Simstats0c/FRAN

Ruth Ripley

2013

February 18, 2021

1. Introduction

The R function simstats 0 c (so named during development when I had other versions which did not call C!) is the function which controls the simulations. It is used as an argument to the function sienaModelCreate and stored as the element named FRAN of the model object. It has three (or 3+) modes: initial, to set up the C++ data structure, terminal (to tidy up) and ordinary (to do one complete simulation). (There is an extra mode for using multiple processors, which does some of the work of an initial call.) It uses $\mathrm{C}++$ functions for most of its work.

2. Outstanding work

1. When setting up the effects for behaviour variables, it is assumed that the one-mode network is non-symmetric. Should not!
Note by Tom (February 2021): I'm not sure that this still is the case. It should be checked.
2. Allow data values indicating structurally fixed values to be a parameter.
3. Validate things

3. Model specification

3.1 The data as input to simstatsOc

A siena (or sienaGroup) object and a sienaEffects (or sienaGroupEffects) object.

3.2 The model as it reaches C++

Virtual data A set of dependent variables, actor sets representing the nodes for the variables, and covariates of various types. Never actually exist, but the R routines must check that each data object is consistent with the virtual
data. The virtual data contains details of inter-network constraints: higher, atLeastOne, disjoint

Data Each data object consists of several waves for each of the dependent variables, each of which uses some subset of each corresponding actor set, together with covariate objects of appropriate sizes.

Edgelists Networks and dyadic covariates are passed to C++ as valued edgelists.
Networks Networks have three edge lists: data, missing, structural values. Missing and structural values have been replaced in the data.

Behaviour variables Passed in as a pair of matrices, data and missing entries (as 1's). Missing values have been replaced in the data matrix, as have structural values(?)

Covariates Missing values have been replaced. Node set name(s) are attached to the object as attributes.

Joiners and leavers This is for actors joining or leaving the network. Data is reformatted to be, for each actor set, a list of two items. The first is a data frame with columns event type, period, actor and time. The second is a matrix of booleans, indicating for each actor whether active at the start of each period.

Uponly, downonly Uponly and downonly flags are attached to all dependent variables as attributes, one value for each pair of observations. They indicate that the dependent variable must not decrease, or must not increase, respectively.
symmetric flag for each one-Mode network dependent variable. Only true if true for all observations of the virtual network.
maxdegree one integer per dependent network, same value used for each instance of the virtual network. For valued graphs (not yet!), maxdegree will refer to the number of non-null outgoing ties per actor.
derivs required flag to suppress calculating the scores
from finite differences flag to indicate that this run is a 'repeat' which needs to reuse the random numbers of a previous run. Implemented by obtaining from R and storing the random number objects (. Random. seed) at the start of the simulation for each period in each non finite difference run and restoring the random number object into R in each finite difference run. The values are stored in the FRANstore function in between!

Effects A data frame containing identification information for each effect. In the setup phase the effects objects are created and pointers to objective function effects are stored on this data frame. In simulation calls, the pointers are used to access these effects to update the parameters. Rate effects are accessed differently.

A single effects object contains all the effects for a multi-group project: some of the basic rate effects need to be selected out when reading the data frame for particular data object.

The data frame also has columns which could be used for pairs of R functions (for user-defined effects) (one each for effect and statistic calculation, to be passed back to R , a simple way to implement user-defined effects where speed is not critical). This interface for user-defined effects is not currently implemented.
balmean A calculation for each network, at virtual data level .
similaritymean A calculation for each behavior variable or covariate, at virtual data level.
range For each behavior variable and covariate, at virtual data level
mean For each dyadic covariate, at virtual data level.

4. Initial call to simstats

- Convert data and pass to $\mathrm{C}++$
- Select requested effects and pass to C++
- Pass Model options to C++
- Check consistency of networks with each other and with covariates. Need at least one dependent variable. (a check that data has been interpreted correctly!) (Not really done yet!)

5. The Loop Processing

Update the parameters for the effects
for each group do
Create new EpochSimulation object
for each period (omitting the final one) do
if from Finite Differences then
restore the random number seed
else
store the random number seed
end if
repeat
Get tau (section 5.1)
if the time is greater than the time to the next joiner or leaver in any network then
change the composition of the networks (section 5.7)
set the time so far to the time of the composition change event
next iteration
end if

Choose dependent variable to alter with probabilities proportional to the total lambda in each dependent variable.
For symmetric networks totlambda is defined diferently
Choose actor proportional to lambda
(For symmetric networks use lambda and sum of lambdas as usual, even if totlambda was calculated differently)
if deriv then
Accumulate rate scores Section 5.4 ,
end ifChoose change 5.2
Update state
If required, add scores to accumulators
until time or change is reached, or decide it will not be reached
Calculate statistics (section 5.6)
end for
end for
return statistics, scores (if requested), total time (if conditional), simulated networks (if requested, only 1 at the moment!)

