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THE STATISTICAL EVALUATION OF
SOCIAL NETWORK DYNAMICS

Tom A. B. Snijders*

A class of statistical models is proposed for longitudinal network
data. The dependent variable is the changing (or evolving) rela-
tion network, represented by two or more observations of a directed
graph with a fixed set of actors. The network evolution is modeled
as the consequence of the actors making new choices, or withdraw-
ing existing choices, on the basis of functions, with fixed and ran-
dom components, that the actors try to maximize. Individual and
dyadic exogenous variables can be used as covariates. The change
in the network is modeled as the stochastic result of network effects
(reciprocity, transitivity, etc.) and these covariates. The existing
network structure is a dynamic constraint for the evolution of the
structure itself. The models are continuous-time Markov chain mod-
els that can be implemented as simulation models. The model
parameters are estimated from observed data. For estimating and
testing these models, statistical procedures are proposed that are
based on the method of moments. The statistical procedures are
implemented using a stochastic approximation algorithm based on
computer simulations of the network evolution process.

1. INTRODUCTION

Social networks represent relations (e.g., friendship, esteem, collabora-
tion, etc.) between actors (e.g., individuals, companies, etc.). This paper
is concerned with network data structures in which all relationships within
a given set ofi actors are considered. Such a network can be represented
by ann X n matrix x = (x;), wherex; represents the relation directed
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from actori to actorj (i,j = 1,...,n). Only dichotomous relations are
considered here: the relation franto j either is present, denoteg =1,

or absent, denotexl; = 0. Self-relations are not considered, so that the
diagonal valueg; are meaningless. They are formally definedas- O.
Thisx is the adjacency matrix of the directed graph by which the network
can be represented; it is also called soeiomatrix

More specifically, we consider longitudinal data on entire net-
works. It is supposed that the data available are a time sgfigst &
{t1,...,tm} of social networks for a constant §dt..., n} of actors. The
observation times are ordered—ig.< t, < ... < ty. The numbeM of
time points is at least 2. The purpose of the statistical analysis is to obtain
an insight in the evolution of the network, where the initial stetg) is
taken for granted.

Longitudinal social network data are a complex data structure,
requiring complex methods of data analysis for a satisfactory treatment.
Holland and Leinhardt (1977a, 1977b) and Wasserman (1977) already pro-
posed to use continuous-time Markov chains as a model for longitudinal
social networks. In a continuous-time model, time is assumed to flow on
continuously, although observations are available only at the discrete time
pointst; to ty, and between the observations the network is assumed to
change unobserved at random moments as time progresses. Continuous-
time models offer, in principle, greater flexibility than the discrete-time
Markov chain models elaborated—e.g., by Katz and Proctor (1959) and
Wasserman and lacobucci (1988).

A basic continuous-time Markov chain model for dichotomous
social networks, the reciprocity model, was elaborated by Wasserman
(1977, 1979, 1980) and further investigated by Leenders (1995a, 1995b)
and Snijders (1999). This model is limited because it asswiyad inde-
pendenceA dyad is defined as the paik;j, x;; ) of relations between two
actorsi andj. Dyad independence means that the dyaxig(t), X; (t))
evolve as mutually independent Markov chains. This assumption effec-
tively allows one to change the analysis from the level of the network to
the level of the dyad. This is computationally attractive but does not leave
much room for realistic statistical modeling. Effects related to depen-
dence in the relations between sets of three or more actors—e.g., transi-
tivity (“a friend of my friend is my friend”)—cannot be represented by
models with dyad independence. Other continuous-time models for social
network evolution were proposed by Wasserman (1980) and Mayer (1984),
but these models were also very restrictive in order to allow parameter
estimation.
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Markov chain Monte Carlo (MCMC) methods can be used to devel-
op statistical procedures for quite general probability models for the evo-
lution of social networks, provided that these models can be implemented
as stochastic simulation models. This was proposed by Snijders (1996)
for data defined by sociometric rankings. Snijders and Van Duijn (1997)
sketched how this approach can be used for dichotomous social net-
work data. They also indicated how such an actor-oriented model must be
specified in order to obtain the dyad-independent models of Wasserman
and Leenders. Empirical applications of these stochastic actor-oriented
models were presented in Van de Bunt (1999) and Van de Bunt, Van Duijn,
and Snijders (1999). The present paper extends this method to data
observed at more than two time points, specifies a more efficient and sim-
pler stochastic approximation algorithm, and presents a wider array of
effects that can be included in the model.

The basic idea for our model for social network evolution is that the
actors in the network may evaluate the network structure and try to obtain
a “pleasant” (more neutrally stated, “positively evaluated”) configuration
of relations. The actors base their choices in the network evolution on the
present state of the network, without using a memory of earlier states. How-
ever, they are assumed to have full knowledge of the present network. This
represents the idea that actors pursue their own goals under the constraints
of their environment, while they themselves constitute each others’ chang-
ing environment (cf. Zeggelink 1994). It is immaterial whether this “net-
work optimization” is the actors’intentional behavior; the only assumption
is that the network can be modeled if each actor strives after such a
positively evaluated configuration. This evaluation is defined as a func-
tion of the network as regarded from the perspective of the focal actor, and
depends on parameters that are to be estimated from the data. This approach
to network evolution is in line with the theoretical sociological principle
of methodological individualism and was referred to by Snijders (1996)
as astochastic actor-oriented modédrhe evaluation includes a random
element to account for the deviation between theoretical expectation and
observed reality, which leads to a kind of random utility model (cf. ran-
dom utility models commonly used in econometrics and treated, e.g., in
Maddala [1983]). The models can be implemented as stochastic sim-
ulation models, which is the basis for the MCMC procedure for parameter
estimation. This is a frequentist procedure, using the method of moments.
The MCMC implementation of the method of moments uses a stochastic
approximation algorithm that is a descendant of the Robbins-Monro (1951)
algorithm.
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2. CONTINUOUS-TIME MARKOV CHAINS

This section gives a brief introduction to continuous-time Markov chains.
Karlin and Taylor (1975) and Norris (1997) give general treatments of
this kind of stochastic process model. More elaborate introductions to
continuous-time Markov chain models for social networks are given by
Leenders (1995b) and Wasserman (1979, 1980).

The available data are assumed to be two or more observations of
social networks; but the present section is phrased, more generally, in terms
of an arbitrary finite outcome spagé The finitely many observation times
t, to ty, are embedded in a continuous set of time poihts [ty, ty] =
{teR|ty=t=ty}. Thusitis assumed that changes can take place unob-
served between the observation moments. This is not unrealistic and allows
a more versatile and natural mathematical treatment.

