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A DYNAMIC APPROACH TO NETWORK ANALYSIS

Dynamic ideas have been pursued in much of Social Network Analysis. Network

dynamics is important for domains ranging from friendship networks (e.g., Pearson and

West, 2003; Burk, et al., 2007) to, for example, inter-organizational networks (see the

review articles Borgatti and Foster, 2003; Brass et al., 2004). However, formal models of

analysis, both in the tradition of discrete mathematics and in the tradition of statistical

inference, have for a long time focused mainly on single (i.e., cross-sectional) methods

of analysis.

Some history: empirical research

Important early longitudinal network studies were those by Nordlie (1958) and

Newcomb (1961) who studied friendships in a college fraternity based on the empirical

data collected; Coleman’s (1961) Adolescent Society study with friendship data in 10

schools and 9,702 individuals; Kapferer’s (1972) study of observed interactions in a

tailor shop in Zambia (then Northern Rhodesia) over a period of ten months, in a period

of industrial conflict; Sampson’s (1969) Ph.D. dissertation on the developments of the

relations in a group of 18 monks in a monastery; and the study by Hallinan with seven
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waves (see Hallinan, 1974, 1979 and Sørensen and Hallinan, 1976). However, attention

before about 1990 was mostly on single observations of networks. Of the twenty data

sets distributed with the Ucinet package (Borgatti et al., 1998), only three provide

longitudinal data: Kapferer’s Taylor Shop, Newcomb’s Fraternity, and Sampson’s

Monastery. The leading textbook on Social Network Analysis, Wasserman and Faust

(1994), has a section of half a page on Dynamic and Longitudinal Network Models. The

limited amount of attention paid to explicit longitudinal treatment of Social Network

Analysis may be understood from the difficulties of collecting network data which are

multiplied when a researcher wishes to collect them longitudinally; and from the

difficulties in explicitly modelling the dynamics of social networks.

Starting in the 1980s, network panel data started to be collected more widely. Panel data

are data collections where the researchers collected data on a given group of social actors

at two or more consecutive moments, called the ‘panel waves’. Examples are Bauman’s

study of friendship networks in five schools, collected in the course of a study focusing

on dynamics of cigarette smoking (Bauman et al., 1984), with 954 complete

questionnaires in a two-wave study; and the Teenage Friends and Lifestyle Study in

Scotland with three waves (West and Sweeting 1995, Michell and Amos, 1997, Pearson

and West, 2003). The currently most well-known study probably is the Add Health study

in the USA with three waves (Harris et al. 2003, Udry 2003). Christakis and Fowler

(2007) discovered interesting network data in the Framingham Heart Study, a

longitudinal study not originally intended to contain a network component. Official

records and directories also have been used as sources of longitudinal network data.

Some examples of such studies are Gulati and Gargiulo (2000), Powell, White, Koput,

and Owen-Smith (2005), and the review by Hagedoorn (2002).

Some history: statistical models

A probabilistic model for network dynamics requires to specify the simultaneous

probability distribution of {X(t) | t ∈ T }, where t is the time parameter which assumes

values in a set T of time points, and X(t) is the network at time t. In probability theory,

this is called a stochastic process, where the outcome space is a space of networks. It
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will be convenient to think of the network as a directed graph (digraph), although

depending on the situation at hand it might be a different structure – e.g., undirected, a

valued network, etc. For a directed graph, the network X(t) is composed of directed tie

variables Xij(t) indicating by the value 1 that there exists an arc i→ j at time t, and by

0 that no such tie exists. In all cases we assume that there are no self-loops, i.e., always

Xii(t) = 0. We shall focus on situations where the node set is fixed and denoted by

{1, . . . , n}. Thus, the network is comprised of n actors. This is usually meaningful for

network panel data, if we allow some flexibility for nodes representing actors who

entered after the start of data collection or left before the end. It should be noted that

there are models also for growing networks, with nodes entering the network, often with

the additional assumption that ties do not change once they are established, and the

network change is determined by the links created by the newly created nodes. This is a

classical approach in the mathematical theory of random graphs (e.g., Bollobás, 1985).

Dynamic network models have to represent the feedback processes that are characteristic

of networks. As examples, consider some of the processes of tie creation that are

traditional in social network analysis: reciprocation (Moreno, 1934), transitive closure

(Rapoport, 1953 a,b; Davis, 1970), and the Matthew effect (‘unto him that hath is given

and unto him that hath not is taken away, even that which he hath’; Merton 1957; de

Solla Price 1965, 1976; called ‘preferential attachment’ by Barabási and Albert, 1999).

