
RSiena

Ruth M. Ripley*

modified by Tom A.B. Snijders�

February 28, 2022

1. Grand overview of RSiena

This overview of RSiena sometimes refers to the earlier version Siena3 to
facilitate understanding by those who have a knowledge of the code of
Siena3. Readers who have no such knowledge can happily ignore these
references.

Two special features of the RSiena package are that it uses C++ code for
time-consuming parts, and that a wrapper is available to use the package
seemingly independently of R.

The script file sienascript starts up R in such a way that it launches a tcl/tk
graphical user interface (gui) resembling the Stocnet interface for Siena3,
and controls all processing thereafter. This interface is accessible on
Windows via the command siena01Gui . (Prior to R 2.12.0 the funciton
siena.exe was provided as an equivalent to sienascript: it has been
removed as it was rarely used and proved difficult to maintain.)

The high-level functions called by the gui, such as siena07 described below,
are also accessible within R with the usual R-type user interface along the
lines of model-fitting functions such as lm(). (A formula interface is still on
the wish list, but already now it is relatively straightforward to use the
package without the gui.)

The R functions call C++ only where speed is critical. From my profiling of
siena07 , the estimation function, I think that only the simulation function
(which simply performs one simulation of the complete model for a given

*University of Oxford
�Universities of Oxford and Groningen

1

set of parameters and returns the statistics from the simulated networks)
needs to be in C++. The bulk of the time is spent in calculating the
contributions to the effects when simulating.

In Siena3, this simulation function is FRAN which, for method of moments
estimation, simply calls simstats: in RSiena, it is the C++ function model
called by one of the R functions simstats0c or maxlikec , which are the two
candidates currently available for the element of the RSiena model object
named FRAN . In this document I have used the name FRAN to refer to the
simulation routine.

siena07 is intended to be written in such a way that different simulation
functions could be used within the same Robbins Monro algorithm. In
practice the separation is not quite complete, but it is nearly so.

It would be feasible within a C++ FRAN to call R functions for some
effects or functions if desired, to facilitate adding new ones, although they
would be slow to run!

We use functions from the C part of R , to provide random numbers within
the C++.1 simstats0c and maxlikec have three types of calls: a initial one
which calls various C++ routines to setup the data, a final one which sets
the C++ data pointers to null to clean up the C++ memory, and multiple
“normal” ones which call the function model to perform one complete
simulation. (In this it does not correspond exactly to simstats in Siena3!)

With this design, we have introduced parallel processing by using multiple
R processes. In simstats0c we run some of the simulations in each process:
this was trivial to introduce into Phase 1 and Phase 3, but to use it in
Phase2 we have altered the algorithm to use the average of more than one
simulation at a time.

For maxlikec we use different processes for each wave. This is because the
chains are carried from one simulation to the next, and organizing the
parallel processes by simulations (update steps of the Robbins Monro
algorithm) would require too much passing of information.

We use the R package parallel to create and control the multiple
processes, and to provide multiple random number streams. The term
‘cluster’ below refers to the cluster of multiple processors. (I vary between
using processors and processes as it is possible to run RSiena with multiple
processes on a machine with only one processor.)

2

2. Data types

RSiena provides various classes of data objects, designed to interface with
the functions robmon and simstats. A brief list:

siena Data for a single project

sienaGroup A list of siena objects, with global attributes, used for
multi-group projects

sienaEffects Data frame of effects.

sienaGroupEffects Data frame of effects for a group object.

sienaModel Contains the fitting options.

sienaNodeSet Actor set, used to distinguish nodes in data sets with
multiple or two-mode networks.

sienaDependent A single dependent variable, (i.e. network or behavior
variable, all waves)

coCovar Constant covariate

coDyadCovar Constant dyadic covariate

varCovar Varying covariate

varDyadCovar Varying dyadic covariate

sienaCompositionChange List of changes, entry for each node.

sienaFit Currently contains (almost) everything from the estimation.

The structure of each is documented in the corresponding R help file:
?classname.

Data objects of class siena are created by the function sienaDataCreate.

Effect objects of class sienaEffects are created by the function getEffects.

The creation functions can be called directly by the user or from the Gui or
via sienaDataCreateFromSession, depending on whether the data is alrady in
R objects or still on files.

3

The function robmon requires a sienaModel object as an argument. One
element of this object is named FRAN and contains the name of the
required simulation function.

The functionssimstats0c or maxlikec , used as an instance of FRAN, require
a siena (or sienaGroup) object and a sienaEffects (or sienaGroupEffects)
object as arguments.

3. sienaDataCreate

This function has only one named argument: a list of actor (node) sets.
The default is a single set of the required size named Actors. All other
arguments are unnamed and correspond to networks, covariates or
composition change files. The objects are validated and have various
attributes added. For covariates the attributes are added using a method
for their class.

Check that objects have names, using the object name if none is given in
the function call.
if no objects then

stop
if any duplicate names then

stop
create a list of each type of object, checking that all dependent variables
have the same number of observations. (Stop if not).
if no dependent variables then

stop
if no node set argument then

create a list of nodesets containing a single nodeset named Actors,
with the number of nodes equal to the number of senders of the first
dependent variable

for all covariates do
Appropriate validation and processing (see below).

Process any composition change objects (see section 3.2)
Process the dependent variables (see section 3.4)
Check constraints if there are multiple networks. (section 3.8).
Calculate similarity means for alters for each covariate and dependent
network (see section 3.9): dropped in version 1.1-285.

4

3.1 Covariates

3.1.1 Constant Covariate

Check the nodeset (section 3.3)
Create attributes: (a class method)

mean ignore missings
range Extent of range, ignore missings. Make sure is a double.
range2 Ends of range, ignore missings
moreThan2 TRUE if more than 2 distinct values, ignoring missings
vartotal sum of non-missing values
poszvar TRUE if more than 1 distinct value in the centered values or

any missing
simMean See section 3.5
nonMissingCount count of non missing values
name name of object

Subtract the mean from the values

3.1.2 Changing covariate

if less than 3 waves then
Stop: changing covariate inappropriate (to reduce confusion among
users!)

Check the nodeset (section 3.3)
if less than (number of waves - 1) columns then

Stop: not enough values
if more than (number of waves - 1) columns then

remove the excess, carefully preserving the attributes apart from the
dimensions.