Suppose thafY(t)|t € 7} is a stochastic process where tfig)
have a finite outcome spag@éand the time parametéassumes values in
a bounded or unbounded intervalC R. Such a stochastic process is a
Markov process or Markov chain if for any tinig € 7, the conditional
distribution of the future{Y(t)|t > t,} given the present and the past,
{Y(t)|t=t,}, is a function only of the present(t,). This implies that for
any possible outcome & ), and for any pair of time pointlg < t,,

P{Y(t,) = x|Y(t) = y(t) forallt = t,}
= P{Y(tp) = x| Y(ta) = y(ta)}-

The Markov chain is said to have a stationary transition distribution if the
probability (1) depends on the time poirtsandty, only as a function of
the elapsed time in betweeR,— t,. It can be proved that ifY(t)|t € T}

is a continuous-time Markov chain with stationary transition distribution,
then there exists a functiam: J’> — R such that

1)

i P{Y(t + dt) = y|Y(t) = x} ¢
q(x,y) = lim m or
1—P{Y(t+dt) =x|Y(t) = x}
dt '

Yy # X
2)

q(%,%) = lim

This functionq is called the intensity matrix or the infinitesimal genera-
tor. The elemenq(x, y) is referred to as theate at whichx tends to change
intoy. More generally, an event is said to happen at arafehe proba-
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bility that it happens in a very short time intervd t + dt) is approxi-
mately equal to dt.

The simultaneous distribution of the Markov chd(t)|t = t,}
with stationary transition distribution is determined completely by the prob-
ability distribution of the initial valueY(t,) together with the intensity
matrix. Specifically, the transition matrix

P(ty — ta) = (P{Y(ty) = y|Y(ta) = X})x yey
is defined by
P(t) = e*

whereQ is the matrix with elementg(x, y) and the matrix exponential is
defined by

o hth
et = .
2

The reasons for specializing the model to Markov processes with
stationary transition distributions are that such models often are quite
natural, and that they lend themselves well to computer simulation. The
resulting dynamic computer simulation models can be regarded as a type
of discrete event simulation model as discussed by Fararo and Hum-
mon (1994).

3. STOCHASTIC ACTOR-ORIENTED MODELS FOR
NETWORK EVOLUTION: SIMPLE SPECIFICATION

The specification of the model developed in this paper has three ingredi-
ents: the rate function, the objective function, and the gratification func-
tion. A simple specification is determined by only the objective function,
with a constant rate function and a gratification function equal to zero.
The model is explained first for this simple specification. The rate and
gratification functions are treated in a later section.

3.1. Basic Model Ingredients

The class of all sociomatrices—i.e., of alk n matrices of 0-1 elements
with a zero diagonal—is denoted By Note thatt has 2"V elements,
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a number that is so huge that analytical calculations based on the intensity
matrix will be out of the question for most purposes.

Itis assumed that all actors “control” their outgoing relations, which
are collected in the row vectOK;4(1),..., Xi,(t)) of the sociomatrix. Actors
have the opportunity to change their outgoing relations at stochastic times;
in the interval between the observation momegiandt,,, ; these oppor-
tunities occur at a ratg,,. When actors change their outgoing relations,
they are assumed to strive after a rewarding configuration for themselves
in the network. This goal is modeled in the so-caltdgjective function f
discussed below, to which a random component is added, representing the
actors’ drives that are not explicitly modeled. The actors are assumed to
have all information required to calculate their own objective function.
This information can be extensive or limited, depending on the model.

At any single time point, at most one actor may change his outgo-
ing relations. Furthermore, he may change only one relation at the time.
Of course, many small changes between two observation times can result
in a big difference between the two observed networks. The fact that the
model specification focuses on changes of single relations is the major
reason why continuous time modeling is relatively straightforward. (An
example of a continuous-time model for social networks where more than
one relation can change at one time point is given by Mayer [1984].) It
should be noted that the fact that the actors take into account the present
network structure that is common to them all, introduces a high degree of
interdependence between them (when one marginalizes out, rather than
conditions upon, the current network structure).

3.2. Objectve Function

The objective function for actdris denoted by
fi(Ba X)’ XE X’ (3)

and indicates the degree of satisfaction for actarherent in the rela-
tional situation represented by This function depends on a parameter
vectorB. In the simple model specification of this section, the parameter
of the statistical model i¥ = (p,8), wherep = (p4,...,pm-1) IS the
vector of change rates during the time periods frgpto ty, 1 (M =
1...,M—1).
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Suppose that at some momeractori has the opportunity to change
her outgoing relations. At this moment, actatetermines the other actor
j with whom she will change her relatios) . If inmediately before time
actori does have a relation to actprthen a change implies withdrawing
the relation; if immediately before timeactori doesnothave a relation
to actorj, then a change implies initiating the relation. Given the present
statex of the network, the network that results when the single elemgnt
is changed into + x; (i.e., from 0 to 1 or from 1 to 0), is denoted by
X(i ~ ). Note thatx(i ~ j) refers to an entire adjacency matrix. When
the current network ig, actori has the choice betweeti ~ j) for all
possiblej = 1,...,n,j # i. It is assumed that actorchooses thg that
maximizes the value of her objective functifng, x(i ~ j)) plus a ran-
dom element,

fi(B, x(i ~])) + Ui (t, x, ]). 4)

The termU; (1, X, j ) is a random variable, indicating the part of the actor’s
preference that is not represented by the systematic compgnéinis
assumed that these random variables are independent and identically dis-
tributed for alli, t, X, j. The assumption that the actor tries to maximize
(4), which refers to the state obtained immediately after making this sin-
gle choice, can be regarded as an assumption of myopia: the actor does
not consider the longer-term, or indirect, effects of her choices.

3.3. Markaov Chain with Random Utility Component

These functions are used in the following way to define a continuous-time
Markov chainX(t) with the finite outcome spac#.

Events—i.e., changes of the network structure—take place at dis-
crete time points; in between these points, the network structure remains
constant. The process is modeled as being right-continuous: If a change
takes place from state to statex, at timety, then there is aa > 0 such
thatX(t) = xgfortyg — e <t < ty, while X(t) = x; forto =t <ty +e.

The actions of the actors depend only on the current state of the
network, not on the history of how this network came into being. All actors
change their relations one at a time at stochastic moments at afate
This means that at each time potnE (i, tm:1), the time until the next
change byanyactor has the negative exponential distribution with param-
eternp,, and the expected waiting time until the next change by any actor
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is 1/(npm). When an event occurs, all actors have the same probability
1/n to be the one to change one of their outgoing relations. Given that
actori may change an outgoing relation, she chooses to change her rela-
tion to that actoj (j # i) for whom the value of (4) is highest.

It is convenient to let th&J; (1, X, j ) have the type 1 extreme value
distribution (or Gumbel distribution) with mean 0 and scale parameter 1
(Maddala 1983). This assumption is commonly made in random utility
modeling in econometrics. When this distribution is used, the probability
that the given actarchooses the other actpfor changing the relatio;;
is the multinomial logit expression (cf. Maddala [1983, p. 60]),

exp(fi (8, x(i ~|)))

P (6, X) = (j#1). )]

> expl (B, x(i~ )

h=1, h#i

3.4. Intensity Matrix

It was mentioned in Section 2 that stationary transition distributions of
continuous-time Markov chains are characterized by their intensity matrix.
In our case, where relations are allowed to change only one at a time, the
intensity matrix can be represented by functiap$x), indicating the
change rates ofto x(i ~j) forj # i. All other change rates are 0. These
functions are defined farj =1,...,n,i #j as

P{X(t+dt) = x(i ~j)|X(t) = x}

ij (x) = L'tTO dt (6)
The intensity matrixj(x, y) defined in (2) is related tq; (x) by
G (x) if y=x(i~j)
_Jo if x andy differ in more than one element(7)
q(X9 y) -
=2 G;(%) ifx=y.