If at some moment t the tie i→ j does not exist, then at some later moment it might be

created by reciprocation if currently there is a tie j → i; it might be created by transitive

closure if there are two ties arranged in a two-path i→ h→ j — i.e., there currently is

an indirect connection from i to j; and it might be created by the Matthew effect if there

are many other actors h for which there is a tie h→ j — i.e., currently actor j is highly

popular in the sense of having a high in-degree. These examples illustrate that statistical

models for network dynamics have to express dependence between ties as well as

dependence across time.
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Dependence across time

For modeling dependence across time, the great majority of published models seem to

have used some variation of the Markov property. Loosely defined, this is a property,

defined for stochastic processes, which expresses that the future depends on the past via

the present. A more formal definition (although still slightly incomplete) is that, for time

points t1 < t2 < t3, X(t3), conditional on X(t2), is independent of X(t1). The earliest

proposed models postulated that, if the panel data are X(t1), X(t2), . . . X(tn), then these

n consecutive observations constitute a Markov process. This was assumed, e.g., by Katz

and Proctor (1959), Wasserman (1987), Wasserman and Iacobucci (1988), and Robins

and Pattison (2001). Since the observations are finite in number, this is called a

discrete-time Markov process.

However, the feedback processes mentioned above may be assumed to operate,

unobserved, between the observations. For example, in a group in which the Matthew

effect operates, if at time t1 some node i has a low in-degree and at the next observation

t2 it has a very high in-degree then it is likely that this has come about by the gradual

accumulation of ties directed toward i; the first of these may have been chance

occurrences, but once the in-degree was relatively high, it became a self-reinforcing

process. Such a model presupposes that there were changes occurring between the

observation moments t1 and t2. The most elegant and mathematically tractable way of

modeling this is to postulate a continuous-time Markov process

{X(t) | t ∈ t1 ≤ t ≤ tn }, in other words to let the set of time points of the process T be

the entire interval [t1, tn], while still sticking to the panel design for the observed

networks: thus it is postulated that the process of network change goes on, unobserved,

between the moments of data collection. This was proposed by Sørensen and Hallinan

(1976) and Holland and Leinhardt (1977). These authors also proposed that in this

change process, at any instance of time t no more than one tie variable Xij(t) can

change. This decomposes the change process into its smallest possible constituents and

rules out coordination in the form of the simultaneous creation of a set of ties, as in

mutual love at first sight, or the spontaneous creation of a group of friends. This is a

reasonable requirement which greatly reduces the complexity of modeling. The model of
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Sørensen and Hallinan (1976) focused on the dynamics of the triad census (Holland and

Leinhardt 1975), and had the set of vectors defining the outcomes of the triad census as

the outcome space. This model was incomplete, however, as it did not elaborate the

dependence between the triads in a network. A similar but simpler model was presented

by Hallinan (1979), focusing on the dyad census. General models representing the

dynamics of networks as continuous-time Markov processes where ties change one by

one, were proposed by Holland and Leinhardt (1977). They did not, however, elaborate

ways to specify the dependence of ties in the network.

Dependence across ties

The Markov chain model of Katz and Proctor (1959) assumed independent tie variables

that could change according to a Markov chain at each next observation. Independence

of ties is, of course, no more than a straw man assumption as it goes against basic ideas

of social network analysis. A first relaxation of this assumption is to postulate

independence of dyads, i.e., pairs of tie variables of the type
(
Xij(t), Xji(t)

)
. Such an

assumption was made, for longitudinal models, by Wasserman (1977, 1979 and other

publications), Hallinan (1979), and Leenders (1995 and other publications) for

continuous-time Markov processes; and Wasserman (1987) and Wasserman and

Iacobucci (1988) for discrete-time Markov processes.

The assumption of independent dyads breaks apart the stochastic process into

n(n− 1)/2 independent sub-processes. This helps for tractability, but of the three basic

component processes mentioned above as examples: reciprocity, transitivity, and

Matthew effect, it represents only the first. Wasserman (1980) proposed the so-called

popularity model which may be said to represent the Matthew effect, but without the

reciprocity process – in this model the rows of the random adjacency matrix
(
Xij(t)

)
are

independent, which again gives a simplification of the model to make it tractable.

Stochastic models that allow triadic and other higher-order dependencies were proposed

for data in the form of rankings – as the Newcomb-Nordlie data – by Snijders (1996),

and for data in the form of digraphs by Snijders and Van Duijn (1997) and Snijders

(2001). The latter model is described in detail later in this chapter.
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Scale-free Networks

De Solla Price (1976), Barabási and Albert (1999), and Dorogovtsev et al. (2000)

proposed models where new nodes are added to an existing network and each new node

links to m existing nodes with probabilities which depend linearly on the degrees of the

existing nodes. This leads to so-called scale-free networks where the distribution of

degrees has a power distribution. For most types of networks between human individuals

this does not seem realistic because various constraints will limit the frequency of

occurrence of very high degrees.

STOCHASTIC MODELS FOR NETWORK DYNAMICS

One of the reasons why stochastic models for network dynamics did not take off before

the 1990s is that the dependence structures that characterize networks are so complicated

that plausible models for network dynamics can be implemented only (at least, so it

seems in the current state of knowledge...) as computer simulation models, like in agent

based models, and do not permit the exact calculations that were used in data analysis in

the pre-computer era.

In this section we first present tie-based dynamic models, and then actor-based models.

The former are simpler, the latter closer to most theories in social science. Both should

be regarded as process models, which can be defined by probabilistic rules that give a

representation of how the network might have evolved from one observation to the next.

Technically speaking, all models presented are Markov processes on the space of

digraphs. These are continuous-time models, which means that time increases gradually

in an infinitesimal fashion, and now and then, at random moments, a change takes place.