5.1 Get tau

for each dependent variable do \{calculate totlambda\}
for each actor do \{calculate lambda\}
if inactive \equiv all links structurally fixed in this period or not yet joined the network then
lambda $=0$
else
lambda $=$ product of basic rate for the period with other selected rate effects multiplied by relevant theta value
end if
Add to totlambda
end for
Add to sum of totlambda
if symmetric and model type BFORCE, BAGREE, BJOINT then
Replace totlambda by square of totlambda - sum of squared lambdas
(This is $\sum_{i<>j} \lambda_{i} \lambda_{j}$ for active i, j.)
end if
end for
Get a random exponential with sum of totlambda as parameter.

5.2 Choose Change

Define alters $=\{1 \ldots$ dim2 $\}$
if not symmetric or model type is A then
if bipartite then
add $\{0\}$ to alters
end if
for $j \in$ alters do $\{$ calculate deltas and effects; this condition changed from $=$ to $i=$, ts, $6-5-13\}$
if out-degree of actor $>=$ maxdegree then
change is only permissible if there is a link to this alter, to change its
value
else if link from actor to j is structurally determined then
delta $=\{ \}$
else \{changes are permissible\}
if behaviour variable then delta $=\{+1,-1\}$ \{may allow larger changes $\}$ if uponly then
delta $=\{+1\}$
if equal to maximum then
delta $=\{ \}$
end if
else if downonly then delta $=\{-1\}$
if value $=$ minimum then
delta $=\{ \}$
end if
else if value $=$ maximum then delta $=\{-1\}$
else if value $=$ minimum then
delta $=\{+1\}$
end if
else $\{$ not behaviour variable $\}$
if $\mathrm{j}=0$ or $\mathrm{j}=$ actor then
delta $=0$
else
delta $=\{1-2 \mathrm{y}\}$ \{for valued networks, this would alter $\}$
end if
end if
end if
calculate $p(j$, delta) effect of each delta on the objective function (sum of effects multiplied by corresponding parameters)

end for

Choose change proportional to $\exp (p(j$ delta $))$
if symmetric and model type is A and subtype is 2 (alias M1 in PA paper)
and alter is not equal to actor then
Check if alter agrees Section 5.3.2
if alter does not agree then
abort the change
end if
end if
else $\{$ symmetric type B (alias M2, D2, C in PA paper) $\}$
Choose alter with same probabilities as actor (repeat until not equal to actor)
Calculate probabilities of acceptance. Section5.3.3
if not accepted change then
abort the change

```
    end if
end if
if deriv then
    Calculate score functions. Section 5.4
end if
```


5.3 Symmetric network models

There are various types in two groups: Type A or type B. In type A the change is selected in the normal way, but for subtype 2 the alter gets a chance to say no. In type B we select the alter using the rate probabilities and then simply consider that one link.
In the PA paper, Type A models have new names:
A subtype $1=$ forcing = D1,
A subtype $2=$ unilateral \& reciprocal confirmation $=$ M1.
Type B models are called:
BAGREE $=\mathrm{B}$ subtype $1=$ pairwise conjunctive $=\mathrm{M} 2$;
BFORCE $=\mathrm{B}$ subtype $2=$ pairwise disjunctive $=\mathrm{D} 2$;
BJOINT = B subtype $3=$ pairwise compensatory $=\mathrm{C}$ (same as tie-based).
Section 5.2 referred to the following additional steps in the case of a symmetric network.

5.3.1 Decision probabilities

Depending on options and outcomes, we may in the sequel need probabilities $p_{i j}$ or p as defined now. These probabilities are defined for each relevant link from the perspective of the appropriate actor, by

Calculate the change contributions for each effect for this link from i to j, from i 's perspective.
Calculate $y_{i, j}$, the unnormalised probability by multiplying by the parameters and summing.
if link between i and j exists then
change the sign of the unnormalised probability $y_{i, j}$
end if
if subtype not 3 then
Calculate

$$
p_{i, j}=\frac{\exp \left(y_{i, j}\right)}{\left(1+\exp \left(y_{i, j}\right)\right)}
$$

else
Calculate

$$
p=\frac{\exp \left(y_{i, j}+y_{j, i}\right)}{\left(1+\exp \left(y_{i, j}+y_{j, i}\right)\right)}
$$

end if

5.3.2 Model Type A subtype 2

```
if the proposal implies the creation of a tie then
    Calculate the probability }\mp@subsup{p}{\mathrm{ alter,actor }}{}\mathrm{ as defined above.
    if a random number is less than }\mp@subsup{p}{\mathrm{ alter,actor }}{}\mathrm{ then
        alter agrees
        else
            alter does not agree
        end if
end if
```