Create attributes: (a class method)
mean ignore missings
meanp mean for each wave, ignore missings
range Extent of range, ignore missings. Make sure a double.
rangep Extent of range for each wave, ignore missings. Make sure is a

double.
range2 Ends of range, ignore missings
moreThan2 TRUE if more than 2 distinct values, ignoring missings
vartotal sum of non-missing values
poszvar TRUE if more than 1 distinct value in the centered values or

any missing
simMean See section 3.5
nonMissingCount count of non missing values

5

name name of object
Subtract the mean from the values

3.1.3 Constant dyadic covariate

Check the nodesets (section 3.3)
if attribute type is oneMode then

set diagonal to missing so is ignored in mean and range
Create attributes: (a class method)

mean ignore missings
range Extent of range, ignore missings. Make sure a double.
range2 Ends of range, ignore missings
name name of object

if attribute type is oneMode then
set diagonal to zero

3.1.4 Changing dyadic covariate

if less than 3 waves then
Stop: changing covariate inappropriate (to reduce confusion among
users!)

Check the nodesets (section 3.3)
if less than (number of waves - 1) columns then

Stop: not enough values
if more than (number of waves - 1) columns then

remove the excess, carefully preserving the attributes apart from the
dimensions.

if attribute type is oneMode then
set all diagonals to missing so are ignored in mean and range

Create attributes: (a class method)
mean ignore missings
range Extent of range, ignore missings. Make sure a double.
name name of object

if attribute type is oneMode then
set all diagonals to zero

3.2 Composition change objects

Check there are no duplicates in the nodesets: only one change object
per nodeset is allowed.
for all composition change objects do

Check the nodeset (section 3.3)

6

Check that the ends of each interval in each object are not less than
1 or greater than the number of waves and that each line has an
even number of digits.
Generate a data frame of events(section 3.2.1), a matrix of
activeStart flags(section 3.2.2) and a matrix of actions(section 3.2.3)
Add these to the object as attributes

3.2.1 Events

Data frame with columns:
event “join” or “leave” (a factor)
period
actor
time between 0 and 1

3.2.2 ActiveStart Flags

activeStart matrix has a row per actor and a column per period
TRUE if the actor is active at the start of the period, otherwise FALSE

3.2.3 Action

Action matrix is same shape as Active flag matrix, with entries
0 Active at start
1 Inactive at start, never previously active
2 Inactive at start, previously active but never active again
3 Inactive at start, previously active and active again

3.3 Check NodeSet

if Nodeset name in the list and lengths match then
Valid

else
Invalid

3.4 Dependent variables

NB The attributes list tends to change rather quickly and some items may
no longer be required. Some should be used in the C, but are not...

Validate the nodeset(s)
Create an attribute name with name of the object
if behavior variable then

7

Create attributes:
distance sum of absolute differences by period, ignoring missings
vals table of values by period, NA included as a value
nval vector of non-missing counts by period
noMissing vector of missing counts be period
range overall range
range2 overall min and max
moreThan2 TRUE if number of distinct values more than 2

(includes missings as a value) ??? inconsistent with covariates?
poszvar TRUE if more than one distinct value or any missing

values.
modes vector of modes of rounded values per period. Might give

multiple results?
missing TRUE if any missing
simMean value of similarity mean (see section 3.5)
structural FALSE Not allowed!
balmean NA
structMean NA
uponly TRUE if all changes increase, ignoring missings
downonly TRUE if all changes decrease, ignoring missings

else {bipartite or onemode}
create attributes:

distance count of changes, ignoring missing and structural values
and diagonals if not bipartite.

uponly TRUE if ties are only ever created, never lost
downonly TRUE if ties are only ever lost, never created

if one-mode then
Create attributes:

balMean see section(3.6)
structMean see section(3.7)
symmetric TRUE if all waves are symmetric
missing TRUE if any missing values (except on diagonal)
structural TRUE if any 10 or 11
vals table of counts of values by period
nval Counts of non-missing values by period, excluding

diagonal
range2 Min and max of non-structural values
noMissing Number of missing values by period
noMissingEither Number of missing values at start or finish of

period (excludes final).
nonMissingEither Number of non missing values at start or

8

finish of period (excludes final).
simMean NA
ones Count of values equal to 1 by period
density Density of network by period
degree Average degree by period
averageOutDegree overall average degree
averageInDegree overall average degree
maxObsOutDegree Maximum observed outdegree by period
missings count of missings by period

else if bipartite then
Create attributes:

balMean NA
structMean NA
symmetric FALSE
missing TRUE if any missing values
structural TRUE if any 10 or 11
vals table of counts of values by period
nval Counts of non-missing values by period
range2 Min and max of non-structural values
noMissing Number of missing values by period
noMissingEither Number of missing values at start or finish of

period (excludes final).
nonMissingEither Number of non missing values at start or

finish of period (excludes final).
simMean NA
ones Count of values equal to 1 by period
density Density of network by period
degree Average degree by period
averageOutDegree overall average degree
averageInDegree overall average degree
missings count of missings by period

3.5 Similarity mean

for all columns of matrix do {waves}
for all entries in column do {actors}

in a copy of the column set this entry to NA
Calculate 1 - abs(this entry - copy column)/ range
Sum this over the nonmissing entries in this vector
Count the nonmissing entries in this vector

Sum nonmissing entries and counts over the columns

9

Calculate the similarity mean as this total sum divided by total count.
For possible later use, also return the total sum and total count.

3.6 Balance mean

In calculations, remove diagonal and replace structural values by the
values represented.
Numerator = sum over all columns of
2 * count of non-zero entries * count of non-missing non-nonzero entries
Denominator = sum over all columns of
count of non-missing entries times one less than this.
Mean is numerator divided by denominator.

3.7 Structural mean

In calculations, remove diagonal and replace structural values by the
values represented.
Numerator = sum over all rows of
2 * count of non-zero entries * count of non-missing non-nonzero entries
Denominator = sum over all rows of
count of non-missing entries times one less than this.
Mean is numerator divided by denominator.

3.8 Constraints between networks

Make a two column matrix containing the names of all possible pairs of
dependent variables, including pairs with themselves.
Identify any dependent variables that can relate: same type and have the
same node sets.
Create a list of these possibly relating dependent variables for each of
access later.
for all row in the matrix of pairs where the two columns are not the
same do

if nodeset(s) match and type matches and not behavior and either
both networks are symmetric or neither is then

In checks, replaces structurals by 0/1 first, and ignore missings
Check higher : first network always greater than or equal to
second network.
Check disjoint : sum of product of two networks not greater
than 0.
Check atLeastOne: sum of two networks never equal 0.