1#]
Note that directed graphsandy differ in exactly one elemertt, j) if and
only if y=x(i ~j)andx=y(i ~j).
For the Markov chain in the simple model specification of the
present sectiory; (x) is given for time periodty, tn1) by

i (X) = pmpP; (6, X). (8)



STATISTICAL EVALUATION OF NETWORK DYNAMICS 369

3.5. Specification of the Model

The objective function must contain the substantive ingredients of the
model, including, for example, actor attributes and structural properties
of the directed graph. Since actors have direct control only of their outgo-
ing relations, only the dependencefpbn rowi of the adjacency matrix
has an influence on the behavior of the model.

A convenient choice for the objective function is to define it as
a sum

fi(B,x) = kz BiSik(X), ()

where the weightgy are statistical parameters indicating the strength of
the corresponding effes(x), controlling for all other effects in the model,
and thesy(x) are relevant functions of the digraph that are supposed to
play arole in its evolution. All formulas given below for possible compo-
nentssy refer to a contribution to the objective function of actpwhile
the other actors to whoincould be related are indicated py

Effects can be distinguished according to whether they depend only
on the networkx—in which case they can be regarded as endogenous
network effects—or also on covariates, which are supposed to be deter-
mined exogenously. Covariates can be of two kinds: (1) actor-dependent
covariatesV with valuesy; for actori, or (2) pair-dependent (dyadic)
covariatedV with valuesw; for the ordered paifi, j ). Only constant (i.e.,
time-independent) covariates are considered.

The following listis a collection of network effects, as possibilities
for the functionss in (9).

1. Density effectdefined by the out-degree

S1(X) = Xt = 2 Xij 5
i

2. Reciprocity effectdefined by the number of reciprocated relations

S2(X) = Z Xij Xji 5
j
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3. Popularity effectdefined by the sum of the in-degrees of the others
to whomi is related,

S3(x) = 2 Xij X4j = Exijz Xhjs
i i h

4. Activity effectdefined by the sum of the out-degrees of the others to
whomi is related,

Sa(Xx) = Exij Xj+ = EXuE Xihs
j j h

5. Transitivity effectdefined by the number of transitive patterns’s
relations (ordered pairs of actot$, h) to both of whomi is related,
while alsoj is related tdh),

Ss5(X) = 2 Xij Xih Xjh 5

ih

6. Indirect relations effe¢tdefined by the number of actors to whaoris
indirectly related (through one intermediary—i.e., at sociometric dis-
tance 2),

Se(X) = # ] x; = 0,max,(Xin Xn;) > 0};

7. Balance defined by the likeness between the out-relations of actor
to the out-relations of the other actgr® whomi is related,

S7(x) = 2 Xij hE (bo — [Xin — th|), (10)
j=1 =1

h#i,

wherebg is a constant included for convenience. If the density effect
is included in the model (which normally will be the case), the num-
berbg can be chosen so as to obtain the clearest interpretation with-
out essentially changing the model specification.

For example, to have a balance effect that is not too strongly
correlated with the density effect, the numibgiin (10) can be cho-
sen so that the average of the second sum in this equation over all
actors and over the firdfl — 1 time points is 0. In other words,
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1 -1 n n
bo = 2 E Xin (tm) X]h(tm)‘
i,

(M=Dn(n—=1)(n—2) o=15= 1A

(11)

This list can be extended, in principle, indefinitely. Potentially important
additional types of effect aneonlinear effects-i.e., nonlinear functions

of si defined above, the out-degr&g. being the primary candidate for
such a nonlinear transformation; and oteebgraph counts which actor

i is involved, of which the reciprocity and transitivity effects are examples.

In practically all applications it will be advisable to include the
density effect, because the other effects listed above should be controlled
for this effect. The reciprocity effect is so fundamental in social relations
that it is advisable also to include this effect in most applications.

The transitivity and balance effects, and the indirect relations effect
when it has a negative weight, all are different mathematical specifica-
tions of the intuitive idea that actdthas a “closed” or transitive personal
network—i.e., the others to whoinis related tend to have comparatively
many relations among themselves. Verbal theories will not often be detailed
enough to distinguish between these effects. It can be determined empir-
ically if one or some of these three effects succeed better than the others
in accounting for the observed degree of closure, or transitivity, in the
data.

For each actor-dependent covarigtthere are the following three
basic potential effects. (The notation for the functispsloes not explic-
itly indicate their dependence on the covariate valygs

8. Covariate-related popularitydefined by the sum of the covariate
over all actors to whom has a relation,

Ss(x) = 2 Xij V3
]
9. Covariate-related activitydefined byi’s out-degree weighted by
his covariate value,
So(X) = i Xiy;

10. Covariate-related dissimilaritydefined by the sum of absolute
covariate differences betweerand the others to whom he is related,

S10(X) = zxij lvi — v
j
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Positive covariate-related popularity or activity effects will lead to
associations between the covariate and the in-degrees and out-degrees,
respectively. A negative covariate-related dissimilarity effect will lead to
relations being formed especially between actors with similar values on
the covariate.

This list can be extended—for example, by including covariate val-
ues in the definitions of the network effects listed above. This represents
interactions between the covariate and the network effect.

The main effect for a pair-dependent covariate is as follows:

11. Covariate-related preferencelefined by the sum of the values of
w; for all others to whom is related,

S11(X) = z Xij Wi .
i

Here also, the list can be extended by including covariate values in the
definition of network effects.

Theoretical insights into the relational process and experience with
modeling this type of data have to determine the effects that are included.

4. MOMENT ESTIMATORS

Let the objective function be given by (9), so that the parameter of the
statistical model i9 = ( p, 8). The dimensionality of is denoted. and

the total number of dimensions feisK = M — 1 + L. Analogous to what

was proposed for a similar model by Snijders (1996), this parameter can
be estimated by the method of moments (explained for general statistical
models—for example, by Bowman and Shenton 1985). This means that a
statisticZ = (Z4,..., Zx) is used, for whicl¥ is determined as the solution

of the K-dimensional moment equation

£Z =1 (12)

wherezis the observed outcome. This moment equation will be specified
further by certain ways of conditioning on the initial and intermediate
outcomes(t;) to X(tm_1).

First the choice of the statisti¢ is discussed, and then a MCMC
algorithm that can be used to approximate the solution of the moment
equation.
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For the estimation, no assumptions whatsoever are made about the
initial statex(t;). Therefore, the estimation is carried out conditional on
this initial state, and this state is not used to obtain any information about
the value of the parameter.

In the absence of a formal method such as a reduction to sufficient
statistics, the statisticd, should be chosen so that they are relevant for
the components of the paramefién the sense that the expected values of
Zc(k=1,...,K) are sensitive to changes in the components &fne way
to specify this is to require that for &l

€y Zy
90

> 0.