5.3.3 Model Type B

if BFORCE then calculate $p_{\text {actor,alter }}$ as described above
else if BAGREE then
calculate $p_{\text {actor,alter }}$ and $p_{\text {alter,actor }}$ as described above
else if BJOINT then
calculate p as described above
end if
if BFORCE then \{actor forces\}
accept if $p_{\text {actor,alter }}$ is greater than a random number
else if BAGREE then \{both must agree for existence\}
if link between i and j exists then
accept if $p_{\text {actor,alter }}+p_{\text {alter,actor }}-p_{\text {actor,alter }} * p_{\text {alter,actor }}$ is greater than a random number.
else
accept if product of probabilities is greater than a random number
end if
else \{BJOINT, joint decision\}
accept if p is greater than a random number
end if

5.4 Calculation of scores

For symmetric networks other than Model Type A, see section 5.5. For symmetric networks with Model type A and subtype 2, the rate scores are the same as in this section, but the non-rate scores are defined in section 5.5 .

In Siena3, when calculating scores, only steps which are not aborted because of composition change are included in the scores. (This is a bug in Siena3. We include them unless we are parallel running.)
Let $z_{r k}$ be the observed value of the k th statistic in the r th simulation r_{m} the total rate for this dependent variable at step m of a simulation r_{M} the total rate for this dependent variable at the generation of the final time interval in the unconditional case
t_{m} the tau of the m th step (maybe a composition change)
$s_{i k m}$ be the value of the k th statistic for the i th actor at the m th step
$r_{i m}$ be the total rate for actor i at the m th step
$s_{i, j \delta k}$ be the change in the k th statistic corresponding to choice of i as actor and j as alter with change delta
$p_{i, j \delta}$ the probability of selecting the change delta with actor i and alter j
$c_{r k}$ the score corresponding to θ_{k} in the r th simulation
i the actor, j the alter at the m th step of the total $M . t_{c}$ is the time without an event due to composition change (Does not matter whether $z_{r k}$ is statistic or deviation from observed, provided the same in each term!).
for a basic rate parameter, (λ), for a dependent variable,

$$
c_{r k}=\sum_{m=1}^{M}\left(\frac{\delta_{p q}}{\lambda_{m}}-r_{m} t_{m} / \lambda_{m}\right)-\delta_{b c} r_{M}\left(1-\sum_{m=1}^{M} t_{m}-\sum_{c} t_{c}\right) / \lambda_{m}
$$

for other rate parameter

$$
\begin{aligned}
c_{r k}=\sum_{m=1}^{M} & {\left[\delta_{p q} s_{i k m}-\sum_{d=1}^{n} s_{d k m} r_{d m} t_{m}\right] } \\
& -\delta_{b c} \sum_{d=1}^{n} s_{d k M} r_{d M}\left(1-\sum_{m=1}^{M} t_{m}\right)
\end{aligned}
$$

for other parameters

$$
c_{r k}=\sum_{m=1}^{M}\left[s_{i, j \delta k}-\sum_{a, \text { delta }} s_{i, a \delta k} p_{i, a \delta}\right]
$$

with derivative matrix

$$
D_{j k}=\frac{1}{R} \sum_{r=1}^{R} z_{r j} c_{r k}-\frac{1}{R^{2}} \sum_{r} z_{r j} \sum_{r} c_{r k}
$$

where $\delta_{p q}$ is 1 if the rate parameter is selected and 0 otherwise (0 for all dependent variables if there is composition change), $\delta_{b c}$ is 1 if the simulation is unconditional and 0 otherwise, and R is the number of simulations performed (considering each period as a separate simulation).