10

3.9 Similarity means at distance 2

for all constant covariates, varying covariates do
for all dependent networks which have the node set of the constant
covariate as their receivers (not behavior variables) do

Calculate the corresponding similarity mean: see section 3.9.1).
for all behavior variables do

for all dependent networks which have the node set of the constant
covariate as their receivers (not behavior variables) do

Substract the mean from the behavior variable
Find the range of the behavior variable
Calculate the corresponding similarity mean using the centered
behavior variable values (omitting final column) and the
calculated range: see section 3.9.1). (i.e. centering and range are
done on complete variable)

3.9.1 Alter similarity calculation

for all observations except the last do
Replace structurals by 0/1
for all rows of network matrix do

if sum of nonmissing entries is 0 then
Set vi for row to 0

else if all covariate values corresponding to non zero network
entries are missing then

Set vi for row to NA
else

Set vi for row to sum of covariate times network row
divided by the sum of the network row, ignoring missings in
both cases.

Call rangeAndSimilarity using vi and the range if passed in
(behavior variables) to obtain the values simTotal and simCnt for
this overvation.
Accumulate these two values

Divide sum of simTotal by sum of simCnt over observations (excluding
the final one).

4. getEffects

This function generates an effects data object corresponding to a Siena
Data object or a Siena Group Object.

11

In general, effects are driven by selecting rows in the allEffects data
frame for some effect group and then substituting variable names into the
spaces marked by xxxxxx and similar.

For a group object, the effects are created using the first data object plus
the total number of observations. Attributes are first copied from the group
level to the first data object. The only changes required are to fill in the
starting values for the rate effects for the later objects and to adjust the
starting values for density, reciprocity, linear effects.

The function networkRateEffects creates the required number of rate
effects for networks. createEffects extracts the rows from the effects data
frame for an effect group and calls the function substituteNames to
replace the variable fields by the current variable name. It now creates the
complete effect rows including endowment effect copies.

4.1 Siena Data Object

for all dependent variables do
Create appropriate effects
Set netType to the value oneMode, bipartite, behavior , or continuous.

4.2 OneMode Network Effects

Call networkRateEffects to get the rate effects
Use symmetricObjective or nonSymmetricObjective effect groups to
create the basic objective function effects.
for all dyadic covariates with first node set matching do

Use dyadObjective effect group to add appropriate objective
function effects

for all constant covariates, behavior variables, changing covariates with
the same node set do

Call function covarOneModeEff to add the appropriate effects.
Note poszvar is always TRUE for behavior variables.

if any covariates or behavior variables then
Add nintn rows for user specified interaction effects

for all distinct dependent network variables with the same node set do
if oneMode then

Use nonSymmetricSymmetricObjective or
nonSymmetricNonSymmetricObjective effect groups to add
appropriate effects
Use tripleNetworkObjective effect group to add appropriate
effects for pairs of other dependent networks (‘other’ meaning

12

that they have the role of explanatory variables) that either are
both one-mode, or both are bipartite with the same second node
sets

else if bipartite which matches on nodeset 1 then
Use nonSymmetricBipartiteObjective effect group to add
appropriate effects

for all actor covariates or behavior variables with the same node set
do

Use covarNetNetObjective effect group to add appropriate
effects.

if more than one network then
paste the network name at the front of all the objective function
effects

Alter the text for endowment effects to start ”Lost ties:”
Calculate the starting values for the default effects (see section 4.14)
Select the default rate effects by setting include to TRUE for the basic

rate effects.
Add the starting value for the rate to the initialValue column of the basic
rate effects
if symmetric then

Set include to TRUE for the degree (density) evaluation effect and
transitive triads evaluation effect.

else
if no period is uponly or downonly then

Set include to TRUE for the degree (density) evaluation effect
Add the starting values for the degree(density) evaluation effect
calculated by getNetworkStartingVals to the initialValue.

else
Remove both degree (density) effects from the data frame.

Set include to TRUE for the reciprocity evaluation effect.

4.3 Behavior Variable Effects

Use behaviorRate effect group to get the rate effects. Either remove the
second one or duplicate the second and remove the first to match the
number of observations.
Use behaviorObjective effect group to create the basic objective
function effects.
for all other dependent variables which match on first node set do

Use behaviorOneModeObjective or behaviorBipartiteObjective
to add the objective function effects with respect to this network.

13

Use behaviorOneModeRate or behaviorBipartiteRate to add the
rate effects with respect to this network.

for all constant covariates, other behavior variables or changing
covariates do

Call covBehEff and covBBehEffto add the interaction effects
for all networks with same node set (first for bipartite) do

Use behaviorOneModeObjective2 or
behaviorBipartiteObjective2 effect group to create a second set
of objective function effects.

Add behNintn unspecified behavior interaction effects
Create the effects data frame by calling createObjEffectList and
createRateEffectList. This creates e.g. the evaluation and endowment
effect copies.
Select the default effects by setting include to TRUE for basic rate and
linear shape (if not any period uponly or downonly) and quadratic

shape (if the range of the variable is greater than or equal to 2)
evaluation effects.
if any period uponly or downonly then

remove the linear effects (evaluation and endowment) from the data
frame.

Add the starting values for the default effects calculated by
getBehaviorStartingVals (see section 4.13) to the initialValue column
of the data frame.
Alter the text for endowment effects to start with ”dec. beh.”

4.4 Bipartite Network Effects

Call networkRateEffects to get the rate effects
Use bipartiteObjective effect group to create the objective function
effects.
for all dyadic covariates with both node sets matching do

Use dyadObjective effect group to create the appropriate effects
for all constant covariates, behavior variables, changing covariates do

Call function covarBipartiteEff to add the appropriate effects
poszvar is always TRUE for behavior variables.

if any covariates or behavior variables then
Add nintn rows for user specified interaction effects

for all distinct dependent network variables with the same node set do
if oneMode then

Use bipartiteSymmetricObjective or
bipartiteNonSymmetricObjective effect groups to add the

14

appropriate the effects
else if bipartite and matches first node set) then

Use bipartiteBipartiteObjective effect group to add the
appropriate effects

NB no covarNetNetObjective here?
if more than one network then

paste the network name at the front of all the objective function
effects

Create the effects data frame by calling createObjEffectList and
createRateEffectList. This creates e.g. the evaluation and endowment
effect copies.
Alter the text for endowment effects to start ”Lost ties:”
Calculate the starting values for the default effects (see section 4.15)
Select the default rate effects by setting include to TRUE for the basic

rate effects.
Add the starting value for the rate to the initialValue column of the basic
rate effects
if no period is uponly or downonly then

Set include to TRUE for the degree (density) evaluation effect
Add the starting values for the degree(density) evaluation effect
calculated by getBipartiteStartingVals to the initialValue.

else
Remove both degree (density) effects from the data frame.

