
Maximum likelihood/FRAN

Ruth Ripley

November 7, 2017

1. Introduction

The R function maxlikec (so named during development when I had other
versions which did not call C!) is the function which controls the maximum
likelihood simulations. It is used as an argument to the function
sienaModelCreate and its name is stored as the element named FRAN of the
model object. It has three (or 3+) modes: initial, to set up the C++ data structure,
terminal (to tidy up) and ordinary (to do one complete simulation). (There is an
extra mode for using multiple processors, which does some of the work of an
initial call.) It uses C++ functions for most of its work.

The interface to C++ and to robmon is more or less the same as for simstats0c.
The terminal call is the same as for simstats0c and is done by the function
terminateFRAN. The initial call is process by the funciton initializeFRAN.

2. Initial call to maxlikec

Call initializeFRAN, which does the data set up in C++ as for simstats0c plus a
call to C++ to initialise the chains.

Extra details beyond simstats0c processing:

1. Calculate nrunMH as the multiplication factor (stored on x or z) times the
sum over dependent variables of the distances by wave. Store on z.

2. Store in C++ the parameters needed for maximum likelihood:

(a) Values controlling length of permutation (on the input model)

maximumPermutationLength
minimumPermutationLength
initialPermutationLength

(b) Probabilities of the different MH steps (on the input model)

insertDiagonalProbability
cancelDiagonalProbability
permuteProbability

1

insertPermuteProbability
deletePermuteProbability
insertRandomMissingProbability
deleteRandomMissingProbability

(c) Proportion of missing data for each period: calculate from the
number of missing and non missing entries in each of the dependent
variables, which are stored as attributes of the group (which is either
input or created for convenience in initializeFRAN).

prmin
prmib

(d) Simple rates flag: TRUE unless any selected effects have type ”rate”
but are not basic rate effects.

3. if this is the first call, (i.e. to main process) then
Set up a minimal chain: see section 2.1.
Do a pre burnin for each chain: see section 2.2
Do 500 normal MHsteps.
Return minimal and post burnin chains as lists.
Store the final chains on the model in C++, along with any intial and
end state differences.

else
Copy the post burnin chains from the main process. Add them to
FRANstore (for use in R, for debugging only?) and store on the
model in C++.

end if

2.1 Minimal Chain

for all periods do
for all variables do

for all actors do
if network variable then

for all alters present in out ties for one only of this period or the next
do

create a ministep
end for

else {behavior}
If the values at either end are different, create enough plus or minus
1 steps to get from one to the other.

end if
end for

end for
In each case ignore structural links or values. We do not need them in the
processing, although they should be added in before returning a chain to R.
TODO: this is not currently done.
if no constraints between the networks then

Create a chain from the ministeps in random order

2

else
repeat

for all ministeps do
Try to insert in a random position in the chain
If this fails, try to insert after any other for the same actor/alter
combination in any network.
Finally try to insert before any other for the same actor and alter.

end for
until done as many loops as dependent variables
if any ministeps left then

stop with error
end if

end if
Initialize the variables for this period
Calculate the probabilities for the chain (section 3.2.9)

end for

2.2 Pre-burnin

repeat
do an insert diagonal step

until have rejected 5 steps
repeat

do an insert permute step with permutation length set to 1
until have rejected 5 steps

3. Simulation call

1. Copy over the updated parameters to the Model object.

2. Create a simulation object and set up, from stored values on the Model
Object:

simpleRates flag

prmin Proportion of missing network data for this period

prmib Proportion missing behavior data for this period

chain for this period, terminal chain from last time.

3. Clear out the storage area for this chain.

4. Set up from the input parameters:

addChainToStore
needChangeContributions Set to 1 if either addChainToStore or

needChangeContributions is 1 (not sure why!)

returnChains Do we want the final chain returned

returnDataFrame Return chain, if requested, as data frame rather than
list.

3

deriv do we need to do derivatives (not in phase 2)

nrunMH Number of MH steps to do

5. Run Initialize method of the simulation object. This sets up the initial
missing data lists (but no longer the initial state).

6. Reinstate the initial state by executing the vector of ministeps defining the
differences. from the data.

7. If using multiple processes, we need to keep the same process for each
wave, which happens by default in snow. Just don’t try to use
load-balancing.

8. Set up the probabilityArray (maybe I could not find anywhere to store this,
but it also initialises the stores for acceptance and rejection statistics).