Addendum: for maximum likelihood we need derivatives of scores too. Using similar notation, with $v_{r k_{1} k_{2}}$ the derivative of the score corresponding to $\left(\theta_{k_{1}}, \theta_{k_{2}}\right)$ in the r-th chain, this is
for a basic rate parameter, (λ), for a dependent variable, not the total here, just the per actor rate

$$
v_{r k k}=\sum_{m=1}^{M} \mathrm{nbr} \text { of non-structurally determined links in the chain } / \lambda_{m}^{2}
$$

for other parameters

$$
v_{r k_{1} k_{2}}=\sum_{m=1}^{M}\left[\left(\sum_{a, \text { delta } a_{a}} s_{i, a \delta k_{a}} p_{i, a \delta}\right)\left(\sum_{b, \text { delta } a_{b}} s_{i, b \delta k_{b}} p_{i, a \delta}\right)-\sum_{a, \text { delta }} s_{i, a \delta k_{1}} p_{i, a \delta} s_{i, a \delta k_{2}}\right]
$$

with derivative matrix

$$
D_{j k}=\frac{1}{R} \sum_{r=1}^{R} v_{r j k}
$$

Note that non-basic rate effects are not allowed in the maximum likelihood case and basic rate effects are uncorrelated with all other effects.

5.5 Symmetric network scores

5.5.1 Model type A, subtype 2 (AAGREE)

Here we have added a term to the log likelihood, accept or reject with probability $p_{j i}$. The scores for the non rate effects will be

$$
c_{r k}=\sum_{m=1}^{M}\left[s_{i, j \delta k}-\left(\sum_{a, \text { delta }} s_{i, a \delta k} p_{i, a \delta}\right)+p_{j i}^{1-t}\left(1-p_{j i}\right)^{t}(-1)^{1-t} s_{j, i \delta k}\right]
$$

Where t is 1 if agree to change, 0 otherwise.

5.5.2 Model type B

Here we do not do the normal choice. My calculations suggest that for the basic rates it should be twice the normal scores using total rate and basic rate as usual. (Within variable).

The total rate for each variable is

$$
r_{m}=\sum_{i<>j} r_{i m} r_{j m} \text { for active } i, j
$$

So the rate scores will be,
for a basic rate parameter, (λ), for a dependent variable,

$$
c_{r k}=\sum_{m=1}^{M}\left(\frac{2 \delta_{p q}}{\lambda_{m}}-2 r_{m} t_{m} / \lambda_{m}\right)-2 \delta_{b c} r_{M}\left(1-\sum_{m=1}^{M} t_{m}-\sum_{c} t_{c}\right) / \lambda_{m}
$$

for other rate parameter, with j the alter,

$$
\begin{gathered}
c_{r k}=\sum_{m=1}^{M}\left[\delta_{p q}\left(s_{i k m}+s_{j k m}\right)-\sum_{i<>j}\left(s_{i k m}+s_{j k m}\right) r_{i m} r_{j m} t_{m}\right] \\
-\delta_{b c} \sum_{i<>j}\left(s_{i k M}+s_{j k M}\right) r_{i M} r_{j M}\left(1-\sum_{m=1}^{M} t_{m}\right)
\end{gathered}
$$

While calculating rates we store

$$
2\left[r_{m} \sum_{i} s_{i k m} r_{i m}-\sum_{i} s_{i k m} r_{i m}^{2}\right]
$$

because

$$
\sum_{i<>j}\left(s_{i k m}+s_{j k m}\right) r_{i m} r_{j m}=2\left[\sum_{i} r_{i} \sum_{i} s_{i k m} r_{i m}-\sum_{i} s_{i k m} r_{i m}^{2}\right]
$$

The scores for the non rate effects will be:
For subtype 1 (BFORCE):
2 different cases: the probability incorporates whether there is a link from i to j, so the scores will differ depending whether the change is accepted or not.

$$
c_{r k}=\sum_{m=1}^{M} \begin{cases}\left(1-p_{i j}\right) s_{i, j \delta k} & \text { accept } \\ -p_{i j} s_{i, j \delta k} & \text { reject }\end{cases}
$$

For subtype 2 (BAGREE), 4 different cases as we combine the probabilities differently depending on whether there is a tie or not:
$c_{r k}=\sum_{m=1}^{M} \begin{cases}\left(1-p_{i j}\right) s_{i, j \delta k}+\left(1-p_{j i}\right) s_{j, i \delta k} & \nexists \text { link } i \rightarrow j, \text { accept } \\ \frac{-p_{j i} p_{i j}}{\left(1-p_{i j} p_{j i}\right)}\left[\left(1-p_{i j}\right) s_{i, j \delta k}+\left(1-p_{j i}\right) s_{j, i \delta k}\right] & \nexists \text { link } i \rightarrow j, \text { reject } \\ \frac{\left(1-p_{i j}\right)\left(1-p_{j i}\right)\left[s_{i, j k} p_{i j}+s_{j, i \delta k} p_{j i}\right]}{p_{i j}+p_{j i}-p_{i j} p_{j i}} & \exists \text { link } i \rightarrow j, \text { accept } \\ -s_{i, j \delta k} p_{i j}-s_{j, i \delta k} p_{j i} & \exists \text { link } i \rightarrow j, \text { reject }\end{cases}$
For subtype 3 (BJOINT):

$$
c_{r k}=\sum_{m=1}^{M} \begin{cases}(1-p)\left(s_{i, j \delta k}+s_{j, i \delta k}\right) & \text { accept } \\ -p\left(s_{i, j \delta k}+s_{j, i \delta k}\right) & \text { reject }\end{cases}
$$