4.5 covarOneModeEff

Use covarSymmetricObjective or covarNonSymmetricObjective effect
group to create the objective function effects
Use covarSymmetricRate or covarNonSymmetricRate to create the rate
effects
if not poszvar then

Reduce the new objective function effects to just “altX” and
“altSqX” (symmetric) or “egoX” (non symmetric)

if not morethan2 then
Remove the “altSqX” effect.

4.6 covarBipartiteEff

if first node set matches then
Use covarBipartiteRate effect group to create the rate effects

Use covarBipartiteObjective effect group to create the objective
function effects

15

if first node set matches then
reduce the objective function effects to “egoX”, “altDist2”, and
“totDist2”

else if poszvar then
reduce the new objective function effects to the rows “altX” and
“altSqX”
if not morethan2 then

remove the “altSqX” effect
else

no objective function effects

4.7 covBehEff

Use covarBehaviorObjective effect group to create a potential set of
objective function effects
if covariate and behavior variable are different then

Create objective function effects as the first row of potential set
for all oneMode dependent variables with the same node set do

Add an objective function effect from the second row of the potential
set.

if any objective function effects then
Set shortName to effFrom

Use covarBehaviorRate effect group to create the rate effects
Use covarABehaviorBipartiteObjective effect group to create
objective function effects for bipartite dependent networks combined with
covariates on the first node set

4.8 covBBehEff

Use covarBBehaviorBipartiteObjective effect group to create
objective function effects for bipartite dependent networks combined with
covariates on the second node set

4.9 covarNetNetEff

if poszvar then
Use covarNetNetObjective effect group to create additional
objective function effects if the second network is one-mode;
Use covarABNetNetObjective effect group to create additional
objective function effects if the second network is one-mode or
two-mode;
Use covarANetNetObjective effect group to create additional

16

objective function effects if the second network is one-mode or
{two-mode while the covariate is defined for the first mode};
Use covarBNetNetObjective effect group to create additional
objective function effects if the second network is one-mode or
{two-mode while the covariate is defined for the second mode}.

4.10 CreateRateEffectList

Add the name column by duplicating the dependent variable name, and
effectFn and statisticFn as empty lists.

4.11 CreateObjectEffectList

Add the name column by duplicating the dependent variable name, and
effectFn and statisticFn as empty lists.
Add an endowment effect row if required for each objective function
effect.

4.12 SienaGroupObject

First create the effects for the first data object, but inserting the correct
number of basic rate effects for the whole group.
for all other data objects do

for all dependent variables do
Create the starting values for this dependent variable
Insert the rate starting values in the initialValue field of the
correct effects
Combine the starting values to create an overall one for the
objective function effects:
if behavior then

Add new di, i = 1, . . . , n− 1 to make one long vector of
difference vectors between n observations
if rounded range of variable (max-min) is 2 (what happens
with range 1) then

Add to nmin+ =
∑

i ni,min+ and the others
Tendency is

log(
(nmin+ + 2) ∗ (nmax+ + nmax0 + 4)))

(nmax− + 2) ∗ (nmin+ + nmin0 + 4)))

if abs(tendency) > 2 then
trim to ±2

17

else {range less than 2 or greater than 2}
Let d̄ = mean(di), ignoring missing values
Let σ2

d = var(di), ignoring missing values
if d̄ < 0.9 ∗ σ2

d then
tendency = 0.5 ∗ log((d̄+ σ2

d)/(d̄− σ2
d))

else
tendency = d̄/(σ2

d + 1)
if abs(tendency) greater than 3) then

Trim to ±3
else if onemode then

else {bipartite}

4.13 Behavior Starting Values

Calculate di, i = 1, . . . , n− 1 difference vectors between n observations
if rounded range of variable (max-min) is 2 (what happens with range 1)
then

for all intervals i do
Let ni,min+ = number who start at minimum and go up
Let ni,min0 = number who start at minimum and stay there
Let ni,max− = number who start at maximum and go down
Let ni,max0 = number who start at maximum and stay there
Calculate

v =
ni,min+ + 1

ni,min+ + ni,min0 + 2
+

nmax− + 1

ni,max0 + ni,max− + 2

if v > 0.9 then
v = 0.5

Starting rate is − log(1− v)
Let nmin+ =

∑
i ni,min+ total number who start at minimum and go

up
Let nmin0 =

∑
i ni,min0 total number who start at minimum and stay

there
Let nmax− =

∑
i ni,max− total number who start at maximum and go

down
Let nmax0 =

∑
i ni,max0 total number who start at maximum and

stay there

18

Tendency is

log(
(nmin+ + 2) ∗ (nmax+ + nmax0 + 4)))

(nmax− + 2) ∗ (nmin+ + nmin0 + 4)))

if abs(tendency) > 2 then
trim to ±2

else {range less than 2 or greater than 2}
for all intervals i do

starting rate is max(var(di), 0.1 ∗
∑

i abs(di)/nactors
Let d̄ = mean(di), ignoring missing values
Let σ2

d = var(di), ignoring missing values
if d̄ < 0.9 ∗ σ2

d then
tendency = 0.5 ∗ log((d̄+ σ2

d)/(d̄− σ2
d))

else
tendency = d̄/(σ2

d + 1)
if abs(tendency) greater than 3) then

Trim to ±3

4.14 One mode network Starting Values

Temporarily subtract 10 from structural values
Let difi be the number of differences between start and end of interval i,
ignoring missings
Let nijk, j, k = 0, 1 be counts of cells with value j at start and k at end of
interval i, ignoring missings
Let ni be the number of cells which are not missing at both start and end
of interval i.
Let di be the sum of absolute differences by period, ignoring missings
(already calculated and stored in the attribute distance).
Let λi be the starting value of basic rate parameter for interval i
if symmetric then

λi = nactors ∗ (0.2 + di)/(ni%/%2 + 1)

else

λi = nactors ∗ (0.2 + 2 ∗ di)/(ni + 1)