9. Calculate the chain probabilities (to use the new parameters)

10. Do nrunMH MH steps (section 3.1)

11. Set the flags needScores (always set to FALSE while doing the MH steps
and TRUE at this point) and optionally needDerivatives.

12. Do a final pass of the chain calculating probabilities, scores and optionally
derivatives.

13. Store the current chain on the model, after converting the initial state to a
vector of ministeps defining the differences.

14. Calculate the end state differences. The latter are not currently used: if
they were to be carried over as an initial state for the next wave the chain
would need correcting. They are returned to R with the chain.

15. Return:

scores These are the simulated targets

derivatives Returned as a lower triangle of the matrix. (eventually!)

acceptance and rejection statistics by variable. Permutation steps are
recorded under the first variable. misdat steps are separated out.

chain Optional, based on returnChains. Can select format based on
returnDataFrame or not.

3.1 MH steps

1. Choose a steptype with probability as in the array

2. Do the step

3. Store whether accepted or rejected

4

3.2 Individual Steps

3.2.1 Insert Diagonal

1. Choose a random ministep in the chain, including the option of the final
one.

2. Set data to state just before this ministep.

3. Choose variable and actor as for forward simulation.

4. If actor not active, quit (should never occur)

5. Calculate proposal probability

p(ṽ) = pr of chain after insert

= pr (chain length R+1)
R+1∏
r=1

(pr(varr)pr(actorr)pr(choicer))

p(v) = pr of chain before insert

= pr (chain length R)
R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

u(ṽ|v) = pr of proposing this insertion|not there

=
pr(propose an insert) pr(this var) pr(this actor)

(R + 1)

u(v|ṽ) = pr of proposing deletion|there =
pr(propose a deletion)

pr(this diagonal)
p(ṽ)u(v|ṽ)
p(v)u(ṽ|v)

=
pr (chain length R+1)

∏R+1
r=1 (pr(varr)pr(actorr)pr(choicer))×

(pr chain length R)
∏R

r=1 (pr(varr)pr(actorr)pr(choicer))
pr(delete diagonal) pr(this diagonal)×

pr(insert diagonal)pr(this position) pr(this var) pr(this actor)

6. The product of probabilities all cancel out except the probability of the
diagonal step inserted, and further the variable and actor choices cancel
out, leaving only the choice probability of the diagonal step.

3.2.2 Cancel Diagonal

1. If no diagonal ministeps, quit

2. Find a random diagonal ministep

3. Calculate the proposal probability: as for insert diagonal but upside down.

4. If proposal probability greater than a random uniform, do the deletion

5

3.2.3 Permute

1. Find a random ministep not equal to the final dummy step.

2. Interval to permute is from here for c0 steps, stopping at end.

3. If interval has one or less elements, quit

4. Get a permutation and check if valid

5. If not valid, quit

6. Calculate proposal probability

p(ṽ) = pr of chain after permute

= pr (chain length R
R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

p(v) = pr of chain before permute

= pr (chain length R)
R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

u(ṽ|v) = pr of proposing this permutation|not done
= pr(propose a permute) pr(this interval)

u(v|ṽ) = pr of proposing reverse permutation|done
= pr(propose a permute)pr(this interval)

p(ṽ)u(v|ṽ)
p(v)u(ṽ|v)

=
pr (chain length R)

∏R
r=1 (pr(varr)pr(actorr)pr(choicer))

pr (chain length R)
∏R

r=1 (pr(varr)pr(actorr)pr(choicer))

7. Calculations of choice probabilities only need to be done for the interval
permuted.

8. If proposal probability greater than a random uniform, do the permutation.

3.2.4 Insert missing or CCP and permute

1. Select a random real ministep of the chain: miniStepA

2. Get the chain to the state before miniStepA

3. Choose a variable using relative rates, calculated as in simstatsc

4. if uponly or downonly for this variable then {logically here, as our
variable and actor choices are separate}

Exit
end if[Why do we need to exit for missings too?]

5. For the variable, choose an actor proportional to their personal lambda.

6

6. if actor not active then {will have rate 0}
Exit

end if

7. Choose change as in forward simulation.

8. Quit if any of the conditions in section 3.2.8 hold

9. if chosen change corresponds to a missing value at either end of the
period then

set miniStepB to be the dummy at the end.
else

set miniStepB to be the place for the matching CCP: chosen randomly
strictly between miniStepA and the next ministep for the same
variable/actor/(alter).

end if

10. Find the interval to permute: From miniStepA.next forwards for a
maximum of c0 steps. Stop at ministep-just-before-miniStepB if get that
far.

