

ij

xij

⎞
⎠(∑

i

(zi − z̄)2

) , c =
(n − 1)

∑
ij

xij(zi − zj)2

2

⎛
⎝∑

ij

xij

⎞
⎠ (∑

i

(zi − z̄)2

) (6)

The observed values of I and c are visualized in Figure 3. As
expected, on both behavioral dimensions and at all three measurement
points, there is considerable network autocorrelation, i.e., I > 0 and c
< 1.

For some initial impressions of selection and influence, consider
Figures 4 and 5. In Figure 4, tie change patterns in a period are cross-
tabulated with similarity at the beginning of the period (the figure ren-
ders results pooled over both periods). We can see that among the pupil
pairs connected through a tie at the beginning of the period, tie stability
is the more likely the higher their initial similarity (possible deselection
of dissimilars). Also among initially unconnected pupil pairs, the more
similar the pupils were in the beginning (possibly homophilous selec-
tion), the more likely that new ties would be created. Figure 5 depicts
how pairs of actors change their behavior relative to each other, setting
off pairs with a friendship tie against pairs without a friendship tie at the
beginning of the period. Four patterns of behavior change are distin-
guished: actors can approach each other on the behavioral dimension,
distance themselves, or keep their current similarity. This third group is
subdivided by a median split of similarity scores into those pairs of ac-
tors who keep their similarity at a high level (stay close) or at a low level
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FIGURE 4. Tie change patterns by initial behavior.

FIGURE 5. Behavior change patterns by initial tie status.

(stay away). What can be seen is that for both behaviors alike, presence
of a tie at the beginning of a period enhances the odds of staying similar
versus distancing themselves, and reduces the odds of staying dissimilar
versus approaching each other—possibly caused by social influence. It
should be noted, though, that the descriptive patterns of these figures
do not allow a conclusion about the underlying mechanisms of network
and behavior change, for the reasons outlined earlier.

Next to substance use, some control variables are included in the
analyses. The individual control variables included are sex (1 = male,
2 = female), birth year (minus 1900), the amount of money the pupils
had at their disposal (measured in units of 10 British £ per week), and
whether or not they were currently engaged in a romantic relationship
(1 = no, 2 = yes). Furthermore, as potential predictors for substance
use, parental smoking and sibling smoking are included (both coded
1 = non-smoking, 2 = smoking). As an example for a dyadic covariate,
the classmate-relation (“being in the same class”) was included.
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TABLE 4
Summary of Expectations About Model Parameters

Verbal Description Model Parameter Sign

(a) Rules of Network Change (Friendship)
1. The density of friendship networks is low. outdegree −
2. Friendship nominations tend to be

reciprocated.
reciprocity +

3. Popular pupils attract friendship
nominations.

preferential attachment +

4. Friendship networks tend to display triadic
closure.

transitive ties +
distance-2 −

5. Friends tend to be structurally equivalent. balance +
6. Friendship is more likely between

classmates.
classmate +

7. There is homophily according to sex. sex similarity +
8. Older students are less invested in school

networks.
birth year ego/alter +

9. Money attracts friends. money alter +
10. There is homophily according to money. money similarity +
11. Romantic relations reduce investment in the

network.
romantic ego/alter −

12. There is homophily according to romantic
relations.

romantic similarity +

13. There is homophily according to substance
use.

behavior similarity +

(b) Rules of Behavioral Change (Substance Use)
14. Own substance use is assimilated to friends’

use.
average similarity +

15. Older pupils use more substance. birth year −
16. Pupils whose parents/siblings smoke use

more substance.
parent/sibling smoking +

17. Pupils who use one substance also use the
other.

other substance use +

18. Pupils with more money use more
substance.

money +

19. Pupils involved in romantic relations use
less substance.

romantic −

4.3. Model

We now fit to the data a series of actor-based models as introduced in the
previous section. Here, a description of the most comprehensive of these
models is given (the “full model” to be later seen in Tables 5 and 6), of
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which all the other models are simplifications. The model for friendship
dynamics is first discussed by specifying the network objective function
and then the behavior objective functions are sketched, one for each
type of substance use, modeling behavior dynamics.