Trim λi to be between 0.1 and 100.
if symmetric then

Divide nijk by 2

19

starting value for degree parameter:

Define pi01 =

{
ni01/(ni01 + ni00) ni01 + ni00 >= 1

0.5 otherwise

pi10 =

{
ni10/(ni10 + ni11) ni10 + ni11 >= 1

0.5 otherwise

pi00 =

{
ni00/(ni01 + ni00) ni01 + ni00 >= 1

0.5 otherwise

pi11 =

{
ni11/(ni10 + ni11) ni10 + ni11 >= 1

0.5 otherwise

Trim pijk to lie between 0.02 and 0.98
Calculate pi

pi =

{
4/(pi00/ni01 + pi11/ni10) ni10 ∗ ni01 >= 1

1e− 6 otherwise

Starting value for degree parameter is∑
i

0.5 ∗ log(pi01/pi10) ∗ pi/
∑
i

pi

4.15 Bipartite Starting Values

Temporarily subtract 10 from structural values
Let difi be the number of differences between start and end of interval i,
ignoring missings
Let nijk, j, k = 0, 1 be counts of cells with value j at start and k at end of
interval i, ignoring missings
Let ni be the number of cells which are not missing at both start and end
of interval i. (Diagonal included here.)
Let di be the sum of absolute differences by period, ignoring missings
(already calculated and stored in the attribute distance).
Let λi be the starting value of basic rate parameter for interval i

λi = nsenders ∗ (0.2 + 2 ∗ di)/(ni + 1)

Trim λi to be between 0.1 and 100.

20

starting value for degree parameter:

Define pi01 =

{
ni01/(ni01 + ni00) ni01 + ni00 >= 1

0.5 otherwise

pi10 =

{
ni10/(ni10 + ni11) ni10 + ni11 >= 1

0.5 otherwise

pi00 =

{
ni00/(ni01 + ni00) ni01 + ni00 >= 1

0.5 otherwise

pi11 =

{
ni11/(ni10 + ni11) ni10 + ni11 >= 1

0.5 otherwise

Trim pijk to lie between 0.02 and 0.98
Calculate pi

pi =

{
4/(pi00/ni01 + pi11/ni10) ni10 ∗ ni01 >= 1

1e− 6 otherwise

Starting value for degree parameter is∑
i

0.5 ∗ log(pi01/pi10) ∗ pi/
∑
i

pi

5. sienaGroupCreate

This function combines a list of siena data objects for common processing.
It is also used in initializeFRAN to convert a single data object to a
group one so that all later processing can have a common argument.

Some validation is performed to check that all the data objects match in
terms of the dependent variables (name, type, nodesets) and covariates
(names and nodesets).

If there is more than one data object, the constant covariates and constant
dyadic covariates must be changed into changing ones. New covariates are
created and the old ones removed from the lists. The attributes are copied
over rather than recalculated (although they are mostly changed later).

Overall values are calculated for the balance mean, and network ranges.
For behavior variables and covariates overall ranges, means and similarity
mean values are calculated.

The following overall values are copied down to the individual objects:

21

dependent variables symmetric, missing, structural, poszvar, range,
moreThan2 (some only if behavior)

changing covariates range, poszvar, moreThan2

changing dyadic covariates range, range2

5.1 Group attributes

The group object has various attributes, copied from or combinations of the
attributes on the individual objects.

netnames the names of the dependent variables (these must be the same
in each data object)

symmetric logical vector indicating whether the corresponding
independent variable is symmetric (set to FALSE for behavior
variables and bipartite networks.

structural logical vector indicating presence or absence of any structural
values

numberNonMissingNetwork vector of count of non missing values for
non behavior variables

numberMissingNetwork vector of count of missing values for non
behavior variables

numberNonMissingBehavior vector of count of non missing values for
behavior variables

numberMissingBehavior vector of count of missing values for behavior
variables

allUpOnly logical vector indicating that the values for this independent
variable never decrease over time

allDownOnly logical vector indicating that the values for this
independent variable never increase over time

anyUpOnly logical vector indicating that for one or more of the intervals
the values for this independent variable do not decrease

anyDownOnly logical vector indicating that for one or more of the
intervals the values for this independent variable do not increase.

22

allHigher Table of logicals indicating whether higher attribute is true for
each pair of networks in every data object

allDisjoint Table of logicals indicating whether disjoint attribute is true
for each pair of networks in every data object

allAtLeastOne Table of logicals indicating whether atLeastOne attribute
is true for each pair of networks in every data object

anyHigher Table of logicals indicating whether higher attribute is true for
each pair of networks in any data object

anyDisjoint Table of logicals indicating whether disjoint attribute is true
for each pair of networks in any data object

anyAtLeastOne Table of logicals indicating whether atLeastOne
attribute is true for each pair of networks in any data object

types types of the independent variables

observations A single integer with the total number of periods to process.

periodNos A list of the period numbers (misses out the final one for each
data object)

groupPeriods Vector of the number of total number of periods for each
data object.

netnodesets A list containing the nodeset(s) for each dependent variable

cCovars Vector of names of constant covariates

vCovars Vector of names of changing covariates

dycCovars Vector of names of constant dyadic covariates

dyvCovars Vector of names of changing dyadic covariates

ccnodesets A vector containing the nodeset(s) for each constant covariate

cvnodesets A vector containing the nodeset(s) for each changing covariate

dycnodesets A list containing the nodeset(s) for each constant dyadic
covariate

dyvnodesets A list containing the nodeset(s) for each changing dyadic
covariate

23

compositionChange Logical vector indicating the presence of
composition change data for any of the data objects

exooptions Named vector of composition change file options for the
named node sets. Read from the first data object: assumed all the
same

names Vector of names of the data objects

class (”sienaGroup”, ”siena”)

balmean Vector of overall balance means, one for each dependent variable,
NA for behavior variables and bipartites.

structmean Vector of overall structural means, one for each dependent
variable, NA for behavior variables and bipartites.

averageOutDegree Vector of overall average outdegrees. NA for behavior
variables.

averageInDegree Vector of overall average indegrees. NA for behavior
variables and bipartites.

bRange Vector of overall ranges for behavior variables: entries
corresponding to networks are NA

behRange Matrix with two rows, and column for each independent
variable. Set to the overall min and max for behavior variables, NA
for others

bSim Overall similarity mean for behavior variables, NA for networks

bPoszvar logical vector, NA for networks. For behavior variables TRUE if
more than 1 distinct value in the overall values or any missing
(always?)