A more stringent specification is to require that this property hold not
only for all separate coordinates of the parameter vector, but also for all
linear combinations:

€y Z
a’< 50 )a>0foral|aeRK,a¢O, (13)
where(d€, Z/90) is the matrix of partial derivatives. This requirement is
far from implying the statistical efficiency of the resulting estimator, but
it confers a basic credibility to the moment estimator and it ensures the
convergence of the stochastic approximation algorithm mentioned below.
The components of = (p,3) are the rates of changsg, in the
time interval(t., tn+1) and the weightg, in the objective function (9).
The motivation for the statisticg , at this moment, is of a heuristic nature,
based on their obvious connection to the parameters and supported by
sufficiency considerations in certain special cases.
For pn, a relevant statistic is the total amount of change innttie
time period measured by the number of differences between two consec-
utive observation moments,

Cn= E | Xij (tms1) — X (tm) |- (14)
I’iJv&:jl

This choice for the statistic relevant fpr, can be supported by noting
that if 8 = 0, which reduces the model to the trivial situation where the
X (t) are randomly changing 0-1 variableS,, is a sufficient statistic
for pm.
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For By, arelevant statistic is the sum over all actoos the digraph
statisticss,, observed at timé&,,. 1,

Sric= 3 Si(X(ts1)) (15)

This statistic has an immediate intuitive appealBi|fis larger, then the
actors strive more strongly to have a high valuespf so that it may be
expected tha®, will be higher for allm. The statistics,xare combined
over theM — 1 time intervals by an unweighted sum.

Combining all these proposals, the moment estimatoréfas
defined as the solution of the system of equations

Eo{Cml X(tm) = X(tn)} =Ccp(M=1,....M — 1) (16)

M—-1

M—-1
Z Eo{Snd X(tm) = X(tm)} = Z Smc(k=1,...,L), 17

wherec,, andsare the observed outcomes of the statisigsand S
Although in our experience these equations mostly seem to have
exactly one solution, they do not always have a solution. This can be seen
as follows. For a fixed value @, the left-hand side of (16) is an increas-
ing function ofp.,, tending to an asymptote which is lower than the max-
imum possible value of,,, this maximum beingn(n — 1). This implies
that the method proposed here is not suitable for observatidps and
X(tm+1), Which are too far apart in the sense of the metric (14). For such
observations the dependencexdf,,, 1) on the initial situationx(t,,) is
practically extinguished, and it may be more relevant to estimate the param-
eters of the process generatxid,,. 1) without taking this initial situation
into account.
For the trivial submodel where aX; (t) are independent, the exis-
tence of maximum likelihood and moment estimators is discussed in
Snijders and Van Duijn (1997).

4.1. Covariance Matrix of the Estimator

The delta method (e.g., see Bishop, Fienberg, and Holland 1975, sec. 14.6)
can be used to derive an approximate covariance matrix for the moment
estimatord. (This holds generally for moment estimators; see Bowman

and Shenton 1985, formula 5.) For a homogeneous notation for the param-
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etersp,, andB, denoteC,,,,= C,, and formally defineC,,,, = 0 for k # m,
and denote

Zm = (lea-'-aCm,Mfly Sml"-"SmL)~

Then the moment equations (16, 17) can be written as

M—-1 M—-1
Z ge{zm‘x(tm) = X(tm)} = Z Zn. (18)

Further denote

M—1

2 0= coWZu|X(tm) = X(tm)} (19)
9 M-1
Dy = % m:lg{zm|x(tm) = X(tm)}. (20)

Then it follows from the delta method, combined with the implicit func-
tion theorem and the Markov property for thét) process, that the approx-
imate covariance matrix df is

cov(d) ~ Dy t> 9D, L. (21)

Itis plausible that these estimators have approximately normal dis-
tributions, although a proof is not yet available. Based on the assumption
of normally distributed estimates, the parameters can be tested using the
t-ratios defined as the parameter estimate divided by its standard error,
referred to a standard normal null distribution. (In other words, the test is
carried out as &test with infinite degrees of freedom; this test should be
regarded as a rough approximation, since no definite results are yet avail-
able on the distribution of this test statistic.)

4.2. Conditional Moment Estimation

The method of moments can be modified by conditioning on the out-
comescy, of C,, (m=1,...,M — 1) rather than using moment equations
involving these statistics. This provides a more stable and efficient
algorithm and reduces the parameter estimated by the method of moments
to theL-dimensionalB. This can be helpful especially for larger values

of M.
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The modified method is based on the property that the distribution
of a continuous-time Markov chaX(t) remains invariant when the time
parameter is divided by some constant value while the rate parameter is
multiplied by the same value. Specifically, when the rate paramster
obtains for allt = t,,, then the distribution oK(t,, + t), conditional on
X(tyn) and fort > 0, depends op,, andt only through their productp,.

The modified method can be loosely described as follows. For each period
mindependently, the Markov chain is started at tirre0 with the initial
valuex!™ = x(t.,) and a rate parameter equal to 1. The process is stopped
at the first moment when > | X; (t) — xiE”‘]| = C,. This value oft is
expected to be close to the prodgg{t,,. 1 — tm) and the statistics observed

at this moment are compared with the statistics calculated from observa-
tion X(tm1).

To explain this more formally, denote B¥'Y(t) a Markov chain
evolving according to our model with a fixed and constant rate parameter
p =1 and a given value g8, and denote bﬁﬁl)(t) the corresponding
statistics (15). Independent replications of this stochastic process, starting
att = 0 with X (0) = x(t,), are used as models for ti — 1 periods.
Define the statistic

CO(t) = 2 XV (1) — XV (0)] (22)
1#]

and the stopping time
Ti" = min{t = 0|C™(t) = cp}. (23)

The conditional moment estimator f8ris defined as the solution of

M—-1

M—-1
2 ST TMIXP0) = X(tw)} = T s(k=1....L)  (24)

and, given the resulting estimabe p, is estimated by
Pm = (tmi1 = tm) "ETR XD (0) = X(tm)}. (25)

It follows from the general theory of Markov chains that for all
possible values of,, the stopping timél,i" is finite with probability 1,
and even has a finite expected value. Therefore the difficulties with the
definition of the estimator for large values@f, as discussed for the uncon-
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ditional moment estimator, do not arise here. However, this consolation is
only theoretical, because in practice, for latghe value ofC®(t) fluc-
tuates randomly about an asymptote lower than the maximum possible
value ofn(n — 1), and the stopping tim&" is indeed finite but horribly
large. The simulation-based algorithm, explained below, is not practically
feasible for values of,, larger than this asymptote.

5. STOCHASTIC APPROXIMATION

The moment equations for the two estimation methods are defined by (18)
and (24), but the conditional expectations that are central in these equa-
tions cannot be calculated explicitly (except for some special and rather
trivial cases, as discussed in Snijders and Van Duijn [1997]). However, it
is rather straightforward to simulate random digraphs with the desired dis-
tributions. Therefore, stochastic approximation methods—in particular,
versions of the Robbins-Monro (1951) procedure—can be used to approx-
imate the moment estimates. Introductions to stochastic approximation
and the Robbins-Monro algorithm are given, for example, by Ruppert
(1991) and Pflug (1996).