11. Shorten the interval by stopping if you find any duplicated non diagonal
variable/actor/alter combinations.

12. Get a permutation and check whether the resulting chain is valid,
calculating the chain probabilities as you go.

13. Quit if not valid

14. Otherwise calculate the proposal probability.

7

For a CCP:

p(ṽ) = pr of chain after insertions

= pr (chain length R+2)
R+2∏
r=1

(pr(varr)pr(actorr)pr(choicer))

p(v) = pr of chain before insertions

= pr (chain length R)
R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

u(ṽ|v) = pr of proposing insertions|not there
= pr(insert permute) pr(these positions) pr(this var)×

pr(this actor) pr(this choice)
u(v|ṽ) = pr of proposing deletions|there

= pr(delete permute) pr(not select missing) pr(this CCP)

p(ṽ)u(v|ṽ)
p(v)u(ṽ|v)

=
pr (chain length R+2)

∏R+2
r=1 (pr(varr)pr(actorr)pr(choicer))×

(pr chain length R)
∏R

r=1 (pr(varr)pr(actorr)pr(choicer))
pr(delete permute) pr(not select missing) pr(this CCP)×

pr(insert permute) pr(these positions) pr(this var)
1

pr(this actor) pr(this choice)

For a missing data insertion:

p(ṽ) = pr of chain after insertion

= (pr chain length R+1)
R+1∏
r=1

(pr(varr)pr(actorr)pr(choicer))

p(v) = pr of chain before insertions

= (pr chain length R)
R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

u(ṽ|v) = pr of proposing insertion|not there
= pr(insert permute) pr(this position) pr(this var)×

pr(this actor) pr(this choice)
u(v|ṽ) = pr of proposing deletions|there

= pr(delete permute) pr(select missing) pr(this missing one)

p(ṽ)u(v|ṽ)
p(v)u(ṽ|v)

=
(pr chain length R+1)

∏R+1
r=1 (pr(varr)pr(actorr)pr(choicer))×

(pr chain length R)
∏R

r=1 (pr(varr)pr(actorr)pr(choicer))
pr(delete permute) pr(select missing) pr(this missing)×

pr(insert permute) pr(this position) pr(this var)
1

pr(this actor) pr(this choice)

The probability that the chain contains R events is either a Poisson with

8

mean the constant rate parameter:

exp(−nα(t2 − t1))
(nα(t2 − t1))R

R!
(1)

or approximated by a Gaussian with mean the sum of the reciprocal rates
and variance the sum of the squares of the reciprocal rates.

In each case the product terms will cancel for the part of the chain before
the first insertion and after the final insertion (if there is one).

It is necessary to know the number of CCP’s which will exist after the
insertions: the only reliable way I found was to do the insertions and find
out.

15. If this probability is bigger than a random uniform, do the insertion(s).

3.2.5 Delete missing or CCP and permute

1. Decide whether to delete a CCP or a ministep corresponding to a missing
observation (referred to as a missing ministep in what follows). Do the
latter with probability prmin + prmib (This does not seem sensible, I would
suggest using the mean rather than the sum. In an extreme case you could
have the sum greater than 1).

2. if deleting a missing ministep then
Decide on network or behavior using prmin:prmib.
Pick a random missing ministep from network or behavior.
If there are none of this type, quit.

else
Pick a random CCP

end if
Pick a random missing ministep or CCP as appropriate. If the former, if it
happens to be the last step in the chain, quit.

3. Set ministepA to be the ministep after the random missing or the first of
the CCP.

4. if deleting a missing ministep then
set miniStepB to be the dummy at the end.

else
set miniStepB to be the ministep after the second of the CCP.

end if

5. Find the interval to permute: From miniStepA.next forwards for a
maximum of c0 steps. Stop at ministep-just-before-miniStepB if get that
far.