bMorethan2 logical vector. NA for networks. For behavior variables
TRUE if more than 2 distinct values in overall variable, ignoring
missings

cCovarPoszvar logical vector for constant covariates indicating presence
if more than one distinct value or any missing (overall). NB only exist
if there is only one data object.

cCovarMoreThan2 logical vector for constant covariates indicating
presence of more than 2 distinct values (missing is counted as a value)

24

cCovarRange vector of ranges for constant covariates

cCovarRange2 matrix of min and max for constant covariates

cCovarSim vector of overall similarity means for constant covariates

cCovarMean vector of means for constant covariates

vCovarPoszvar logical vector for changing covariates indicating presence
if more than one distinct value or any missing (overall).

vCovarMoreThan2 logical vector for changing covariates indicating
presence of more than 2 distinct values (missing is counted as a value)

vCovarRange vector of ranges for changing covariates

vCovarSim vector of overall similarity means for changing covariates

vCovarMean vector of means for changing covariates

dycCovarRange vector of ranges for constant dyadic covariates

dycCovarRange2 matrix of min and max for constant dyadic covariates

dycCovarMean vector of means for constant dyadic covariates

dyvCovarRange vector of ranges for changing dyadic covariates

dyvCovarRange2 matrix of min and max for constant dyadic covariates

dyvCovarMean vector of means for changing dyadic covariates

anyMissing logical vector indicating any missing values in the each
dependent variable

netRanges Matrix with two rows and a column for each dependent
variable. Overall min and max for networks, NA for behavior variables

6. siena07

This is a wrapper for the function robmon which performs the processing
that used to be in polrup in Siena3. An optional tck/tk gui is provided, or
progress messages are provided on the console. The choice between these is
made by using batch=FALSE or batch=TRUE respectively.

Details of input and output are on the R help page. Required input is an
object containing control information for the Robbins-Monro algorithm, and

25

any extra parameters required by the FRAN to be used. As the distinction
between the two parts is not complete, flags maxlike and cconditional are
on the input object, although not logically relevant to the algorithm.

There is user output written to a file (.txt), together with optional
additional output to the console (suppressed unless verbose=TRUE), which
can be redirected using the sink() command.

robmon attempts to duplicate the output of the Siena3 procedure polrup. It
uses a special function, Report for all output. This function knows about
four files: outf, lf, cf, bof, and can also write to the console. Currently,
all files except outf are null, with any other output suppressed or written
to the console. Only Report would need altering to alter this behaviour.
No file connections need to be passed around as parameters.

The object returned from siena07 is an object containing everything of
interest from the run, including the estimates of the parameters and the
covariance matrix. Details of the more useful parts are in the R
documentation.

7. User Interrupts

These are set in callbacks from the siena07 tcl/tk gui. When they are read,
a parallel set of flags is used to store the states, so that interrupts can be
processed reliably. All is done using functions, to avoid global variables, or
passing variables around. There are 3 interrupts:

UserInterrupt Stop everything, but return the values so far, with (I
hope) some flag to indicate we did not finish.

UserRestart Go back to the beginning of phase 1 with the current
parameters

EarlyEndPhase2 Stop the estimation routine and proceed to phase 3
using the current parameters.

All six functions, if called with an argument, store the argument as the
current value and if called with no argument, return the value. All values
are booleans. The functions are not exported from the namespace, to avoid
burdening the user with the details of their existence.

26

8. Robbins Monro Algorithm—robmon

The routine robmon contains the Robbins Monro (stochastic
approximation) algorithm. It is the replacement for the Siena3 procedure
polrup. It is not designed to be called directly by the user, so there will not
be an R help page for it.

The outline of the algorithm is given in the text Siena algorithms, and to
understand the description of the code given here it may be helpful to have
read that outline.

9. robmon

9.1 Input (from siena07)

z Model fitting object.

x Input model object, as described in the help page for sienaModelCreate.

... Extra parameters for FRAN (including the data!).

It may seem surprising that the data is simply a parameter passed
unchanged to FRAN. But this is the point of the separation of the
simulation and estimation routines: robmon could be used to solve the
moment equation for any data: it does not matter whether the data is a
network or something else entirely, as long as a matching FRAN is used.

9.2 Output

z . More or less everything used in the processing. Details in the help page
for siena07 .

9.3 Details

9.3.1 Initialize

Copy from x everything that we may change during the run. Initialize
number of iterations, restarted flag, force finite difference flag, etc.

27

9.3.2 Initial call to FRAN

This call is used to set up the parameters for conditional estimation, and to
set up data in a call to C. The values of the statistics in the observed data
(targets) are returned, along with the addresses of the data objects in C.
The processed data and selected effects is written to a hidden data object
within the function FRANstore from where it can be accessed on later calls,
or passed to other processes.

9.3.3 Initialise cluster of processes, if required

This needs to access (but not understand!) the data object created in the
call to FRAN. It sets up the processes and random number streams and
passes the data object across. It then does a special call to FRAN to create
the data objects in C++ for each process. Later calls to the processes only
need minimal communication, done using cut-down versions of x and z .

9.3.4 Calculate epsilon

Used only for MoM estimation in the finite differences option. Currently
0.1, except for parameters which must be positive, where it is 0.1 times the
parameter starting values.

TS: Here I would prefer min{0.1, 0.1 × starting value}.
Ruth: Easily changed, but we are using typically much bigger values than
this: will it work? Are you sure you don’t want max?

To be improved, to use prior information on standard error of parameter if
available.

28

9.3.5 Main loop

Note R has no GOTO statement. I use the term break to indicate exit from
the current loop only. Interrupts are checked after every iteration except
the first few of phase 3. This documentation does not include all the
details, or it would duplicate the code.

repeat
repeat {this one is just to jump out of, only executed once}

if all parameters now fixed (2 opportunities to do this in previous
loop!) then

set a flag to just do Phase 3.
initialize interrupts
announce phase 0 (set up progress bar, calculate iteration min and
max for phase 2 subphases.)
reset fixed flags
if not just-phase-3 flag set then

if need to do phase 1 then
initialize phase 1
run phase 1 iterations 1 to 10
if using finite diffs then

check number of changes and change epsilon if
necessary

if user stop or user restart or error or (using finite
difference and need to repeat with new epsilon) then

break
if using finite diffs then

fix PARAMETERS with 0 or 1 changes, if any exist
run rest of phase 1 iterations
if user stop or user restart or error then

break
calculate derivative matrix
if necessary then

change the length of phase 1 or force the use of finite
differences

if user stop or error or user restart then
break

if necessary then
fix some parameters.