The algorithm to solve the equation (12) is based on a sequgnce
generated according to the iteration step

Oni1= O — an Do (Zy — 2), (26)

whereZy is generated according to the probability distribution defined by
the parameter valug. Foray, a sequence is used that converges slowly
to 0. Dy is a positive diagonal matrix. In principle, the optimal choice of
Do might be nondiagonal. However, Polyak (1990), Ruppert (1988), and
Yin (1991) (as discussed also by Pflug [1996, sec. 5.1.3] and Kushner and
Yin, 1997) showed that if all eigenvalues of the matrix of partial deriva-
tives, (0€,Z2/960), have positive real parts and certain regularity condi-
tions are satisfied, then convergence at an optimal rate can be achieved
whenDy is the identity matrix, withay a sequence of positive numbers
converging to 0 at the ratéd ¢, where 05 < ¢ < 1. To obtain this optimal
convergence rate, the solution of (12) must be estimated not by the last
valued, itself, but by the average of the consecutively generégedal-

ues. This algorithm is a Markov chain Monte Carlo algorithm because the
iteration rule (26) indeed defines a Markov chain.
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The convergence properties of this algorithm hold asymptotically
for N — co. To have good properties already for relatively low values of
N, it is important to specify the algorithm in such a way that it quickly
comes close to the target value. This can be achieved by applying a result
due to Pflug (1990), who showed that the limiting first order autocorrela-
tion of the sequenc€Zy — z) generated by (26) is negative. This means
that as long as the partial sums of successive values of the prtjuet
7)'(Zn-1 — 2) are positive, it must be assumed that the sequéqsll is
drifting toward the limit point rather than wandering around the limit point,
so thatitis not desirable to decrease the step sigeShereforeay remains
constant as long as there still seems to be such a drift going on, except that
whenN gets too largey is decreased anyway, in order to retain the con-
vergence rat®l ¢ for the sequencay.

These ideas are combined in the specification of the algorithm as
given in the appendix. The algorithm provides an arbitrarily accurate
approximation to the solution of (12) as well as an estimate of the covari-
ance matrix (21). It is available in the freeware PC program SIENA (see
the discussion in Section 10).

6. AN EVOLVING NETWORK OF UNIVERSITY
FRESHMEN

As an illustration, data are used from a study conducted by Van De Bunt
(1999), which were analyzed also by Van De Bunt, Van Duijn, and Snijders
(1999). For a more extensive description of this data set we refer to these
publications. In the present paper, this data set is used only as an illustra-
tion without paying much attention to the theoretical interpretations.

The actors in this network are a group of 32 university freshmen
who were following a common study program in a Dutch university. This
group comprised 24 female and 8 male students. The number of observa-
tions used here il = 3. The data used here are those for the time points
labeledt,, t3, andt, in Van De Bunt, Van Duijn, and Snijders (1999).
There are 3 weeks between time poitandts, and also betweety and
t4. For the purpose of this illustration, the time points are relabgled,
andts. The relation studied is defined as “at least a friendly relationship,”
referred to here as a positive relatioxg = 1). The absence of a positive
relation is referred to as a null relatiér; = 0).

There is missing data due to nonresponse, increasing from 9% at
to 19% atts. This incompleteness of data is treated in the estimation pro-
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cedure in the following ad hoc fashion. (It will be important to conduct
further studies to evaluate this way of dealing with incomplete data, and
compare it with potential alternatives.)

Missing data are treated in a simple way, trying to minimize their
influence on the estimation results. The simulations are carried out over
all n = 32 actors. In the initial observatiost,,) for each period, missing
entriesx; (t,) are setto 0. In the course of the simulations, however, these
values are allowed to become 1 like any other vakyés). For the calcu-
lation of the statisticsS,, and C,,, the values of; (t,,) as well as of
Xij(tm+1) are set to 0 whenever at least one of the two observaxip(itg)
andx;; (tm1) is missing.

To get a basic impression of the data, it may be noted that densities
(calculated over the available data) at the three observation moments
increase from 0.15 via 0.18 to 0.22. The number of observed changes
between the observations fatandt, was 60 (out of 744 directed pairs
(i,j) for which the value ok; was observed at observationsandt,);
betweert, andt; this was 51 (out of 679 observations).

The first model estimated includes the basic effects of density and
reciprocity, together with the three basic triadic effects: transitivity, indi-
rect relations, and balance. The purpose of this stage in the analysis is to
investigate which of these triadic effects are empirically supported by these
network evolution data. The numbbg in (10) is defined by (11). The
conditional moment estimator was used and the algorithm was specified
as described in the appendix, except that to increase precision 5 sub-
phases were carried out in phase 2 agd= 1000 steps were made in
phase 3. The results are displayed as Model 1 in Table 1.

The estimated rate parametefs,= 3.87 andp, = 3.10, indicate
that on average the actors made 3.87 changes of relationships between the
first two observations, and 3.10 changes between the last two observa-
tions. (This includes two-way changes between two observations that
remained unobserved because they canceled each other.)

As suggested in Section 4.1, the effects are testetdtgtistics
defined by the ratio of parameter estimate to standard error, referred to as
standard normal distribution. There is a strongly significant reciprocity
effect (t = 1.98/0.31 = 6.39). Of the three triadic effects, the indirect
relations effect is significantt = —0.347/0.074= —4.69), but the other
two are not significant at the 5 percent level, although the transitivity
effect comes close. When the balance effect was deleted from the model,
the t-value for the transitivity effect became 1.94 (results not shown
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TABLE 1

Parameters and Standard Errors for Models Estimated Using Observattosts,a$

Model 1 Model 2 Model 3
Effect Par. (s.e) Par. (s.e.) Par. (s.e)
Rate (period 1) 3.87 3.78 3.91
Rate (period 2) 3.10 3.14 3.07
Density -1.48 (0.30) —-1.05 (0.19) -1.13 (0.22)
Reciprocity 1.98 (0.31) 2.44  (0.40) 2.52 (0.37)
Transitivity 0.21 (0.11) — —
Balance -0.33 (0.66) — —
Indirect relations —0.347 (0.074) —0.557 (0.083) —0.502 (0.084)
Gender activity — — —0.60 (0.28)
Gender popularity — — 0.64 (0.24)
Gender dissimilarity — — -0.42 (0.24)

here), just short of significance at the 5 percent level. The results obtained
when deleting the two nonsignificant effects from the model are shown as
Model 2 in Table 1. The indirect relations effect becomes larger, and the
density and reciprocity effects change, because these effects now must
also represent the effects represented by transitivity and balance in Model
1. It can be concluded that there is evidence of a tendency to have closed
networks in the sense of a relatively low number of indirect relations;
controlling for this effect and for reciprocity, there is no significant ten-
dency toward a high number of transitive triplets or toward balanced rela-
tionships. No significant evidence was found for other structural network
effects (estimation results not shown here).

As a next step, the three basic effects of gender were included in
the model. In the original data set, gender was represented by a dummy
variable equal to 0 for women and 1 for men. The means were subtracted
from this variable as well as from the dissimilarity variahle— v;|. Given
that the proportion of women was 75 percent, this leads to the vatable
being —0.25 for women andt+0.75 for men, and the dissimilarity vari-
able being—0.387 for equal-gender pairs and 0.613 for unequal-gender
pairs. The results for the model including the structural effects of reciproc-
ity and indirect relations as well as the three covariate effects of gender
are presented in Table 1 as Model 3. It can be concluded that women are
more active in creating positive relations than méers —0.60/0.28 =
—2.14), while men receive more positive choidgs= 0.64/0.24 = 2.67),
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but there are no significant (dis)similarity effects associated with gender.
The control for gender does not have an important influence on the reci-
procity or indirect relations effects.

The results based on the observations at these three moments can
be compared with results based on only two of these observations. This
can be used to check the model assumption that the parameter galoes
the time interval between; andt, are the same as betwegrandts;. Fur-
thermore, for the analysis of the evolution of the network franto
ts, this illustrates the greater precision obtainable by including the infor-
mation about the network &. The comparison is made only for Model 3
and reported in Table 2.