To keep the model relatively simple, the assumption is followed which first was made by

Holland and Leinhardt (1977), that at any given moment (‘in any split second’), only one

tie can change. This decomposes the dynamics of the network in the smallest possible

steps. It assumes away the possibility of simultaneous coordination by actors: actors are

dependent because they react to each other (cf. Zeggelink, 1994), not because they

coordinate.
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Tie-based Models

The simplest approach to construct dynamic network models with quite general

dependence structures is by formulating a model where a random pair (i, j) is chosen,

and with some probability it is decided to change the value of tie variable Xij: create a

new tie (change the value 0 to 1), or terminate an existing tie (change 1 to 0). The

probability of change can depend on various function of the network, thus representing

the combination of several ‘mechanisms’, theories, constraints, etc. Technically this is

based on the combination of ideas about exponential random graph models with ideas

about Markov processes and Gibbs sampling.

Let us first consider an example with four components of the theory, or mechanisms,

driving the network dynamics: the tendency to a given average degree, toward

reciprocation, transitivity, and the Matthew effect. The Matthew effect is interpreted here

as self-reinforcing popularity, contributing to the dispersion of the in-degrees. All of

these are understood as stochastic, not deterministic tendencies. These four components

will be reflected by the following network statistics:

L(X) =
∑
i,j

Xij number of ties (1)

M(X) =
∑
i<j

Xij Xji number of reciprocal dyads (2)

T (X) =
1

6

∑
i,j,h

Xij XjhXih number of transitive triplets (3)

Vin(X) =
1

n

∑
i

(X+i − X̄+.)
2 in-degree variance (4)

where (5)

X+i =
∑
j

Xji in-degree of i (6)

X̄+. =
1

n

∑
j

X+i average degree. (7)

If the network dynamics has a tendency to favor changes that increase the value of these

four statistics, respectively, then this will steer the network process into a direction,

respectively, of higher density, more reciprocity, stronger transitivity, or larger in-degree

(popularity) differences. This can be achieved by a model in the following way. First, let
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us rewrite the in-degree variance Vin(X) as follows:

Vin(X) =
1

n

∑
i

X2
+i − X̄2

+.

=
1

n

∑
i

X+i(X+i − 1) + X̄+. − X̄2
+.

=
S2(X)

n
− X̄+.(X̄+. − 1) ,

where S2(X) is the number of two-in-stars in the digraph X , i.e., the number of

configurations i, j, k with j → i, k → i and j 6= k. This shows that, for a fixed average

degree X̄+. , having a large in-degree variance Vin(X) is just the same as having a large

number of two-in-stars S2(X). We shall henceforth be working with two-in-stars instead

of the in-degree variance to express the Matthew effect.

For allowing differential strengths for the tendency toward the four theoretical

components, define the linear combination

f(x; β) = β1 L(x) + β2M(x) + β3 T (x) + β4 S2(x) , (8)

where the values of the parameters βk determine the strength of these four tendencies,

and x is an arbitrary digraph. A change process for networks now will be defined that

operates by changing (‘toggling’) single tie variables Xij(t) and that favors changes in

the statistics L,M, T , and S2 depending on the values of the coefficients βk. This is

achieved by the following algorithm, which shows how to transform the current graph

X(t) to the next graph, and when this change occurs.

Algorithm 1 . Tie-based network dynamics .

For digraphs x, define x(ij+) and x(ij−) as the graphs which are identical to x in all tie

variables except those for the ordered pair (i, j), and for which x(ij+) does have a tie

i→ j, while x(ij−) does not have this tie. In other words, x(ij+)
ij = 1 and x(ij−)

ij = 0.

1. Choose a random pair (i, j) with equal probabilities, given that i 6= j.

2. Define x = X(t).
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3. Define

πij =
exp

(
f(x(ij+); β)

)
exp

(
f(x(ij+); β)

)
+ exp

(
f(x(ij−); β)

) . (9)

With probability πij , choose the next network to be x(ij+);

with probability 1− πij , choose the next network to be x(ij−).

4. Increment the time variable t by the amount ∆t, being a random variable with the

exponential distribution with parameter ρ.

This is a model for network dynamics closely related to the exponential random graph

model developed by Frank and Strauss (1986), Frank (1991) and Wasserman and

Pattison (1996). To elucidate the link to this model, the basic issue is that (9) is the

conditional probability for the existence of the tie i→ j, given that we know the entire

network x except whether this particular tie exists, under the exponential random graph

distribution defined by the probability function

P{X = x} =
exp

(
f(x; β)

)
C

(10)

where C is the normalizing constant

C =
∑
x

exp
(
f(x; β)

)
,

the summation extending over all digraphs x. Thus, the dynamic algorithm above selects

whether or not the tie i→ j exists using the conditional probability of this tie under

model (10), the condition being the total network configuration outside of the existence

of this tie. From general theorems about Markov processes, or more specifically about

Gibbs sampling (Geman and Geman 1983), it follows that when this algorithm is

repeated indefinitely, the distribution of X(t) (where repeating indefinitely means that t

tends to infinity) tends to the distribution with probability function (10). This dynamic

algorithm is one of the standard algorithms to obtain random draws from this model, see

Snijders (2002) and Robins et al. (2005).