Initialise phase 2
run phase 2 subphase 1
if error or user stop or user restart then

break

29

run phase 2 subphase 2
if error or user stop or user restart or we have restarted because
of epsilon change in phase 1 and not restarted from here before!
then

break
run rest of phase 2 subphases
if error or user stop or user restart then

break
run phase3
if not user restart then

break
until for ever
if do not need to restart because of epsilon or user restart then

break
until for ever

9.3.6 Final processing

� Do a final call to FRAN. In conditional estimation, the rescaling of
basic rate parameters will be done here.

� reset the covariance matrix to 33, 999 as in phase3.

10. Phase 1

10.1 Input

As for robmon.

10.2 Output

As for robmon.

10.3 Details

10.3.1 Initialise

� Reset SomeFixed flag (have we fixed any parameters in this run).

� Announce phase 1

� Create arrays to store simulated statistics, scores and contributions to
the derivative matrix from either the finite difference or maximum

30

likelihood routines. These arrays are currently redefined in Phase 3,
so lost.

10.3.2 Timing

Timings are calculated between the start of the 2nd iteration and the start
of the 6th iteration. This is just for determining the frequency of writing
information to the gui. Write frequency is set to a prettified version of
20/time for 5 iterations, or 5 if elapsed time is very small. For batch mode
this is multiplied by 10, which seems unnecessary in phase 1. If using
multiple clusters the total number of iterations are adjusted to be a
multiple of the number of processes, and the 6th is replaced by the first one
greater than or equal to 6 in the iteration sequence advancing in steps of
the number of processes. I think this is wrong: it should be from 2 to 6
steps... but not very important! (I have made some adjustments for those
users who have more than 9 processors: we do at least 10 simulations in the
first part, and ignore timing if we do them in too few steps. If there are
enough steps in the second part the timing is done there.)

10.3.3 An iteration

� call FRAN. If not OK, return

� store simulated statistics, scores if present, derivatives if present,
simulated networks (part!) if present.

� if required, call finite differences routine and store result

� check for user interrupts and return if requested

� Report progress via progress bar or to console

10.3.4 Check epsilons (only for finite differences option)

� If derivatives are being calculated by finite differences, check after 10
iterations that enough different values of the statistics have occurred.
Ideally 5 or more. (The check may not be done immediately after 10
iterations if we have 4 processors, say, but I do only look at 10 of the
results.)

� If there are less than 3, epsilon is multiplied by 3 for parameters
which must be positive, and by 10 otherwise.

� If there are 3 or 4, the multipliers are 2 and
√

10.

31

� If any new values are less than 0.1 times the scale factor, or more
than 100 times it, replace by the bound.

� If any are less than 5, we will restart with the new epsilons, unless we
have already done so 4 times.

� If we have already restarted 4 times then we continue, after fixing the
last parameter with only 0 or 1 changes, if there are any such.

10.3.5 End of phase processing

� Calculate derivative estimate.

– For finite differences or maximum likelihood: the mean of the
arrays returned at each iteration.

– For the score based method, we need a little notation:
Let fi be the simulated deviations from the targets in iteration i,
and si the score function in iteration i, N be the number of
iterations. Then the estimated derivative matrix dij is given by:

D =
∑
i

outer(fi, si)/N − outer(f̄ , s̄)/N2

– For the score based method, if any of the diagonal values is
non-positive, we do not continue. First we double the number of
iterations in phase 1 and start again. Once this number exceeds
200, we stop increasing it and force the use of Finite differences.
Then we don’t come through this check!

– For either method, if still processing, set the rows and columns
related to fixed parameters to 0’s with 1 on the diagonal.

– If any diagonal values for non-fixed parameters are not positive,
make them fixed, and set newfixed flags to record which ones
have been fixed.

– Calculate the standard deviations of the deviations.

� Invert the derivative matrix:

– Set the rows and columns related to fixed parameters to 0’s with
1 on the diagonal.

– Replace any diagonal values less than 1e-8 by 1e-3.

– Do the inversion

32

– If it fails, add 1 to the diagonal and try again

� Quasi-Newton step

– If inversion of matrix was successful, set fchange to 0.5 times the
gain parameter times the matrix product of inverse with the
mean deviations from targets, otherwise to zero.

– Zero the change for any fixed parameters.

– Check the jump is not too large: if the maximum absolute value
of the change divided by the corresponding input gain parameter
is greater than 10, divide the changes by this value and multiply
them by 10. This caps the maximum ratio to the scale at 10.

– Check that positive parameters will stay positive. If not, replace
the change for that parameter by half the current value of the
parameter.

– If the requested number of subphases in phase 2 is greater than
0, make the change by subtracting the changes from the current
value of the parameters.

11. Phase2

11.1 Input

as for robmon

11.2 Output

as for robmon

11.3 Details

11.3.1 Initialize Phase

Turn off calculation of derivatives. Multiply the gain parameter by 2.

11.3.2 Process subphase

� Initialize

– Announce subphase

33

– Extract max and min number of iterations from values stored
from start. (They are calculated at the start to find the length of
the progress bar, and it seemed better not to repeat it here!).

– Divide the gain parameter by 2

– Initialize the sum (which will become the mean) of thetas with
the current value.

– Create arrays to store products of successive thetas.

� Perform iterations

– Timing is calculated over the ten iterations 2 to 11. Write
frequency is set to 20/(time for these 10 iterations) or 20 if time
is too small. It is then prettified. Reporting using progress bar
or console is done for each of the first 10 iterations and then at
write frequency.

– Call FRAN and store the deviations returned.

– The update:

* if only the diagonal of the derivative matrix is to be used in
the update step (flag x$diag), calculate maxrat, the
maximum ratio of the absolute deviations to their standard
deviation (as estimated in Phase 1). If this is greater than
the parameter maxmaxrat, set maxrat to maxmaxrat/
maxrat, and record that the values were truncated.

* if x$diag , update is current gain * current deviations *
maxrat / diagonal of derivative

* otherwise, update is current gain * matrix product of
current deviations with inverse of derivative matrix.

* For parameters which must be positive and would not
remain so, replace change by 0.5 times current value of
parameter,

* Zero the change for any fixed parameters.