6. Shorten the interval by stopping if you find any duplicated non diagonal
variable/actor/alter combinations.

9

7. Get a permutation and check whether the resulting chain is valid,
calculating the chain probabilities as you go.

8. Quit if not valid

9. Calculate the proposal probabilities: same as for insert permute but upside
down.

10. If proposal probability is greater than a random uniform, do the deletion(s).

3.2.6 Insert initial missing

1. If no missing values quit.

2. Select a random missing option (variable, actor, plus alter if applicable).

3. if behavior then
Select up or down at random, but if this goes outside range, try the
other way.

end if

4. Select ministepA, a random ministep not after the first occurrence of this
option, if any. The balancing ministep will be inserted before this ministep.

5. Check that it is valid to alter the initial values of the network by a toggle or
the reverse of the direction selected, and insert the new ministep before
ministepA. Note that you do not need to enforce upOnly and downOnly on
the change in the initial state.

6. If not valid, and a behavior option, try the reverse change (unless you know
it won’t be accepted because you have already been forced to change it!)

7. If not valid, quit

8. Proposal probability for behavior direction should be set to 1 unless a
genuine choice was accepted, when it should be 0.5.

10

9. Calculate the proposal probability:

p(ṽ) = pr of chain after changes
= pr(new val of miss item) pr (chain length R+1) ×

R+1∏
r=1

(pr(varr)pr(actorr)pr(choicer))

p(v) = pr of chain before changes
= pr(orig val of miss item)pr (chain length R) ×

R∏
r=1

(pr(varr)pr(actorr)pr(choicer))

u(ṽ|v) = pr of proposing changes|not there
= pr(insert missing) pr(this missing option) pr(direction) pr(ministep here)

u(v|ṽ) = pr of proposing undoing changes|there
= pr(delete missing) pr(this missing option)

p(ṽ)u(v|ṽ)
p(v)u(ṽ|v)

=
pr (chain length R+1)

∏R+1
r=1 (pr(varr)pr(actorr)pr(choicer))×

pr (chain length R)
∏R

r=1 (pr(varr)pr(actorr)pr(choicer))
pr(delete missing) pr(new val)

pr(insert missing) pr(direction) pr(ministep here) pr(orig val)

10. Probabilities for the different values of the missing item are set to the
proportion of non-missing values in the variable at the start of the period
which are equal to the value in question.

11. The product of probabilities of ministeps will cancel out after ministepA.

12. If proposal probability is greater than a random uniform, do the changes.

3.2.7 Delete initial missing

1. If no missing values, quit

2. Select a random missing option.

3. If there are no ministeps for this option, quit

4. If a behavior option, calculate what the direction probability would have
been at insertion.

5. Calculate how many places could have been chosen for the position at
insertion.

6. Check that doing a reverse change to the initial value and deleting the
ministep is valid.

7. If not valid, exit

11

8. Calculate proposal probability. Same as insert missing, but upside down.

9. If proposal probability is greater than a random uniform, do the changes.

3.2.8 quits

if diagonal then
Exit

end if
if network and structurally fixed link then {we exclude these: need to sort this
out }

Exit
end if
if behavior and structurally fixed then {will have rate 0}

Exit
end if
if behavior and goes over end then {will be diag or down as not permissible
change}

Exit
end if
if same variable/actor/(alter) as miniStepA then

Exit
end if

3.2.9 Update chain probabilities

This reinitialises the data, but no longer the initial state.

3.3 Calculation of scores and derivatives

Scores are as for method of moments. For the rates, set τ equal to 1 over the
number of real events in the chain. (Not sure about structurals here!)

Using similar notation, with vrk1k2 the derivative of the score corresponding
to(θk1 , θk2) in the r-th chain,

for a basic rate parameter, (λ), for a dependent variable, not the total here, just
the per actor rate

vrkk =
M∑
m=1

nbr of non-structurally determined links in the chain/λ2m

for other parameters

vrk1k2 =
M∑
m=1

 ∑
a,deltaa

si,aδkapi,aδ

 ∑
b,deltab

si,bδkbpi,aδ

− ∑
a,delta

si,aδk1pi,aδsi,aδk2

12

with derivative matrix

Djk =
1

R

R∑
r=1

vrjk

Note that rate effects are uncorrelated with all other effects.

13

	Introduction
	Initial call to maxlikec
	Minimal Chain
	Pre-burnin

	Simulation call
	MH steps
	Individual Steps
	Insert Diagonal
	Cancel Diagonal
	Permute
	Insert missing or CCP and permute
	Delete missing or CCP and permute
	Insert initial missing
	Delete initial missing
	quits
	Update chain probabilities

	Calculation of scores and derivatives