By choosing the parameters βk in (10), one can choose different models with different

strength of the tendencies toward density, reciprocation, transitivity, and self-reinforcing
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popularity. For example, for β2 = β3 = β4 = 0 one obtains a random (‘Erdös - Rényi’,

‘Bernoulli’) graph. For β3 = β4 = 0 this is a special case of the reciprocity model of

Wasserman (1977, 1979), with independent dyads. This independence between dyads is

broken when β3 6= 0 or β4 6= 0. For β2 = β3 = 0 one obtains the popularity model of

Wasserman (1977, 1980). The possibility of having positive values of β3 as well as β4,

allows to have a model that expresses a tendency towards transitivity as well as the

Matthew effect.

Actor-based Models

One of the challenges of network analysis is to incorporate agency in a network model.

This was formulated forcefully by Emirbayer and Goodwin (1994) – who likewise

stressed the importance of culture, which has to be left aside in this chapter. A natural

way to combine agency and structure in a statistical model is to use a model for network

dynamics where changes of ties are initiated by actors. Such a model can be a good

vehicle for expressing and testing social science theories in which the actors have a

central role, cf. Udehn (2002) and Hedström (2005). Actor-based models were proposed

by Snijders (1996) for ranked network data, and by Snijders and van Duijn (1997) for

binary network data. Here the presentation of Snijders (2001) will be followed. A

tutorial introduction to these models, also including practical advice on how to employ

and specify them, is given by Snijders et al. (2010).

The actor-based nature of the model means that the model is formulated as if the actors

have control over their outgoing ties – under constraints that in the continuous-time

representation ties are changed only one at a time, and that the probabilities of changes

take into account the total current network configuration. The model specification

employs the so-called rate function λi(x;α), depending on actors i and the current

network state x, which indicates the frequency per unit of time with which actor i gets

the opportunity to change an outgoing tie; and the objective function fi(x; β) which can

be interpreted as a measure of how attractive the network state x is for actor i.

Formulated more neutrally, the objective function is such that, when making a change,

actors have a higher probability to move toward networks x for which the objective
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function fi(x; β) is higher. The statistical parameters α and β are used to reflect the

strengths of the various different components included in the rate and objective

functions. (For extensions of this model without antisymmetry between creating a new

tie and terminating an existing tie, see the discussion in the mentioned literature about

gratification or endowment functions.)

The algorithm is formulated in terms of probability distributions only, but it can be

interpreted as representing actors embedded in a network, being each others’ changing

environment (cf. Zeggelink, 1994), who make changes in their outgoing ties each at a

rate λi(x;α) (which could be constant, but which will be changing if the rate function is

a non-constant function of x) so as to optimize the value of the objective function that

will obtain after their change is made, given that random disturbances are added to the

objective function. This may be called myopic stochastic optimization of the objective

function, and is often used in game-theoretical models of network formation (e.g., Bala

and Goyal, 2000).

Algorithm 2 . Actor-based network dynamics .

For digraphs x, define x(ij±) as the graph which is identical to x in all tie variables

except those for the ordered pair (i, j), and for which the tie variable i→ j in x(ij±) is

just the opposite of this tie variable in x, in the sense that x(ij±)
ij = 1− xij .

Define x(ii±) = x (as a convenient formal definition without ulterior meaning).

1. Define x = X(t).

2. For i ∈ {1, ..., n}, define

τi =
λi(x;α)∑n
h=1 λh(x;α)

. (11)

Choose actor i with probability τi.

3. For j ∈ {1, ..., n}, define

πij =
exp

(
fi(x

(ij±); β)
)∑n

h=1 exp
(
fi(x(ih±); β)

) . (12)

With probability πij , choose the next network to be x(ij±).
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4. Increment the time variable t by the amount ∆t, being a random variable with the

exponential distribution with parameter
∑n

h=1 λh(x;α).

The properties of the exponential function imply that equation (12) can be rewritten as

πij =
exp

(
fi(x

(ij±); β)− fi(x; β)
)∑n

h=1 exp
(
fi(x(ih±); β)− fi(x; β)

) , (13)

i.e., the probability of a given change depends monotonically on the increase in objective

function that would be generated by this change. This shows that an actor i for whom the

current state x of the network is near the optimum of the objective function fi(x; β), is

rather likely to make no change, because the probability πii of choosing to keep the

current state x(ii±) = x as the next network then is relatively high.

Model specification

In the tie-based as well as in the actor-based model, the researcher has to specify the

function f(x; β) or fi(x; β), respectively, to specify the model (and in the actor-based

model also the rates of change λi(x;α)). This choice should be based on knowledge of

the subject matter, theoretical considerations, and the hypotheses to be investigated. We

discuss here only the actor-based case.