None of the estimates are significantly different between the peri-
odst;—t, andto—ts. This supports the use of a common model for the entire
periodt;—s.

To compare the Model 3 column of Table 1 with thets; column
of Table 2, the estimates in the former column are called “three-
observation” and those in the latter column “two-observation” estimates.
It appears that the corresponding estimates differ at most by about one
“two-observation” standard error; for all parameters but one, the three-
observation estimates are closer than the two-observation estimates to the
mean of the separate estimates for thxé, andt,—tz periods. The three-
observation standard errors all are clearly smaller than the two-observation
standard errors. This provides some support for the expected greater reli-
ability of the three-observation as compared with the two-observation
estimates.

TABLE 2
Parameter Estimates and Standard Errors for Model 3, Estimated
from Two Observations

Observations ty, to to, t3 ty, t3

Effect Par. (s.e.) Par. (s.e) Par. (s.e)
Rate 3.64 3.21 5.29

Density —0.99 (0.32) -—-1.30 (0.28) -—0.78 (0.31)
Reciprocity 2.36  (0.52) 2.89 (0.67) 2.40 (0.48)
Indirect relations —-0.432 (0.113) —0.653 (0.140) —0.536 (0.146)
Gender activity -0.75 (0.40) -0.39 (0.42) -—0.77 (0.36)
Gender popularity 0.40 (0.312) 1.03 (0.44) 0.36 (0.26)

Gender dissimilarity —0.35 (0.35) -—0.58 (0.43) -0.22 (0.31)
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7. EXTENDED MODEL SPECIFICATION

The general model specification contains, in addition to the objective func-
tion, two other elements: (1) the rate function, which shows that actors
may differ in the rate at which they change their relations; and (2) the
gratification function, which shows that various effects may operate dif-
ferently for the creation of a relation (whexg goes from 0 to 1) than for

its dissolution(x; changing from 1 to 0).

7.1. Rate Function

The rate function for actaris denoted
Xi(p,a,x,m) forx € X, 27)

and indicates the rate at which actds allowed to change something in
his outgoing relations in the time peridgl = t < t,+1. In the simple
specification given above, this rate function depended onlgn@md not
oni orx, and was defined ak; ( p, @, X, M) = py,. The roles of the statis-
tical parameterp anda are discussed below.

These rate functions and the conditional independence of the actors
imply that at each time poirt the time until the next change layyactor
has the negative exponential distribution with parameter

n
/\+(P,a, X, m) = E )\i(P,a’, X, m)a for X= X(t),th t< terl (28)
i=1

(provided that this next change still is before titpg1). The parameter of

the negative exponential distribution is taken here as the reciprocal of the
expectation, so the expected waiting time until the next change after time
tis /A, (p,a, X(t),m) (where a possible change to the following time
interval is not taken into account). Given that a change occurs, the prob-
ability that it is actoi who may change his out-relations is

)‘i(Paa,X, m)

e (prax,m)’ (29)

Nonconstant rate functions can depend, for example, on actor-
specific covariates or on network statistics expressing the degree to which
the actor is satisfied with the present network structure. Of course, the
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rate function must be restricted to positive values. In order not to burden
the specification with too many complications, it is proposed that the rate
function be defined as a product

Ai(p,a, X, m) = Aj1AizAis

of factors depending, respectively, on periodactor covariates, and the
actor’s personal network. The corresponding factors in the rate function
are the following:

1.

The dependence on the period can be represented by a simple factor
Ai1 = Pm

form=1,...,M — 1.
The effect of actor covariates with valuggs can be represented by
the factor

iz = exp(? ahvhi>. (30)

The dependence on the network can be modeled, for example, as a
function of the actor’s out-degree, in-degree, and number of recipro-
cated relations. Define these by

Xip = zxij,X—H = iji’ Xi(r) = ZXU’ Xii
i i !

(recalling thatx; = O for alli).

Snijders and Van Duijn (1997) investigated how the rate func-
tion should be specified in order to obtain Wasserman'’s (1979) reci-
procity model as a special case. Denoting the corresponding parameter
by a1, for the dependence on the out-degree this led to the factor
i+

X
explay) + <l — m) exp(—ay). (31)

Xi+

n—1

Aiz =

This defines a linear function of the out-degree, parametrized in such
a way that it is necessarily positive.

For a general dependence on the out-degree, in-degree, and
number of reciprocated relations, one can use an average of such terms,
the second and third one dependingxanandx;, respectively.
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It would be interesting to explore other specifications of the rate function,
expressing in a theoretically more satisfactory way the circumstances and
characteristics upon which it depends how quickly actors change their
relations.

7.2. Gratification Function

The basic motivation for the third model ingredient, thetification
function is that a given effect may operate more strongly, or less strongly,
for the creation than for the dissolution of relations. For example, it is
conceivable that although actors prefer to establish reciprocated rela-
tions, they are quite willing to initiate as yet unreciprocated relations;
but that, once they have a reciprocated relationship, they are very reluc-
tant to let it go—for example, because of the investments accumulated
in this relation (cf. Van De Bunt [1999]). This would mean that the rec-
iprocity effect is greater for dissolution than for creation of ties. Such a
difference cannot be represented by the objective function alone. There-
fore the model includes also a gratification function

gi(v,%]), definedfori,j=1,...,ni#j,XE X, (32)

which indicates the instantaneous gratification experienced byiastwen,
from the given network configuratior, elementx; is changed into its
opposite, - X; .

When a gratification function is included in the model, expression
(4) for the momentary objective function maximized ibis replaced by
the sum of the actor’s preference for the new state, the gratification expe-
rienced as a result of the change, and a random element:

fi(B,x(i ~>])) + 0 (y,%]) + Ui(t,x]). (33)

Using the same assumptions for the random t&fft x, j ) as above, the
probabilities of the various possible new statéis~ j) are now given by

py (0,30 = —SPOLEX) ) (34)

>, exp(r(6.i,h,x)

h=1, h+#i

where

r(G,i,j,X) = fi(B’X(i @J)) + gi('y’ X’j)-



STATISTICAL EVALUATION OF NETWORK DYNAMICS 385

These probabilities do not change when a term is addetbta, j, x) that
does not depend gnlt is often more convenient to work with

r(6,i,j,x) = fi(B,x(i ~j)) —fi(B,x) + gy, X ). (35)

The instantaneous effegtis a more general model component than the
objective functiorf;, because the objective function depends only on the
new statex(i ~ j), whereas the gratification function depends arbitrarily
on the new state as well as the old stat€he reason for not working with
just the gratification function is that the objective function, attaching a
value to each network configuration, often is conceptually more attractive
and better interpretable than the instantaneous gratification effect.

The gratification function can be specified by a weighted sum,

gi(y, %) = h}_‘, Yhijn (X) (36)

for certain statistics;j, (x), each containing either a factey (if it reflects
the gratification involved in withdrawing a relation—i.e., changkgdrom
1to 0) or a facto(1 — x; ) (if the effect is about the gratification involved
in creating a relation). Some examples of such terms are the following:

1. y1X;X;: Indicator of a reciprocated relation; a negative value of
reflects the costs associated with breaking off a reciprocated relation.