5.6 Calculate statistics

- set leavers and structurally determined values of network links back to the ones in the stored data as at start of current period (so don't count in change etc.)
- temporarily set the behaviour variables back to the beginning of the simulation while calculate the network statistics and vice versa
- when calculating the statistics for any period, ignore any actor with missing information at either end of the period. Except for endowment statistics where the end of period values are not relevant. (In any network, any statistic, or just those which are used in the current calculation? Only looks at current network at the moment. Not done by missing flags for the actor.)

5.7 Change network composition

if leaver then
set active flag to false
remove any links current
Reset Structactive flags for all other active actors. (only structactive if have a link which is not structurally determined to an active actor, and you've just set an actor inactive.)
else if joiner then
Set active flag to true
activate ties from the stored networks into the current simulated one.
reset structactive flags
end if
update current average mean of the behaviour variables, which excludes structurally inactive actors. Also update the time so far to the time at which the composition changes. update the scores if necessary

6. Prior processing in R

starting values Note that structural values are excluded from the distance but not from the total cell count (and missing cell count is done by subtraction). Need care to get these sorted!
effects user requests - validate as appropriate. If there are structural zeros will need to check whether some effects should be removed. (not done yet!)
missing data Create a separate edge list, and replace in the original one by 0 or any value in a preceding network. Similarly for behavior variables: impute by last previous observation or next following or mode for the wave.
structural zeros and ones Create a separate edge list, and replace by (value-10) in the original one. To do: Make the value 10 a parameter, with any lower values non-structural and those higher structural.
if conditional remove the relevant rate parameter from the working copies of theta
Remove corresponding targets, and associated flags
Divide the other basic rate parameters by the one removed
Set up array to store the times used in simulations in phase 3 from which to estimate the parameter conditioned on
Extract relevant targets for use as distance.
joiners and leavers Set the values in the networks in accordance with the option requested in the input flag, and the pattern, as below.

- Can only do unconditional estimation with joiners or leavers.
- Input format is a list of vectors, one for each actor, containing the start and end of (inclusive) intervals during which the actor was present.
- Attributes are attached to the object, (created in
sienaDataCreate) containing:
action matrix with row for each actor, column for each observation.
Values are

1. Data to be imputed or zeroed is not preceded or followed by real data
2. Data to be imputed or zeroed is preceded but not followed by real data
3. Data to be imputed or zeroed is both preceded and followed by real data event data frame with details of the events in the format required for C++ (see above!) (Actually exclude events at less then time 1e-10 here).
activeStart Matrix of booleans with row for each actor, column for each observation. TRUE if the actor was active at the start of the period. passed unchanged to $\mathrm{C}++$.

- alter the network data, using the action attribute.

```
for each network using this actor set (not behavior variables) do
    for each period do
            for each actor with an action value of 1 do
                if the composition change option is 1 or 2 then
                    zero the data in the value edgelist
                    remove the entries from the missing data edgelist
                    remove from the data to be used to calculate distances for
                    the report
            else {option is 3}
                    add to missing data edgelist
                    mark as missing in data to be used to calculate distances
                    for the report
            end if
            end for
```

```
            for each actor with an action value of 3 do
                    if the composition change option is 1 or 2 then
                    carry forward the data in the preceding edgelist
                    remove the entries from the missing data edgelist
                    set to 0, not missing in the data to be used to calculate
                    distances for the report
            else {option is 3}
                add to missing data edgelist
                mark as missing in data to be used to calculate distances
                for the report
            end if
        end for
        for each actor with an action value of 2 do
            if the composition change option is 1 then
                carry forward the data in the preceding edgelist
                    remove the entries from the missing data edgelist
                set to 0, not missing in the data to be used to calculate
                distances for the report
            else {option is 2 or 3}
                add to missing data edgelist
                mark as missing in data to be used to calculate distances
                for the report
            end if
        end for
        end for
end for
```

- Check for empty sets of active actors:
- for each pair of consecutive periods, count number active at start of both.
- If this is less than 2 ,
* count how many active at start
* go through the events to find if at any stage there is only one or none left
* If so, quit with an error message that one or none is left.