Like in generalized linear modeling, a convenient class of functions is offered by linear

combinations

fi(x; β) =
∑
k

βkski(x) , (14)

where the ski(x) are functions of the network, as seen from the point of view of actor i –

in many cases, functions of the personal network of i. An analogue of (8), but now

defined for the actor-based model, is

fi(x; β) = β1
∑
j

xij + β2
∑
j

xijxji + β3
∑
j,h

xij xjh xih + β4
∑
j,h

xij xhj . (15)

Just like the four terms in (8), but now seen from the point of view of actor i, these four

statistics represent, respectively, the number of ties, number of reciprocated ties, number

of transitive triplets {i→ j → h, i→ h}, and the added in-degrees
∑

h xhj of the actors
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j toward whom i has an outgoing tie. The tie-based model with specification (8) and the

actor-based model with specification (15) define very similar but nevertheless different

probability distributions for the network dynamics; the choice between the tie-based and

actor-based specifications will have to based on theoretical preferences, or on empirical

fit if any differences in fit can be discerned.

This model specification just serves here as an example of how these models can be used

to represent, by the four parameters β1 to β4, tendencies toward a given value for the

mean degree, toward reciprocity, transitive closure, and preference for already popular

actors. It should be noted that these four statistics are highly correlated, which implies

that although the parameters β2, β3, and β4 can be used to test the respective tendencies,

these parameters all collaborate in their implications for the probability distributions of

the statistics that could be calculated from the network. In practically all cases it will be

desirable to control for the average degree, and testing hypotheses about β1 does not

seem very meaningful in general.

Many other statistics of the personal network of actor i may be used as the ski(x) in

expression (14) for the objective function. Such statistics are called effects. Since the

actor has control only over the outgoing tie variables, what is important here is how the

effects depend on the outgoing tie variables xij; effects depending only on incoming tie

variables have no consequence on the conditional probability (12). An ample discussion

of many statistics which could be included to reflect various theoretically interesting

network tendencies and which can be helpful to give a good representation of the

dependencies between tie variables is given by Snijders et al. (2010). The following is a

(very incomplete) outline.

1. Two fundamental statistics are

(a) the outdegree
∑

j xij , of which the parameter – such as β1 in example (15) –

can be used to fit the level and tendency of the average degree; most other statistics

will be correlated with the average degree, which implies that the precise value of

this parameter will depend strongly also on the other parameters; and

(b) the reciprocated degree defined as
∑

j xijxji, the number of reciprocal ties in
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which actor i is involved, and also included in (15); in almost all directed social

networks reciprocity is a basic tendency, and including this effect will allow a

good representation of the tendency toward reciprocation.

2. The local structure of networks is determined by triads, i.e., subgraphs on three

nodes (Holland and Leinhardt, 1975). The main dependencies between ties in

triads are captured by

(a) transitivity: the tendency that ‘friends of friends become, or stay, friends’,

expressed by the number of transitive triplets in the personal network,∑
j,h xij xjh xih, included as the third term in (15); and

(b) three-cycles: the tendency to form closed cycles i→ j → h→ i, measured by∑
j,h xij xjh xhi. This can represent generalized exchange (Bearman, 1997);

however, it is more frequent to observe that this effect has a negative sign, meaning

that three-cycles tend to be avoided (Davis, 1970), a sign of local hierarchy.

3. In- and out-degrees are fundamental aspects of individual network position, and

creation or termination of ties can be more or less likely depending on the degrees

of the actors involved. This is expressed by degree-related effects. The basic

degree effects are

(a) in-degree popularity, indicating the extent to which those with currently high

in-degrees are more popular as receivers of new ties – which is just the Matthew

effect mentioned above and the fourth term in (15);

(b) out-degree activity, indicating whether those with currently high out-degrees

have a greater tendency to create rather than terminate ties; and analogously

(c) out-degree popularity and

(d) in-degree activity.

Also higher-order degree effects such as degree-based assortativity may be

included, which express a stronger or weaker tendency to form and maintain ties

depending on the combination of the degrees of both.

4. In addition to these effects based on the network structure itself, it is important to

include statistics depending on attributes of the actors – their demographic

characteristics, indicators of resources, etc. A given actor variable can be included
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as an ego effect, reflecting the effect of this variable on the propensity to send ties,

and as an alter effect, reflecting the effect on the propensity to receive ties. In

addition, the combination of sender and receiver usually is important, such as their

similarity on salient attributes, reflecting tendencies toward homophily

(McPherson, Smith-Lovin, and Cook, 2001).

5. It is also possible to include attributes of pairs of actors – which may be their

relatedness in a different network. Such dyadic covariates can express, e.g.,

meeting opportunities, costs and benefits of the dyadic tie, etc.

STATISTICAL INFERENCE FOR ACTOR-BASED MODELS

Varying the parameters α and β can yield very different network dynamics, and for a

given longitudinal network data set the question is, how to determine these parameter

values to achieve a good fit between model and data. This is the usual question of

statistical inference. A technical difficulty here is that no easily computable measure

exists for the fit between the model and the data, like the sum of squares in the analysis

of variance, and the properties of the model can be assessed in practice only by computer

simulation. Indeed the actor-based model can be seen as an agent-based computational

model (cf. Macy and Willer, 2002) that is meant to mimic the way in which the network

evolves.