2. v2(1— X;) 2nXin Xnj: The number of actors through whanis indi-
rectly related tg; a positive value ofy, reflects that it is easier to
establish a new relation to another agtdri has many indirect rela-
tions toj via others who can serve as an introduction.

3. ysXjw;: The valuew; for another actor to whoiinhas arelation; e.g.,
a negative value of; reflects the costs farassociated with breaking
off an existing relation to other actoysvith a high value fow;.

7.3. Intensity Matrix and Simulation

The model that includes an arbitrary rate functigfip, @, X, m), an objec-
tive function, and a gratification function, still is a continuous-time Mar-
kov chain. The intensity matrig(x, y) is still given by (7), now with

i (X) = A (p,a, X, m)p; (6, X), (37)

wherep; now is given by (34).
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Note that it is straightforward to define an algorithm that simulates
this stochastic process. Schematically, this can be done as follows. Sup-
pose that the present time pointti€ [ty, tn.1). The time until the next
change by any actor is generated by a negative exponential distribution
with parameter (28), provided that the moment so determined is before
timety,. The actor who is to change a relation (i.e., the row of the adja-
cency matrix in which a change will occur) is actowith probability
(29). The other actor with whom actowill change the relation (column
of the adjacency matrix) iswith probability (34). Wherj is chosen, ele-
mentx; is changed into its opposite, 1 .

7.4. Choice of Statistics for Estimation

The use of the method of moments requires also the selection of statistics
that are relevant for the parameters included in the rate and gratification
functions.

A tentative choice for statistics to estimate the parametgris
(30) is provided by the total amounts of change weighted by

Cuvsho1= 2, D 1 X (tmr1) = X (tm) [0 (38)

m=1 i,j=1
1#]

To estimate the parametey in (31) for the effect of out-degree on rate of
change, the statistic

Cuwrn = 2 2 IXij(tme1) = Xij (tm) [ X (tm) (39)

m=1 i,j=1
1#]

can be used (wheltd is the total number of covariates used for modeling
the rate function), and similarly for the effects of the in-degree and the
number of reciprocated relations. These choices are intuitively plausible
and have led to reasonable estimates in some trial data sets, but more
research is required.

For the parameterg, included in the gratification function (36), a
relevant statistic is

) 2, D) =Xl (40)
#j
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which is the sum of the;, values of newly formed relations rf, con-
tains a factof1 — x; ), and the sum ofj, values of disappeared relations
if rij, contains a factox;; .

These statistic€y., andR;, are used in the method of moments in
the same way a3, Sn«in (17) and (25).

8. CONTINUATION OF THE EXAMPLE

Continuing the example of the network of university freshmen, the effect
(31) of the out-degrees on the rate of change is included, and the gratifi-
cation function is defined as the sum of the effect of breaking recipro-
cated relations and the effect of gender difference on breaking a relation,

9 (¥, %, §) = yiXy X5 + v2Xjloi — vy

wherey; indicates the gender of actar

The results are given as Model 4 in Table 3. It can be concluded
that the tendency of actors with higher out-degrees to change their rela-
tions more often is close to significance at the 5 percent l&vel0.90/
0.47 = 1.91), and that relations with other actors of the opposite sex are
terminated more quickly than those with others of the samétsex.64/

TABLE 3
Parameter Estimates and Standard Errors for Model with Rate
and Gratification Effects

Model 4
Effect par. (s.e)
Rate (period 1) 5.05
Rate (period 2) 3.95
Out-degree effect on rate 0.90 (0.47)
Density —0.99 (0.20)
Reciprocity 2.82 (0.56)
Indirect relations —-0.508 (0.091)
Gender activity —0.52 (0.31)
Gender popularity 0.55 (0.30)
Gender dissimilarity 0.08 (0.37)
Breaking reciprocated relation —0.58 (1.06)

Breaking relation with different-gender other 1.64 (0.62)
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0.62 = 2.65). The effect of reciprocity on breaking a relation is not differ-
ent from what may be expected from the main reciprocity efféct
—0.58/1.06 = —0.55). Comparing these results with those for Model 3 in
Table 1, it can be concluded that the activity and popularity effect for
gender now are somewhat weaker (having lost their significance at the 5
percent level), and the main gender dissimilarity effect has vanished due
to the inclusion of the effect of gender dissimilarity on breaking a rela-
tion. Thus Model 4 suggests that friendly relations with actors of the oppo-
site sex are less stable, and that there is no evidence (as one might
erroneously conclude from Model 3) that friendly relations are initiated
less with actors of the opposite sex than with those of the same sex.

9. ASYMPTOTIC DISTRIBUTION AND RELATION
WITH THE p* MODEL

If it is possible to reach every state from every given initial state in a finite
number of steps (as is the case here), the distribution of a Markov chain
with stationary intensity matrix on a finite outcome space tends to a unique
limiting distribution ast — oo, independent of the initial distribution. For
a certain specification of our model, this limiting distribution is e
model for social networks proposed by Wasserman and Pattison (1996),
generalizing the Markov graph distribution proposed by Frank and Strauss
(1986). Thep* model is a family of probability distributions for a single
observatiorx on a stochastic directed graph The probability distribu-
tion for thep* model is defined by

p(x = ) = ZREZX) (41)

k(B)

wherez(x) is a vector of statistics of the digraph ari3) is a normaliza-
tion factor. The following proposition indicates a specification for the actor-
oriented model that yields th&" distribution as the limiting distribution.

Proposition 1.Define for alli the objective function by
fi(B,%) = B'z(X) (42)

and the gratification function bg; = 0. Furthermore, define the rate func-
tion by

A (x) = > exp(B'z(x(i ~ h))). (43)
h=1

h#i
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Then the limiting probability distribution ak(t) for t — oo is thep* dis-
tribution with probability function (41).

Proof. It follows from (34), (37), and (43) that
g (X) = exp(B'z(x(i ~]))).

Note that the symbak(i ~ j) can be understood as the result of taking
matrix x and applying the operation of changirginto 1— x; . Applying
this operation twice returns the original matsix which can be repre-
sented a$x(i ~j))(i ~j) = x. Therefore,

g (x(i ~])) = exp(B'z(x))
which implies
exp(B'2(x)) g (X) = exp(B'z(x(i ~}))) g (x(i ~ )
and, forQ defined by (7), that
exp(B'z(x)a(x,y) = exp(B'z(y)q(y,x)

for all x,y. In terms of the theory of Markov chains (e.g., Norris 1997,
pp. 124-25), this means that the intensity ma@iand the distribution
(41) are in detailed balance, which implies that (41) is the stationary dis-
tribution for Q. Since all states communicate with one another, the station-
ary distribution is unique and (41) is also the limiting distribution. Q.E.D.

An interpretation of the rate function (43) is that actors for whom
changed relations have a higher value, will indeed change their rela-
tions more quickly.

10. DISCUSSION

The procedure proposed in this paper provides a method for the analysis
of two or more repeated observations on a social network, in which net-
work as well as covariate effects are taken into account. In view of pro-
cesses in the real-life evolution of social networks, in which endogenous
network effects cumulate continuously over time, the continuous-time
nature of this model will be attractive in many applications. The proce-
dure is available in SIENA (Simulation Investigation for Empirical Net-
work Analysis, available free of charge from htfstat.gamma.rug.yl
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snijderg'siena.html), which runs under Windows, and is contained in the
StOCNET package (http/stat.gamma.rug.pfiétocnet).