An overall tendency to form network ties, expressed by the out-
degree effect, forms the basis of the network objective function. It is
expected to be negative due to the low density of the observed networks
(see the first row in Table 2). Endogenous determinants of network
evolution are properties by which the network, in a feedback process,
affects its own dynamics. We include several endogenous network ef-
fects: the tendency to reciprocate friendship nominations (reciprocity
effect, expected positive, second row in Table 2), the tendency to nom-
inate popular (i.e., frequently chosen) others as friends (“preferential
attachment,” expected positive, third row), and tendencies toward net-
work closure and structural balance. Network closure means that direct
friendship relations are more likely to those others who also indirectly
are friends—that is, who are linked via a third pupil. This could be op-
erationalized by three different effects, described in rows 4–6 of Table
2, of which we chose rows 5 and 6. Structural balance is a well-known
concept dating back to Heider (1958). In our operationalization (row
7), we measure it by the tendency to be friends with pupils who share the
same other friends: the more similar the friendship selection patterns
of two pupils (in network jargon: the more structurally equivalent they
are), the more likely they are to also choose each other as friends. Other
endogenous network effects that could be included in a model, but
which we omitted for lack of substantive theory in the present case, are
related to hierarchization and brokerage. An aversion to forming three-
cycles indicates the presence of an informal hierarchy in the network
and could be modeled by including the corresponding effect (row 8).
The betweenness effect (row 9) measures a tendency to assume a broker
role in the friendship network by establishing indirect links between net-
work regions that are not directly connected. For friendship networks,
it can be expected that there is no hierarchy and that brokerage plays
little role, hence our omission of these effects.

The dyadic variable wclassmate, indicating whether two pupils be-
long to the same class in the cohort, is expected to have a main (pos-
itive) effect on friendship, which is included in the model as a statis-
tic

∑
j xijwclassmate

ij (not visualized in Table 2). The individual variables
sex, birth year, money, and involvement in romantic relations can be
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expected to affect friendship evolution in three ways: as a main effect on
alter attractiveness (row 10), as a main effect on network activity of ego
(row 11), and as a similarity effect of homophilous selection (row 12).
Finally, in order to assess the effects of selection based on substance
use, also taking into account the variables smoking and alcohol use, the
ego-, alter-, and similarity effects are included in the model specifica-
tion. In part (a) of Table 4, reasonable expectations about the signs of
some effects are given. Because for our purpose most effects play only
the auxiliary role of control variables, we do not discuss them further
here. Nonetheless, their inclusion is crucial for our aim of explaining
network autocorrelation and properly separating selection and influ-
ence, as they capture the “alternative generating mechanisms” that we
identified as a key issue to take into account.

The basis for modeling the evolution of the substance use di-
mensions are two parameters expressing the shape of the variables’ dis-
tributions in the long run. Looking again at Figure 2, the distribution
of the smoking variable is U-shaped, while the alcohol consumption
variable is distributed according to an inverse U-shape. In the objec-
tive function, these different shapes can be expressed by the linear and
quadratic effects of substance use (see the first row in Table 3). The
sign of the quadratic term here indicates whether the objective function
is a parabola opening upward (a positive sign, implying a U-shaped
distribution as observed for the smoking variable) or downward (a neg-
ative sign, implying an inverse U-shaped distribution as observed for
the alcohol variable).

For measuring social influence on substance use, different oper-
ationalizations are possible, such as an effect of average similarity to
neighbors (second row), an effect of similarity that is not averaged but
is added over neighbors (third row), or a main effect of peers’ average
substance use (row 4). Which of those, if any, is best-suited for modeling
social influence remains in principle an empirical question. Based on
score-type tests (Schweinberger 2004) that provide a statistical basis for
choosing between such alternative operationalizations, we here chose
the average similarity effect, as it fit best with our data. It also corre-
sponds most closely to the intuitive idea that each pupil is influenced
by his group of friends in about the same way (Cohen 1977).

Individual variables v (e.g., sibling smoking) are included as
main effects in the behavior objective functions, i.e., with statistics
(zi − z̄)(vi − v̄) (not visualized in Table 3), reflecting (if the coefficient
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is positive) that higher values of v will tend to lead to higher values of
z. In the same way, the main effect of the substance use dimensions on
each other can also be included. Part (b) in Table 4 gives an overview of
reasonable expectations concerning the specific model parameters for
the substance use dynamics.