* update theta by subtracting the change.

* Add new value of theta to sum of thetas.

– After each pair of iterations, add the product of the two
deviations and the square of the most recent to accumulators,
and calculate the ratio of the former to the latter, ac.

– Check for user interrupts

34

– Stop the subphase when either the minimum number of
iterations has been reached, and the maximum of ac is less then
1e-10 or the maximum number of iterations has been reached;
or (the next condition is a rare occurrence but helps a lot when
it occurs) at least 50 iterations have been done and the minimum
ac is < −0.8 and we have not done the maximum number of
subphase repeats already (or user interrupt or error)

– Repeat the subphase if we stopped because of the minimum
value of ac, unless we have already done the maximum number
(set to 4).

� End of subphase. Replace parameters by the average in the subphase.
Report details.

12. Phase3

12.1 Input

as for robmon

12.2 Output

as for robmon

12.3 Details

12.3.1 Initialize

� Initialize arrays for deviations, scores, derivatives.

� Divide write frequency by the number of parameters for finite
differences, 2 for score derivatives. Leave unchanged for maximum
likelihood. Then re-prettify.

� Announce Phase

12.3.2 Iterations

� Update progress via console or progress bar for each of first 5
iterations, then at the 10th and then at the write frequency.

� Call FRAN and store the deviations, scores, derivative contributions,
and simulation values returned.

35

� If using finite differences (we revert to the method requested by the
user here, even if we altered it in phase 1 because the score method
did not work), call FiniteDifferences routine and store the resulting
differences.

� After the 10th iteration check for user interrupts each time.

12.3.3 End of Phase 3

� Calculate derivative matrix dfra. Formulae as in Phase 1.

� Create a flag diver for each parameter, set to true if all the parameter
values are fixed and the absolute value of the corresponding diagonal
of the derivative matrix is less than 1e-6. .

� Calculate the covariance matrix of the simulated deviations, and the
autocorrelations between them. (Done in the CalculateDerivative3
routine).

� Report. . .

� Calculate t-values for deviations from targets, as mean deviation
divided by sqrt of diagonal entry of covariance matrix. Use 0 for small
values of deviations and 999 for small values of variance.

� Report t-values, and comments on their values.

� For maximum likelihood, report autocorrelations

� Calculate cov, the covariance matrix of the estimates:

– For maximum likelihood, inverse of [dfra] - variance matrix of
deviations (here=scores!). (0 the rows and columns coresponding
to fixed parameters, and put 1 on the diagonal, first.)

– For others, matrix product of dinv, the adjusted covariance
matrix of the deviations and the transpose of dinv.

– Try to invert cov. Report. . .

– Update the flag diver to mean: Not all parameters are fixed and
this one is fixed or diver was true before (section 12.3.3) or the
corresponding entry in the diagonal of the covariance matrix of
the estimates is less than 1e-9.

– set entries in cov to 33* sqrt(diagonal) off diagonal and 999 on
diagonal for parameters with diver true.

� Do ScoreTests if any have been requested.

36

13. FiniteDifferences

13.1 Input

as for robmon plus fra, the simulated value of the targets.

13.2 Output

as for robmon

13.3 Details

For each parameter,

� Call FRAN with epsilon added to this parameter only

� Calculate the deviations from the simulated statistics with no epsilon.

� In first 10 iterations of phase 1: Record if difference is greater than
1e-06

� Store and return these deviations divided by epsilon.

.

14. Score Tests

14.1 Control

� Do general test: call EvaluateTestStatistic with the complete arrays
dfra, msf, the covariance matrix of the deviations, and fra the mean
deviations.

� The values returned are a chi-squared test and, if the degrees of
freedom are 1, a one-sided test.

� If only one test was requested, the two values returned correspond to
the results required.

� If more than one test was requested, call EvaluateTestStatistic with
data from which all but one of the parameters for which tests are
required have been removed. Repeat for each parameter for which
tests were requested.

37

14.2 EvaluateTestStatistic

� Partition dfra into four: R code is clear enough, I hope (drop=FALSE
just retains the matrix class even if one of the dimensions is 1)

d11 <- dfra[!test,!test,drop=FALSE]

d22 <- dfra[test,test,drop=FALSE]

d21 <- dfra[test,!test,drop=FALSE]

d12 <- t(d21)

� Similarly create Σ11, Σ22, Σ12 and Σ21 from msf, and z1 and z2

from fra. Then

For maximum likelihood

ov = −z2

vav =
(
d22− d21 d11−1 d12

)−1

Otherwise

ov = z2− d21 d11−1 z1

vav =
(
Σ22− d21 d11−1Σ12− (Σ21− d21 d11−1Σ11) d11−T d21T

)−1

then

test statistic = ovT vav ov

and the one-sided one, if appropriate,

ov
√
vav

as vav is then a scalar.

38

	Grand overview of RSiena
	Data types
	sienaDataCreate
	 Covariates
	Constant Covariate
	Changing covariate
	Constant dyadic covariate
	Changing dyadic covariate

	Composition change objects
	Events
	ActiveStart Flags
	Action

	Check NodeSet
	Dependent variables
	Similarity mean
	Balance mean
	Structural mean
	Constraints between networks
	Similarity means at distance 2
	Alter similarity calculation

	getEffects
	Siena Data Object
	OneMode Network Effects
	Behavior Variable Effects
	Bipartite Network Effects
	covarOneModeEff
	covarBipartiteEff
	covBehEff
	covBBehEff
	covarNetNetEff
	CreateRateEffectList
	CreateObjectEffectList
	SienaGroupObject
	Behavior Starting Values
	One mode network Starting Values
	Bipartite Starting Values

	sienaGroupCreate
	Group attributes

	siena07
	User Interrupts
	Robbins Monro Algorithm—robmon
	 robmon
	Input (from siena07)
	Output
	Details
	Initialize
	Initial call to FRAN
	Initialise cluster of processes, if required
	Calculate epsilon
	Main loop
	Final processing

	Phase 1
	Input
	Output
	Details
	Initialise
	Timing
	An iteration
	Check epsilons (only for finite differences option)
	End of phase processing

	Phase2
	Input
	Output
	Details
	Initialize Phase
	Process subphase

	Phase3
	Input
	Output
	Details
	Initialize
	Iterations
	End of Phase 3

	FiniteDifferences
	Input
	Output
	Details

	Score Tests
	Control
	EvaluateTestStatistic