Estimation

For parameter estimation in actor-based models, three methods have been proposed in

the literature. In the Method of Moments (Snijders and van Duijn, 1997; Snijders, 2001),

a set of statistics of the longitudinal network data set is suitably chosen, one for each

estimated parameter, and the parameters are determined so that for these statistics there

is a perfect fit between observed values and the expected values in the population of all

simulations from this model: the expected values should be equal to the observed values.

This can in practice be achieved only approximately, by a stochastic approximation

algorithm, with some randomness in the results due to the limited number of simulations
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actually conducted. Bayesian procedures were proposed by Koskinen and Snijders

(2007) and Schweinberger (2007). The Bayesian method postulates a probability

distribution of the parameters that represents prior beliefs and/or prior ignorance, and

then calculates or approximates the so-called posterior distribution of the parameters.

The latter is the conditional distribution of the parameters given the data that were

observed, and represents how the prior beliefs have been transformed by the empirical

observations. Third, an algorithm to approximate the Maximum Likelihood estimator

was developed by Snijders et al. (2010). This algorithm is based on simulating the likely

continuous-time process that might have led from one panel wave observation to the

next, and then approximating the parameters using an appropriate method of averaging.

For data sets that are not too small, and if the model holds to a good approximation,

these three methods will yield similar estimation results.

Testing

Connected to the Method of Moments and the Maximum Likelihood method as

estimation methods, there are procedures for testing statistical hypotheses about the

parameters, following the general principles for constructing statistical tests (see, e.g.,

Cox and Hinkley, 1974). Often the most straightforward way is to use the parameter

estimates and their standard errors. For testing a null hypothesis such as

H0 : βk = 0

the test statistic then is the ratio of the estimate to the standard error,

t =
β̂k

s.e.(β̂k)
. (16)

This can be tested in a standard normal reference distribution. This may be called a

t-test, as it is based on a t-ratio. Multi-parameter tests can be derived in an analogous

fashion. For estimates obtained by the method of moments such tests may be called

Wald-type tests, for Maximum Likelihood estimates Wald tests.

There is a different way of hypothesis testing which does not require that the tested

parameter is estimated. This is the general principle of Rao’s efficient score test. For the
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method of moments a special adaptation is required, which yields the score-type test as

developed by Schweinberger (2008). There is a special practical advantage to score or

score-type tests for these models, because the Monte Carlo algorithms for parameter

estimation may fail to converge in cases when the model is relatively complicated given

the amount of information in the data; the score principle then can provide a test even if

one does not have a parameter estimate.

Associated with Maximum Likelihood estimation is the likelihood ratio test. An

algorithm is presented in Snijders et al. (2010).

The algorithms currently available for Method of Moments are much less

time-consuming than those for Maximum Likelihood estimation and testing. However,

this is an area of active development, and the computational efficiency of the available

algorithms may change.

DYNAMICS OF NETWORKS AND BEHAVIOR

What makes networks important often are the individual behavior and other individual

outcomes that are in some way related to the network embeddedness of the actors; see,

e.g., Granovetter (1973), Burt (1992), and Lin et al. (2001). Such individual

characteristics, however, will also play a role in the explanation of the network

dynamics. Thus we encounter the situation where the network and the behavior – a term

that we use here as a shorthand for the relevant changeable characteristics of the actors,

which also could be attitudes, performance, etc. – both can be considered as dependent

variables, changing interdependently. It is assumed here that the behavior variables are

ordinal discrete variables, with values 1, 2, etc., up to some maximum value, for

instance, several levels of alcohol consumption, several levels of political attitudes on a

left-right scale, etc.; a binary variable is a special case. The dependence of the network

dynamics on network and behavior jointly will be called the social selection process, and

the dependence of the behavior dynamics on network and behavior will be called the

social influence process (An, this volume).

Both social influence and social selection can lead to similarity between tied actors,
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which is descriptively called network autocorrelation (Doreian, 1989; Leenders, 1997).

Whether this network autocorrelation is caused mainly by influence or mainly by

selection can be an important question. This is demonstrated in Ennett and Bauman

(1994) for smoking, and Haynie (2001) and Carrington (this volume) for delinquent

behavior.

Actor-based Models

To answer such questions, it can be helpful to employ process models that represent the

interdependent evolution of the tie variables as well as the actors’ behavior variables.

Here actor-based models are especially natural; such models were specified in Snijders,

Steglich and Schweinberger (2007) and in Steglich et al. (2010). They assume that the

outgoing ties of an actor, as well as the behavior of the actor, are under this actor’s

control, subject to various restrictions.

The process model assumes that at random moments, either a network tie or a behavior

variable can be changed. The actors have rate functions and objective functions for the

network and the behavior separately. That networks and behavior are governed

potentially by different processes can be argued, e.g., by regarding network choice and

behavior choice as being determined by different decision frames (Lindenberg, 2001).

Decomposing the changes in the smallest possible steps here means that at one given

(‘infinitesimal’) moment in time, the possibilities for an actor to change his or her

behavioral variable are limited to moving one category up or down on the ordered scale.