4.4. Results

We estimated models of four degrees of complexity for the coevolution
of the friendship network with smoking behavior and alcohol consump-
tion. The trend model postulates purely random change of network and
behavior, and the control model contains all effects except selection and
influence related to the behavioral variables. These models will further
serve as benchmarks for explaining observed network autocorrelation in
the discussion below. The full model is the one in which the hypotheses
from Table 4 are tested. The straw man model, finally, is a deliberately
mis-specified model in which selection and influence are modeled in
a “naive” way—that is, not controlling for most of the effects in the
control model. This straw man will serve for illustrating the dangers of
model mis-specification, in terms of failure to control for alternative
generating mechanisms. Tables 5 and 6 give parameter estimates for the
models discussed below.

First the network evolution part is considered (reported in
Table 5) and then the evolution of the two behavioral dimensions smok-
ing and alcohol consumption (reported in Table 6). The parameters
of main interest for friendship dynamics are those that operational-
ize friend selection based on substance use. The ego- and alter effects
of this type do not reach significance, suggesting that there is not a
main effect of substance use on either friendship nominating activ-
ity or on popularity in the network. The homophily-operationalizing
parameters have the predicted sign but are only marginally signifi-
cant (parameters alcohol similarity and smoking similarity in row 13 of
Table 4). This indicates that the descriptive evidence for homophilous se-
lection according to substance use (Figure 4) cannot be fully attributed
to a genuine homophilous selection mechanism, but in part also results
from a combination of mechanisms expressed by the other parame-
ters. A look at the straw man model’s estimates confirms this impres-
sion: when not comprehensively controlling for alternative generating
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mechanisms, much stronger test results for homophily based on sub-
stance use are found—a result not to be taken seriously. Effects that are
more likely responsible for the appearance of significant homophily in
the straw man model are those that are significant in the full model but
not included in the straw man model.

The inherent tendency of friendship to be reciprocated, a ten-
dency toward seeking popular others as friends, network closure, and
structural balance, together constitute a highly significant endogenous
explanation of observed friendship dynamics. The corresponding pa-
rameters’ signs confirm our expectations formulated in Table 4 (param-
eters outdegree through balance in Table 5; expectations 1 through 5
in Table 4). Also among the covariate effects, several expectations can
be confirmed, such as strong homophily mechanisms based on sex and
money (parameters sex similarity and money similarity; expectations 7
and 10 in Table 4), a marginal homophily effect of having a romantic
relation (parameter romantic similarity; expectation 12), higher attrac-
tiveness of rich versus poor friends (parameter money alter; expectation
9), and a lower network presence of older pupils, as expressed in the
positive ego effect of birth year (parameter birth year ego; expectation
8; the alter effect of birth year fell short of significance). Expectations
that cannot be confirmed are those about lower friendship involvement
of students with romantic relations (parameters romantic ego & alter;
expectation 11), and—surprisingly—also the classmate effect (param-
eter classmate; expectation 6). This may be due to the fact that in the
school studied, teaching at the time did not take place in a classroom
context, but in courses of varying composition. The class was a largely
administrative unit and did not necessarily reflect opportunity for social
interaction.

The behavioral evolution part of the models consists of the sub-
models for smoking dynamics and alcohol dynamics, with the results
reported in Table 6. Here, the focus of interest is on social influence
mechanisms (expectation 14 in Table 4), and these are clearly confirmed
by our analyses—the average similarity parameter indicates strong as-
similation effects on both substance use dimensions, in the full model
and in the straw man model alike. The overall consistency between these
two models indicates that the mechanisms of behavior change that we
control for seem to be less related to social influence processes.

