Goodness of fit testing in RSiena

Tom A.B. Snijders

University of Oxford
University of Groningen

January, 2019
Two functions are available in RSiena for checking model assumptions:

1. sienaTimeTest()
 for testing time heterogeneity
 (meaningful only if there are 3 or more waves);
Two functions are available in **RSiena** for checking model assumptions:

1. `sienaTimeTest()` for testing time heterogeneity (meaningful only if there are 3 or more waves);
2. `sienaGOF()` for checking that the **RSiena** model reproduces sufficiently the characteristics of the observed networks.

Both were developed by Josh Lospinoso (Oxford).
sienaTimeTest

For M waves there are $M - 1$ periods.

The assumption that parameters are constant in the $M - 1$ periods is tested by sienaTimeTest().

The summary() method also produces effect-wise and period-wise tests.

See RscriptSienaTimeTest.r
sienaTimeTest

For M waves there are $M - 1$ periods.

The assumption that parameters are constant in the $M - 1$ periods is tested by sienaTimeTest().

The summary() method also produces effect-wise and period-wise tests.

See RscriptSienaTimeTest.r

Can be used also for multi-group projects!
The associated function `includeTimeDummy()` can be used to interact the effects specified by time dummies, representing time heterogeneity.

An alternative for this purpose is to define time variables (dummies or trend or other time-dependent variables) and add those to the data set, and then specify interactions between the other effects and these time variables.

This is a bit more work but also more flexible and clearer.
sienaGOF()

The goodness of fit of a model (does it reproduce the data well enough?) can be tested by the function sienaGOF().

This requires that siena07() was run with returnDeps = TRUE.

This option returns the simulated data sets in Phase 3 as part of the sienaFIT object produced by siena07().
This is done by simulations of auxiliary statistics, different from the statistics used for parameter estimation. The fit is good if the average values of the auxiliary statistics over many simulation runs are close to the values observed in the data.

A Monte Carlo test based on the Mahalanobis distance is used to calculate \(p \)-values.

This is a case where you wish the \(p \)-values to be \textit{large} enough!

A \texttt{plot()} method can be used to diagnose poor fit.
The auxiliary statistics must be given explicitly in the call of `sienaGOF()`.

Some basic auxiliary statistics are available directly:

- `OutdegreeDistribution()`
- `IndegreeDistribution()`
- `BehaviorDistribution()`
- `TriadCensus()`
- `MixedTriadCensus()`

and the user can also create custom functions.

The help page `sienaGOF-auxiliary` contains some additional functions using `igraph` and `sna`.
Sketch of the use of sienaGOF

See ?sienaGOF and the script sienaGOF_new.R

The basic operation is as follows:

```r
results1 <- siena07(myalg, data=mydata, effects=myeff, 
  returnDeps=TRUE)
gof1.od <- sienaGOF(results1, verbose=TRUE, 
  varName="friendship", OutdegreeDistribution, 
  cumulative=TRUE, levls=0:10)
gof1.od
plot(gof1.od)
```

You can adapt the parameters levls and cumulative in sienaGOF.
Auxiliary functions

Some auxiliary functions are available within RSiena, (‘out of the box’), some are listed on the help page for "sienaGOF-auxiliary", such as GeodesicDistribution(), and others can be made by yourself (...) or in future by others (!!!).

If you wish to use GeodesicDistribution(), you have to take this function, along with igraphNetworkExtraction(), from the sienaGOF-auxiliary help page and give them to R.

What is available now is not meant to be complete!
How good a fit is required?

Since some time we have been moving to a new standard for publications using Siena, where the fit for the degree and behavior distributions should be adequate.

Of course it is also advisable to consider goodness of fit for the triad census and the geodesic distribution.

It may not always be possible to achieve a fit with $p > 0.05$ for the Mahalanobis combination of all statistics under consideration.

But it should be attempted, and in my experience it usually is possible, to have the data within the confidence band of plot.sienaGOF for the degree and behavior distributions.
How to specify the model?

This depends of course on the purpose of the research, theoretical considerations, empirical knowledge...

But the following may be a guideline for specifying the network model:

1. Outdegree effect: always.
2. Reciprocity effect: almost always.
3. A triadic effect representing network closure. gwesp, transitive triplets, and/or transitive triads.
4. Transitive reciprocated triplets and/or three-cycles (see Block, *Social Networks*, 2015).
How to specify the model? (continued)

5. Degree-related effects:
 indegree-popularity (‘Matthew effect’), outdegree-activity, outdegree-popularity and/or indegree-activity perhaps reciprocated degree-activity; (raw or sqrt versions depending on goodness of fit).

6. Think about what are important covariates!
 For actor covariates: ego effect, alter effect, similarity and/or ego × alter and/or same effect.

7. If there is a strong center-periphery structure, and/or a strong dispersion in the outdegrees, then a dependence of the rate function on the log-outdegree (outRateLog) may be advisable.
Another guideline is that the model should allow you to answer your research questions (of course), and it should also have a good fit to the data.

A large set of effects is available in **RSiena**, growing over the years because of researchers’ requests.

The fit can be checked, to some extent, by using `sienaTimeTest()` and `sienaGOF()`.

8. If the fit for the degree distribution is poor, consider the degree-related effects listed in the manual.

9. If the fit for triad census or geodesic distribution is poor, consider additional covariate or structural effects. Think of interactions and non-linear transformations of covariates.
Note that difficulties in obtaining convergence of the estimation procedure may be a sign of model misspecification or overspecification.

(The converse is not true!!!(})
Further remarks

See the help pages for further information, and Sections 5.11, 5.13, and 8.6 of the manual.

Also see the scripts on the Siena scripts webpage.

First test time homogeneity, then goodness of fit.

Goodness of fit testing can be time consuming; you may explore it with a Phase 3 of reduced length.

Testing of time homogeneity and goodness of fit is starting to become more and more important.