The present article provides the basic procedure, but this method-
ology could benefit from further elaborations and improvements, for exam-
ple, along the following lines. The algorithm has been proved to work
well in various applications, but it is rather time-consuming and improve-
ments may be possible. A proof of the sufficient condition for its conver-
gence (see the appendix: the eigenvaludDgf*o&, Z/06] should have
positive real parts) is still lacking. The frequency properties of the stan-
dard errors and the hypothesis tests are based on large sample approxima-
tions and should be investigated. The robustness of the proposed estimates
and tests to deviations from the model assumptions is an interesting point
for further study. The method of moments was chosen because of its fea-
sibility, but it may be possible to develop other estimation methods for
this model. As additions to the toolbox, it would be useful to have mea-
sures for goodness of fit and some kind of standardized effect sizes. The
present implementation contains an ad hoc way of dealing with missing
data, which merits further investigation.

Although the model is presented as an actor-oriented model, it uses
an extremely simple and myopic behavioral model for the actors. This
simplicity is a strength because more complicated models for the behav-
ior of actors in a relational network would be more restrictive and less
general in their domain of applicability. On the other hand, for specific
applications it could be interesting to develop statistical network evolu-
tion models incorporating a sociologically more interesting behavioral
model.

Further extensions are possible. An extension to relations with
ordered outcome categories would increase the scope of the model. One
could also think of extending the model to include unobserved heteroge-
neity by means of random effects, but this would lead the model outside
of the realm of complete observations of the state of a Markov process,
and therefore require more complex estimation methods.

APPENDIX: STOCHASTIC APPROXIMATION ALGORITHM

The purpose of the algorithm is to approximate the solution of the moment
equation (12). In this appendix, the solution is denoteddhyAs men-
tioned in the text above, the algorithm uses the idea of Polyak (1990) and
Ruppert (1988) to employ a diagonal matiy in the iteration step (26)
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and estimate the solution by partial average$pfather than the last
value; and it uses the idea of Pflug (1990) to let the valuesafemain
constant if the average products of successive valldgs- z)(Zn-1 — 2)
are positive, since this suggests that the process still is drifting toward its
limit value. However, the specification used here deviates from Pflug’s
proposal by requiring, for the premature decreaseygf that for each
coordinate the partial sum of the product of successive values be nega-
tive, rather than requiring this only for the sum over the coordinates. Fur-
thermore, the number of steps for whigfis constant is bounded between
a lower and an upper limit to ensure tlagtis of orderN ¢,

A crucial condition for the Polyak-Ruppert result about the opti-
mal convergence rate of the partial sumsgfto the solution of (12), is
the assumption that all eigenvalues of the matrix of partial derivatives,
(Do €y Z/90), have positive real parts; see Yin (1991), Pflug (1996), or
Kushner and Yin (1997). This condition is implied by condition (13)¢f
is the identity matrix. For our model and the proposed statistics used in
the moment estimators, we conjecture that this condition is satisfied, but
the proof is still a matter of further research. Whether the algorithm yields
an estimate that indeed solves the moment equation (12) to a satisfactory
degree of precision is checked in the “third phase” of the algorithm below.
The practical experience with the convergence of the algorithm is, for
most models applied to most data sets, quite favorable.

The reason for incorporating the matf is to achieve better com-
patibility between the scales @ and of#. The diagonal elements @f,
are defined as the estimated values of the derivatigg&Z,)/06, whereo
is at its initial value. To see that this leads to compatibility of the scales of
Z andé, note that in the extreme case where(Zah = 0 and the diagonal
elements oD, are equal td&,(Zy)/00k, (26) foray = 1 is just the itera-
tion step of the Newton-Raphson algorithm applied to each coordinate of
Z separately. Thus, beginning the algorithm waghin the order of mag-
nitude of 1 will imply that the initial steps have an approximately right
order of magnitude.

The algorithm consists of three phases, which can be sketched as
follows. The number of dimensions éfand ofZ is denoted by and the
initial value is denoted); .

* Phase 1:In this phase a small numbey of steps are made to estimate
D(61) = (0€4(Z)/90)|4—p,, using common random numbers; the diago-
nal elements of this estimate are used to defige
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This is described formally as follows. Denote gythej’th unit
vector inp dimensions. In stepl, generat&Zyo ~ 6; andZy; ~ 6, +
€ §, where all thep + 1 random vectors use a common random number
stream to make them strongly positively dependent and wkeaee
suitable constants. For differehl, the random vectors are generated
independently. Compute the difference quotients

dnj = € (Znj — Zno)s

for small values o; the expected value of the matidy = (dyz, ..., Anp)
approximate® (6,). Howeverg; must be chosen not too small because
otherwise the variances of tlig; become too large.

At the end of this phase, estimdig, Z andD(6;) by

1 - 1>
Z=— 2 ZNoandlﬁz - 2 dN’
Ny N=1 N1 N=1

respectively, make one estimated Newton-Raphson step,

A

b, = 61— D7Y(2— 2),
and use the diagonal matrix = diag(D) in Phase 2.

» Phase 2:This is the main phase, consisting of several subphases. The
number of iteration steps per subphase is determined by a stopping
rule, but bounded for subphakéy a minimum valuen,, and a max-
imum valuenj,. In each subphasey is constant. The only differ-
ence between the subphases is the valuayof

The subphase is ended after less thgnsteps as soon as the
number of steps in this subphase exceaggsvhile, for each coordinate
Zy, the sum within this subphase of successive prodigg — z¢) X
(Zn-1.x — zi) is negative. If the upper bounmfy is reached, then the
subphase is terminated anyway.

In each iteration step within each subphagg,is generated
according to the current parameter vafiye After each step, this value
is updated according to the formula

Onii= O — anDH(Zy — 2). (44)

At the end of each subphase, the averagéobver this subphase is
used as the new value féf.
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The value ofay is divided by 2 when a new subphase is entered.
The boundsh andngy are determined so that¥“ay tends to a finite
positive limit.

The average ofly over the last subphase is the eventual esti-
mated.

» Phase 3:Phase 3 is used only for the estimation»fd) and=(6),
using common random numbers for the estimation of the derivatives;
and as a check for the (approximate) validity of (12). Therefore the value
of 6y is left unchanged in this phase and is equal to the value obtained
after the last subphase of Phase 2. The simulations and the estimation of
EyZandD(0) are as in Phase 1. The covariance matrixofequired
for the calculation of (21), is estimated in the usual way.

This algorithm contains various constants that can be adapted so as to
achieve favorable convergence properties. Experience with various data
sets led to the following values. The number of steps in Phasel=s

7 + 3p. The values o€; are chosen at least 0.1, in most cases 1.0, because
the variability obtained by the use of small valuesepfs more serious

than the bias obtained by the use of this large value. The minimum num-
ber of steps in subphasekas ny = 2**~V/3(7 + p) and the maximum
number isnj, = ny + 200. The initial value ofy in Phase 2 is 0.2. The
default number of subphases is 4, but fewer or more numerous subphases
can be used to obtain smaller or larger precision. The default number of
steps in Phase 3 i = 500. Phase 3 takes much time because each step
require + 1 simulations; however, the variance estimate is rather unsta-
ble if the number of steps is much smaller.
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