The two shape parameters of the smoking submodel confirm the
expectation of a U-shaped basis for the objective function, which holds
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for all estimated models alike. This suggests that this empirical shape
(see again Figure 2) does not result from influence mechanisms alone,
but might express a “universal” property of smoking. There hardly
seems to be a “middle ground”, and pupils are either nonsmokers or
regular smokers, possibly reflecting addiction effects. Social influence
exists but is unlikely to override this basic pattern. For alcohol con-
sumption, the expected inverse U-shape is only found back in the sim-
pler models (trend and control) but not in the models containing the
assimilation effect. Apparently, the inverse U-shape of the empirical
distributions of alcohol use in Figure 2 can be better explained as re-
sulting from assimilation to friends’ alcohol consumption than from a
universal, network-independent shape of the distribution. Recall in this
context that the modeling conditions on the first observation. The in-
verse U-shaped distribution of alcohol scores that already exists at this
first observation moment is therefore not explained, but its persistence
over time is sufficiently explained as resulting from assimilation to net-
work neighbors. Finally, none of the included covariates (expectations
15–19 in Table 4) significantly explains the evolution of either substance
use dimension, stressing the point that alternative generating mecha-
nisms seem not to play as strong a role on the substance use dimensions
as they did on the network dimension.

4.5. Conclusions from the Analyses

Proceeding from these results, we can now draw conclusions about
which of the mentioned theories are able to account for the observed
coevolution dynamics. The dynamics of smoking behavior and alcohol
consumption follow roughly the same patterns: for both substances, the
parameters for homophilous selection and for assimilation are signifi-
cant. Based on significance of effects, the results in the first place can
be viewed as a confirmation of social influence theories. However, the
evidence for alcohol consumption being a “social phenomenon” in the
sense of pupils being influenced by their friends is stronger than for
smoking, which can be derived from calculation of odds as well as from
parameter significance (p = 0.002 versus p = 0.014). A micro step on
the alcohol dimension toward the friends’ average alcohol use corre-
sponds to a change of 1/range(alcohol) = 1/4 in the average similarity
statistic, so the relevant odds of the effect are exp(6.7/4) = 5.3. For the
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corresponding effect in smoking dynamics, the odds are exp(2.63/2) =
3.7. Also, the quadratic shape parameter for smoking remains signifi-
cant and is positive in the full model, unlike for alcohol, which suggests
that an important part is played by the addictive nature of smoking,
which may override social influence.

Selection of friends may well lead to friendship between pupils
of similar substance use, as can be seen from the straw man model
(p = 0.014 for alcohol, p = 0.024 for smoking). However, this by and
large seems not to result from genuine homophily according to these
substance use patterns, but from other, significant selection patterns
that are controlled for, as the significance drops to marginal size (p =
0.061 for alcohol, p = 0.086 for smoking) when we control for a broad
array of alternative mechanisms of friendship formation, as is done
in the full model. So, in the second place, the results can be seen as
supporting the argument in Feld (1981, 1982) about similarity resulting
from context effects rather than occurring independently from those.
In order to show the validity of this argument, however, it needs to be
investigated whether these significant alternative mechanisms do indeed
imply similarity on the substance use dimensions—that is, do contribute
to network autocorrelation. To test this, we now conduct a simulation
study.

4.6. A Quantitative Assessment of the Determinants of Network
Autocorrelation

We now address the issue of measuring the “amount” of network au-
tocorrelation allocated by a fitted model to the different generative
processes—that is, to selection, influence, and the control processes
unrelated to these two main effects. Two alternative measures of net-
work autocorrelation are considered, Moran’s I-coefficient and Geary’s
c-coefficient, as introduced above. Our overall conclusions from these
analyses should not depend on the specific measure chosen. We do,
however, expect minor quantitative differences since the calculation of
Geary’s measure is based on distances on the substance use scale, while
for Moran’s coefficient, it is based on cross-products.

The procedure followed is similar in underlying intuition to
Kandel’s (1978, p 433) quantification proposal, which in a footnote
she attributes to James Coleman. Also Fisher and Bauman’s (1988)
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proposal follows the same ideas, so our own proposal in principle is
nothing new. Kandel’s procedure was as follows: two simple models
are first fitted to the data, one operationalizing the selection process
“alone,” the other the influence process “alone”. Both models are then
used for calculating expected network autocorrelation, and this cal-
culated value indicates the magnitude of the effect considered. Our
implementation differs from those by Kandel and by Fisher and Bau-
man mainly by the fact that we use a model where the selection and
influence effects are mutually controlled for each other and for other
mechanisms. We thus evaluate the observed network autocorrelation,
the network autocorrelation implied by our fitted model (explained au-
tocorrelation), and the values implied by simpler models, in which either
selection, or influence, or both, are “switched off.” For this purpose,
we combine results from the full and the control model. In addition,
in order to assess the amount of network autocorrelation that can be
attributed to alternative (“control”) mechanisms, we consider implica-
tions of the trend model. In this model, both the selection and influence
effects as well as the control effects are “switched off”, enabling us to
improve on a second major criticism we had of the earlier studies—
namely, their neglect of assessing the impact of alternative mechanisms.
The resulting allocation of explained network autocorrelation accord-
ing to generating mechanisms can be seen in Figure 6. In these diagrams,
it needs to be understood that the pie slices labeled “selection” cover
substance-use based selection only—that is, homophily, ego,- and alter-
effects based on substance use. Other selection effects, such as closure
or covariate-based homophily, are allocated to the “control” slices.