We denote the behavior of actor i at time t by Zi(t), collected in the vector Z(t). It now

is assumed that the change probabilities of the network will depend on the current state

of the network as well as the behavior; and the change probabilities of the behavior will

depend on the current state of the behavior as well as the network. The objective

function for actor i for the network is denoted fX
i (x, z; β), and for the behavior

fZ
i (x, z; β). Similarly to the objective function for the network, the objective function

for behavior is such that changes toward higher values of the objective function are more

likely than changes toward lower values. The rate function for actor i for network change
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is denoted λXi (x, z;α), and for behavior change λZi (x, z;α).

Algorithm 3 . Actor-based dynamics of network and behavior .

For the network, the same definitions are used as in the algorithm for actor-based

network dynamics. For the behavior, for any actor i and a potential increment d, define

z(i+d) as the vector of behaviors which is identical to z in all coordinates except that d is

added to the i’th coordinate: z(i+d)
i = zi + d.

1. Define x = X(t), z = Z(t).

2. Calculate the ratio

φX =

∑n
h=1 λ

X
h (x, z;α)∑n

h=1

(
λXh (x, z;α) + λZh (x, z;α)

) . (17)

With probability φX , go to item 3 to make a network step; else (with probability

1− φX), go to item 5 to make a behavior step.

3. For i ∈ {1, ..., n}, define

τXi =
λXi (x, z;α)∑n
h=1 λ

X
h (x, z;α)

. (18)

Choose actor i with probability τXi .

4. For j ∈ {1, ..., n}, define

πX
ij =

exp
(
fX
i (x(ij±), z; β)

)∑n
h=1 exp

(
fX
i (x(ih±), z; β)

) . (19)

With probability πX
ij , choose the next network to be x(ij±).

Go to step 7.

5. For i ∈ {1, ..., n}, define

τZi =
λZi (x, z;α)∑n
h=1 λ

Z
h (x, z;α)

. (20)

Choose actor i with probability τZi .
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6. For d ∈ {−1, 0, 1}, if zi + d is in the permitted range of Z, define

πZ
id =

exp
(
fZ
i (x, z(i+d); β)

)∑1
k=−1 exp

(
fZ
i (x, z(i+k); β)

) . (21)

Values d for which zi + d would be outside of the permitted range are not included

in the denominator.

With probability πZ
id , choose the next behavior vector to be z(i+d).

Go to step 7.

7. Increment the time variable t by the amount ∆t, being a random variable with the

exponential distribution with parameter
∑n

h=1

(
λXh (x, z;α) + λZh (x, z;α)

)
.

The choice d = 0 means that actor i has the opportunity to change her/his behavior, but

refrains from doing so. The probability of this will be higher, accordingly as the value of

the objective function of the current state, fZ
i (x, z; β) is higher compared to the value of

the neighboring states fZ
i (x, z(i+d); β) for d = −1,+1.

Model Specification

For the behavior also, the most convenient expression for the objective function is a

linear combination

fZ
i (x, z; β) =

∑
k

βZ
k s

Z
ki(x, z) , (22)

where the sZki(x, z) are functions of the behavior and other characteristics of actor i, but

may depend also on the personal network, the behavior of those to whom i is tied, etc. In

studies of selection and influence, the behavior-dependent selection part is modeled by

the specification of the model for network dynamics, e.g., by a term expressing the

preference (homophily) for ties to others who are similar on the behavioral variable Z.

The network-dependent influence part is modeled by appropriate terms in the objective

function for behavior. A basic example of a specification for this function is

fZ
i (x, z; β) = βZ

1 zi + βZ
2 z

2
i + βZ

3 zi

(∑
j xij zj∑
j xij

)
. (23)
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The first two terms represent a quadratic preference function for the behavior Z. If

preferences are unimodal, then the coefficient of the quadratic term, βZ
2 , is negative. For

addictive behaviors, however, this coefficient can be positive. The third term indicates

that the ‘value’ for actor i of behavior zi depends on the average behavior of those to

whom i has an outgoing tie.

EXAMPLES

Because of space constraints, this chapter does not contain an elaborate empirical

example. The mentioned methodological articles that further explain the actor-based

model for network dynamics can be consulted for some examples. Other published

examples of network dynamics (ordered by the age of the population of actors) include

Schaefer et al. (2010) about the effects of reciprocity, transitivity, and popularity in

friendship dynamics between pre-school children; Selfhout et al. (2010) about the way in

which friendship dynamics of adolescents depends on personality characteristics; van

Duijn et al. (2003) about the effects of visible and non-visible attributes on dynamics of

friendship between university students; and Checkley and Steglich (2007) about how

mobility of managers affects inter-firm ties.

Examples of the joint dynamics of networks and behavior have been published only

recently, because of the recency of the model. Some of these examples are the following.

Burk et al. (2007) present a study on influence and selection processes in the dynamics

of friendship and delinquent behavior of adolescents. Steglich et al. (2010) studied the

co-evolution of friendship and smoking as well as drinking behavior in a secondary

school cohort. Mercken et al. (2009) studied influence and selection processes in

smoking initiation among adolescents in a large-scale study with networks in 70 schools

in 6 countries. The study by De Klepper et al. (2010) is set in a Naval Academy, and

studies the mutual dependence in the evolution of friendships and military discipline.