The percentages in this figure were obtained in the following way.
The trend model, the control model, and the full model as well as two
hybrid models were used for simulating in continuous time network-
behavioral coevolution trajectories that follow the rules extracted from
the data. Each such trajectory starts out at the first observation of
network and behavior at t1. In the simulations, when time reaches the
moment t2 of the second observation, the autocorrelation measure is
evaluated on the simulated data. The same procedure is repeated for
all periods until the time reaches the last observation moment tM (here
M = 3). This way, observed autocorrelation measures can be related
to a distribution of simulated autocorrelation measures, and different
models can be compared on their implied distributions of network
autocorrelation measures. For brevity, we report only across-period
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FIGURE 6. Model-based decomposition of network autocorrelation. Slice sizes correspond
to percentages of the coefficient size difference between average predictions of
null and full models that through simulations could be allocated to different
coevolution mechanisms.

averages on the network autocorrelation measures. Thus, the variables
studied in Figure 6 are Moran’s I-coefficient and Geary’s c-coefficient,
averaged over observation moments t2 and t3.

The calculations rely on 1000 independent trajectories of the
network-behavioral coevolution process of five models. The main model
of interest here is the one in which, next to the control effects, both the
main influence effect and the main selection effect were estimated from
the data (the full model). The model without influence or selection,
in which the network and the two behavioral dimensions evolve inde-
pendently, is the control model. To assess the impact of the control
effects on the network autocorrelation, the trend model is estimated. It
contains only the outdegree parameter in the network part and the two
shape parameters in the behavioral parts, and yields network autocorre-
lation values that depend on universal trend together with the initially
observed state. These three data-fitted models are complemented by
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TABLE 7
Model-Based Simulated Network Autocorrelation

Smoking Alcohol

Model Moran Geary Model Moran Geary

Null −0.007 1.000 Null −0.007 1.000
Trend 0.046 (0.049) 0.908 (0.067) Trend 0.024 (0.055) 0.968 (0.071)
Control 0.097 (0.064) 0.823 (0.084) Control 0.057 (0.066) 0.930 (0.082)
No influence 0.166 (0.064) 0.680 (0.082) No influence 0.143 (0.067) 0.799 (0.077)
No selection 0.201 (0.075) 0.733 (0.082) No selection 0.200 (0.079) 0.785 (0.083)
Full 0.272 (0.076) 0.598 (0.083) Full 0.301 (0.082) 0.648 (0.077)

Observed 0.310 0.542 Observed 0.247 0.696

two “cross-combined” hybrid models. In one of these, the network part
is taken from the full model while the behavioral parts are taken from
the control model, and in the other one, the combination is reversed.
The idea behind this cross-combination is that, in order to identify the
magnitude of network autocorrelation explained by only the main se-
lection effect, we wish to compare network autocorrelation under the
full model (where selection is controlled for influence) with network
autocorrelation under a model where no selection occurs, while influ-
ence resembles that under the full model, and all control effects in the
network part fit the data best.

Table 7 renders averages and standard deviations of the network
autocorrelation coefficients over the 1000 simulated network trajecto-
ries per model, next to the expected value under permutations of the
actors (row “null”) and the observed value. The numbers refer to the
coefficients’ average over t2 and t3, the time points at the end of the
two periods in which unobserved change is simulated. What needs to
be noticed first is that the values for the full model do not perfectly
fit the observed values. For smoking, the model-predicted values are
less extreme than observed, while for alcohol consumption, it is the
other way round. This suggests that factors that lie outside the scope
of our models probably enhance smoking autocorrelation, while they
probably reduce alcohol autocorrelation.

Table 7 clearly shows that the less complex a model is, the less
network autocorrelation it implies. Taking the difference between the
full model’s predictions and the null expectations under independence
as 100% (“all the model explains”), the values of this table were trans-
formed into percentages to arrive at the diagrams in Figure 6. The
models trend, control and full, are hierarchically nested, which means
that the coefficients can be linearly transformed into percentages. The
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other two models, in which either selection or influence are switched
off, are nested in-between the control and the full model but not within
each other. Therefore, the allocation of percentage values to influence
and homophilous selection can be done in two ways: by considering the
increase of the predicted coefficient upon including the effect, compared
to the control model, or by considering the decrease of the predicted
coefficient upon excluding the effect, compared to the full model. The
resulting discrepancy of both calculations is rendered as “indetermi-
nate” in the diagrams.

As suspected, trend and control effects are responsible for a con-
siderable part of the observed network autocorrelation. More than one-
third of the explained autocorrelation on smoking is epiphenomenal—
that is, resulting from processes other than substance use based selection
and the social influence of school friends. For alcohol consumption, the
role of these effects is much weaker, approximately one-fifth of the total
explained autocorrelation. The fractions that are allocated to influence
and selection processes show two main results. On the one hand, there is
a systematic difference between substance use dimensions. For alcohol
use, the contribution of influence effects relative to selection effects is
stronger than for tobacco use, where selection plays a more important
role. On the other hand, there is a systematic difference between the two
autocorrelation coefficients. Moran’s I identifies an overall stronger role
of influence mechanisms than does Geary’s c. For smoking, this discrep-
ancy is even so strong that the two coefficients suggest opposite answers
to the question asking which of the two mechanisms contributes most
to autocorrelation.

In order to understand this discrepancy, we take a closer look
at the mathematical relationship between the two autocorrelation co-
efficients. Making use of (6), the Geary coefficient can be expressed
depending on the Moran coefficient, as follows

c = (1 − n)
n

I +
(n − 1)

∑
i

(xi+ + x+i)(zi − z̄)2

2

⎛
⎝∑

ij

xit

⎞
⎠ (∑

i

(zi − z̄)2

) (7)

where xi+ and x+i stand for actor i’s outdegree and indegree, respectively,
and their sum can be seen as the actor’s overall connectedness. The term
by which the two autocorrelation coefficients differ is proportional to
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∑
i (xi+ + x+i)(zi − z̄)2, the connectedness-weighted sum of squared dis-

tances from the behavioral average. What (7) implies is on the one hand
that for data sets in which the highly connected actors are behaviorally
extreme, the two coefficients give qualitatively different results, while
for data sets in which they are behaviorally average, the coefficients give
identical results. In our data (see again Figure 2), the smoking variable
has a U-shaped distribution, so we can expect strong differences. The
alcohol variable is unimodally distributed, which means that differences
should be smaller. In fact, this pattern is what we observe in Figure 6.
On the other hand, (7) implies that the Geary coefficient de-emphasizes
the contribution of behaviorally extreme actors compared to the Moran
coefficient (recall that Geary’s c is an inverse measure of network au-
tocorrelation). Any difference between the decomposition results for
the two coefficients can therefore be interpreted as resulting from this
different emphasis.

Given these considerations, we must come to the following con-
clusions: While there is significant evidence for assimilation to friends
on both substance use dimensions, this influence effect seems to occur
more strongly in the behaviorally extreme groups, because Moran’s co-
efficient (which is more sensitive to the contribution of these groups)
identifies an overall stronger role of influence. For smoking, these ex-
treme groups are the majority of students (U-shape of the distribution),
which explains why the discrepancy of decomposition results between
autocorrelation coefficients is particularly strong. For alcohol use, the
extreme groups constitute a minority (inverse U-shape), hence the dis-
crepancy of results is smaller.