THE SIENA PROGRAM

The actor-based model for network dynamics, as well as the model for dynamics of

networks and behavior, are implemented in the SIENA (‘Simulation Investigation for
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Empirical Network Analysis’) program. Initially a stand-alone program with a user

interface through the program StOCNET, since 2009 it is a package within the statistical

system R (R Development Core Team, 2009), called RSiena. The R system and its

packages are freeware, running on Windows, Mac, as well as Unix/Linux systems. An

extensive and frequently updated manual is available (Ripley and Snijders, 2010). This

manual gives detailed instructions for installing and working with RSiena.

A first requirement is to install R, the package RSiena, and a few auxiliary packages, as

described in the RSiena manual. If desired, RSiena can be operated apparently without

any knowledge of R, by means of a graphical user interface; after the installation, it is

then not necessary to operate R. Once the installation is done, RSiena can be run in

three ways:

1. Run the graphical user interface siena.exe outside of R. This will call R

without the user needing to be aware of this, and after the installation only the

RSiena manual is used, and no further knowledge of R is necessary.

2. Run R, load the package RSiena and the auxiliary packages, and run the graphical

user interface from within R by the command siena01Gui(). This offers the

basic functionality of RSiena, with the possibility to integrate the use of RSiena

with the use of any other R packages. It has the advantage that no knowledge of

the commands of RSiena is required.

3. Run R, load the package RSiena and the auxiliary packages, and run RSiena by

using its R commands. This is the best option for users fully conversant with

RSiena.

As basic literature, the best combination is to use Snijders et al. (2010) as a tutorial for

the methodology, and Ripley and Snijders (2010) (or more recent versions) for the

requirements on data formats and the operation of the software.
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OUTLOOK AND DISCUSSION

Statistical methods for social network analysis that represent network dependencies in a

satisfactory way have been available only since recent years. The methods presented

here for analyzing network evolution, and for the co-evolution of networks and behavior,

allow researchers to test competing as well as complementary theories about dynamics

relating to networks. More reflection now is needed from a theoretical as well as

methodological viewpoint to combine the statistical approach with the network

approach. The network approach is rich in structural and positional analysis. The

statistical approach, by contrast, has a tradition of parsimony, which often limits model

specification for hypothesis testing to the choice of tested variables together with a few

control variables. Much research in the statistical approach is purely individualistic,

ignoring the importance of distinguishing multiple types of unit of analysis and where

hypotheses are uniquely formulated without further ado in the scheme of ‘X leads to Y ,

when controlling for A’. Convincing gatekeepers such as reviewers and editors of

journals of the importance of a network approach, where theories and statistical models

are more complex, can be difficult.

Two major limitations of the purely individualistic approach can be mentioned here. In

the first place, most network research is observational rather than experimental, which

means that methods of analysis must incorporate adequate control for competing

hypotheses or theories, and a good specification of statistical dependencies between

observed variables is essential to obtain reliable conclusions. In network phenomena,

endogenous (also called self-referential, emergent, self-organizing, feedback) processes

are essential, and these lead to dependencies between variables rather than effects of

some measured variable X on a dependent variable Y . The failure to specify such

dependencies appropriately will lead to hypothesis tests with inadequate control for

competing theories.

Second, network dependencies can be a treasure grove of interesting theories and

hypotheses, and the infusion of network approaches into theoretical thinking and

statistical hypothesis testing, along theoretical lines such as Hedström’s (2005) analytical
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sociology, can lead to better explanations of empirical phenomena and to improved

interventions in domains such as public health. A similar kind of progress has started

earlier in contextual analysis by multilevel modeling, where the analytical use of several

types of unit of analysis is now generally accepted to be fruitful and even necessary,

although not yet generally practised; examples are Sampson et al. (2002) and O’Campo

(2003).

Such theoretical-methodological advances will be easier when further progress in

statistical modeling for network dynamics will have been made along three lines: models

for richer data structures, less restrictive models, and richer statistical procedures. With

respect to data structures, when remaining within the confines of network panel designs,

one can think of extending this type of modeling to data types such as valued networks,

multivariate networks, and non-directed networks. Developments should not be limited

to panel designs, however. In studies of networks between organizations, sometimes the

observation moments are spaced so tightly that it is reasonable to make the

approximation that the preceding observation of the network state is used to directly

predict the next observation in a network autoregressive model, as done by Leenders

(1997) and Gulati and and Gargiulo (1999); sometimes the observations even provide a

continuous record of tie creation, although not always of tie termination, such as in

Hagedoorn (2002). Second, with respect to models, it will be worthwhile to develop

models that are non-Markovian, e.g., models with latent variables or more general

hidden Markov models (Cappé et al., 2005). The models presented here assume

implicitly that actors have full knowledge of the network, and to model larger networks

in a plausible way it will be helpful to develop models that do not assume complete

information. Third, statistical procedures have to be developed further. Algorithms

should be improved and their mathematical properties investigated. In addition,

procedures for assessing goodness of fit should be developed and the robustness of

parameter estimators and tests for misspecification should be studied. Together with the

software implementation, this implies a considerable amount of methodological work.
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