5. DISCUSSION

In this paper, we presented a new method for analyzing the coevolu-
tion of social networks and changing characteristics of the actors in
the network. The method is based on an explicit probability model for
changes in network ties and individual behavior, mutually reacting on
one another. This coevolution is crucial for a variety of research topics
that currently receive a lot of attention. Examples are studies about
the spread of health-related behaviors, like the smoking and drinking
behavior studied in our example, about the spread of deviance and
crime, about the effects of communication interaction on individual
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attitudes and performance, about the formation of alliances between
firms, and their effects on firm performance, or about the formation
and effects of social capital of employees in organizations. The social
influence processes involved are hardly ever limited to conveniently
bounded groups of actors, but often a meaningful approximation can
be made by focusing on groups that contain within them a large part
of the social influence processes relevant to the behavior in question,
so that a complete network study within such a group will uncover
a major part of the dynamic interplay of structural network proper-
ties and individual behavior. In our example, this group was a school
cohort.

Statistical inference about what drives the coevolution of a net-
work and behavioral variables from empirical data is complicated. Diffi-
culties reside in the endogenous nature of the two components, network
and behavior, and in the strong influence of feedback processes on their
dynamics. A longitudinal design is necessary to distinguish between
what drives the network change and what drives the behavior change.
In this paper we have assumed a panel design, where a network (bi-
nary) and behavior (measured on an ordinal scale) are observed at two
or more discrete time points, but what happened in-between is unob-
served. This type of design is frequent in the study of networks rep-
resenting affective or interactional relations between individuals, such
as friendship, regular communication, or advice, and also occurs regu-
larly in the study of relations between organizations. The intermittent
nature of the observations, combined with the feedback processes in-
trinsic to the dynamics under study, makes it necessary to postulate
a model for what happens between the observations. We have found
an actor-based model, with changes happening between observations
in small steps, to be most natural for this purpose. The network to-
gether with the behavior of all actors jointly constitute the “state” of
this model, which evolves dynamically in continuous time. The model
specification has separate components for what drives network change
and what drives behavior change, thus allowing us to draw separate
conclusions about selection and influence while assuming that both of
these processes occur simultaneously. We hope that the availability of
these new methods of statistical inference will be an impetus for research
on network-behavior interactions in diverse fields—including, but not
limited to, those listed above. The software to estimate these models is
freely available on the Internet.
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Important scholarly work has been published in the econometric
literature about the difficulty of identifying endogenous social interac-
tions, defined by Manski (1993: 532) as effects “wherein the propensity
of an individual to behave in some way varies with the behavior of
the group.” Our model presents a special case of endogenous social
interactions, where the group is defined as the personal network (the
collection of members of the total network to whom the focal actor
has an outgoing tie) and determined endogenously. In this case, it is
possible to obtain meaningful estimates of these effects, due to the lon-
gitudinal design, the observation of the ties in the network, and the
model assumptions being postulated.

As in any statistical model, the validity of the conclusions de-
pends on the tenability of the model as, at least, an adequate approxima-
tion. A crucial assumption in our general modeling approach is that the
probabilities of the changes in network and behavior depend only on the
current value of network and behavior (the “state” of the model) and on
the observed exogenous actor-bound and dyadic variables—in mathe-
matical terms, that network and behavior jointly evolve as a Markov
process (Norris 1997). Making such an assumption for modeling net-
work dynamics was first proposed by Holland and Leinhardt (1977),
and our approach shares this assumption with many actor-based mod-
els as well as with many statistical models. It should be noted that it is
not assumed that the observed system is in equilibrium. The specifica-
tion of the objective functions (cf. Tables 2 and 3) offers much flexibility
to specify how exactly the probabilities of change depend on the cur-
rent state and the independent variables, while staying within the class
of Markov processes. In the empirical analyses, we therefore included
a relatively large number of independent variables—to obtain a good
fit between model and data, and to alleviate concerns about the model
assumptions.

In the empirical part of the paper, we showed how persistent
puzzles surrounding network autocorrelation in substance use among
adolescents could be solved for the case of a study of a secondary
school cohort in Glasgow by applying our method. We showed that in
our data set, there was evidence for peer influence on both substance
use dimensions, stronger for alcohol consumption but still significant
for smoking. The effects of partner selection, on the other hand, were
identified to be only weakly related to substance use, hinging more on
mechanisms of network closure, structural balance, and selection based
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on sociodemographic properties. Simulation studies served to quantify
the “amount” of network autocorrelation that could be ascribed to the
different processes of trend (in behavior and network evolution), control
mechanisms, substance use based selection, and influence. These studies
served to improve on earlier, similar attempts in the literature, in which
the role of trend and control mechanisms in particular was neglected,
and which arrived at diverging conclusions about the importance of
selection and influence effects.

Important remaining concerns are the possibility of observation
errors, the problem of correlated unobservables (Moffitt 2001; Mouw
2006), and the possibility of dependence on past events. These issues
will hopefully be treated in future work, and we only briefly discuss each
of them here. The first concern is that observation errors are a blind
spot in available methods for social network analysis. Although much
is known about inaccuracies in social network observations (Marsden
2005), most or all currently available statistical analysis methods assume
that observation is perfect. This will be an important area for further
methodological developments.

The second important concern is the possibility that there may
be nonobserved variables codetermining the probabilities of change in
network and/or behavior. These variables should then be added to the
state variable of the system in order to satisfy the Markov property.
This problem is recognized in a wide variety of models as the endogene-
ity of important explanatory variables (Manski 1993; Moffitt 2001).
The royal road to solving it is the development of better theory and
more extensive data collection. An advantage of linear models, com-
pared to models for discrete data like ours, is the availability of methods
such as fixed effects that may control, under suitable assumptions, for
unobserved time-constant actor differences (Mouw 2006). Such meth-
ods have not yet been developed for the model presented in this pa-
per. This concern implies for our approach that conclusions should be
phrased cautiously, without strict causal interpretations. An example of
correlated unobservables in our setup would be the possible existence
of an unobserved individual characteristic v with the properties that at
time tA individuals make enduring ties mainly to others with similar
values on v, while at time tB individuals change their value on the be-
havioral variable z depending on their v values. If tA < tB, the process
will seem to be influence (persons who are tied become similar on z),
whereas if tA > tB, the process will seem to be selection (persons who
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are similar on z tend to become tied). Such a spurious association is
quite conceivable, and it can never be ruled out in a nonexperimental
design.

The third concern is the possibility of dependence on past events
or past states. This dependence is ruled out by the Markov assumption,
which states that change probabilities depend on the current state only;
note that in our model this refers to the current unobserved state, not
the most recently observed state. The strong point of the continuous-
time Markov model is that it expresses feedback in a very convenient
and elegant way; the limitation is that it allows dependence on the more
distant past only when this is included in covariates or in the state
variable. When there is information about, for instance, the duration
or closeness of a friendship, this could be included in the state of the
model to make the Markov assumption more plausible. It will be very
interesting and useful to have such extensions of the model of this paper.
When applying the current model, it will be important to optimize the
plausibility of the Markov assumption by well-considered choices of
the dependent network and behavior variables and by the inclusion of
relevant covariates.

For all statistical methods, it is important to assess their accu-
racy, sensitivity, and robustness. This is as much the case for the method
proposed here as for methods proposed earlier in the literature. The crit-
icism of earlier methods that we presented above, hinging on how they
deal with the three “key issues,” is of a general, theoretical nature. Other,
specific criticisms of individual earlier methods have been raised as well
(e.g., see Mouw’s [2006] critique of the cross-lagged panel approach).
More evidence is needed, through comparisons for empirical examples
as well as simulation studies, about how this translates into operational
properties of the various methods, and how these methods compare to
each other. In this context, goodness of fit of the proposed model is
also an important issue that needs to be elaborated further, comple-
menting work by Schweinberger (2004) for network dynamics, and by
Hunter, Goodreau, and Handcock (2008) for cross-sectional network
models.

We already now see our model as a useful step toward the joint
modeling of network and behavior dynamics in a way that is consistent
and faithfully represents what we mean by social influence and social
selection processes. Another important point is that the research in this
paper was limited to the network formed by one group. More advances
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in theory will be possible when the coevolution of social networks and
behavior can be studied in many groups, and when a generalization to
a population of networks will be possible. This will require a multilevel
extension of the methods proposed here, generalizing the multilevel
network studies of Lubbers (2003) and of Snijders and Baerveldt (2003).
Finally, also within the current framework of one network, several
extensions are possible—for example, the design of effects other than
those proposed here, which could represent other theoretically derived
hypotheses; the analysis of multiplex (multivariate) networks; and other
estimation techniques, such as maximum likelihood. We hope that the
availability of this new method will stimulate empirical research in the
mutually dependent dynamics of networks and behavior in a variety of
substantive fields.
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