
Siena Algorithms
A discussion of methods of fitting longitudinal network models

R.M. Ripley

Department of Statistics
University of Oxford

June 2010

Rapid Tour of Siena
Model
Method of Moments
Maximum likelihood
Bayesian approach

Importance Sampling
Importance Sampling

Alternatives
Reducing discrepancies
Gelman paper
Optimization approaches
Other possibilities

Summary
Summary
Extras

Very brief outline of Siena model

I Longitudinal data of two or more waves of networks.

I Markov process of changes in the network.

I Model the process of changes conditional on the waves.

I Analytical methods not feasible so use simulation methods.

Either:

1. Simulate from each wave forwards for a fixed time or until a
fixed number of events have occurred.

or:

2. Use MCMC to simulate draws from the distribution of all
possible processes which share the same states at each wave.

Estimation methods

I Use Method of Moments to equate simulated values of
specified statistics to observed values. (Simulation
method 1.)

I Use Method of Moments to equate scores of simulated
process to zero. (Simulation method 2.)

I Add the parameters to the MCMC process and explore
parameter space in a Bayesian manner.(Simulation method 2.)

I Solve Method of moments equations by Robbins-Monro
Algorithm

Solving the moment equation

I Not tractable analytically, so use stochastic optimisation
method

I At step N, adjust the parameters

θN+1 = θN − aND−1(zN − z)

I where D is a suitable matrix and aN tends to zero

I Split the procedure into phases: within each phase hold aN
constant, at end of the phase, replace θ by the average of the
θN within the phase.

The matrix D

I The derivative matrix ∂Zi
∂θj

of the statistics Z with respect to the
parameter θ is used (or its diagonal at least), as the matrix D.

I Estimate this by simulating the process multiple times with
constant θ.

I Two estimation methods for simulation method 1:
1. finite differences or
2. score-based.

I In method 1, use common random numbers to reduce
variance of the estimates.

I In method 2, use an extra term for variance reduction. (mean
zero, but, you hope, very correlated with your estimate)

Maximum likelihood

I The times of the events and any events which had no effect on
the appearance of the final network are treated as missing
data.

I Create a minimal chain of events which lead from one wave to
next.

I An event is one toggle of one link.

I Sort these events randomly.

I Perturb this chain in a MCMC procedure to obtain a “complete”
chain, with some null events (toggling the non-existent link to
one’s self) and other new links balanced by later deletions.

Bayesian approach

I Sample in turn from the posterior conditional distribution of the
parameters given the process and from the distribution of the
process given the parameters.

I rate ~ Γ(chainlength+1, 1/(number of actors))

I For betas, add N(0,sd) to each and accept if sum of choice
probabilities using new parameter is high enough compared
with the old parameter. Adjust sd to get reasonable
acceptance rate.

I Simply collect any statistics of interest from the results.

I Conceptually simple, but slow?

Likelihood

The likelihood of a realisation which consists of R events within the
time period, conditional on the starting position (and possibly end),
is

R∏
r=1

[
exp(−nλ)

(nλ)R

R!

] R∏
r=1

1
n

exp(
∑

βisij)∑
exp(

∑
βisik)

and the ratio of the likelihoods at θ̃ and θ is

pθ̃

pθ
= exp(−nλ̃+ nλ)(

λ̃

λ
)R
∏ exp(

∑
β̃isij)∑

exp(
∑

β̃isik)

∑
exp(

∑
βisik)

exp(
∑

βisij)

Importance sampling

Eθ̃(Z) = Eθ

(
pθ̃(Z)

pθ(Z)
Z
)

Since the relative likelihoods vary for each realisation of the
simulation, we could estimate by using

1
N

N∑
1

pθ̃i
(Zi)

pθi (Zi)
Zi (1)

In fact, we normalise the weights to sum to 1. (We divide by the
sum of the weights: the expected value of this sum is 1. This
normalisation introduces a (hopefully small) bias, but should
reduce the variance.)

Suggestions from Gelman (1995)

I Simulate several times, as in method 1, with the same θ.
I Alternatively, take multiple (well-enough spaced) samples from

the MCMC process of method 2.
I Do an update step to give a new θ.
I Use importance sampling to estimate the value of the

statistics/scores at this θ.
I Calculate the relative likelihood of each realisation of the

process at θ and θ0.
I Use these as weights in a weighted sum of the simulated

outcomes to predict the values of the statistics/scores we
would have obtained had we simulated with this θ.

I Do another update step.

Varying the ratio of types of steps

I In Siena, we use 1 observation of Z to estimate its mean,
followed by 1 update step. (Except when using multiple
processors, when we obtain 1 observation from each
processor and average.)

I Could use importance sampling to perform more than one
update step per simulation.

I i.e. calculate the new θ, guess the statistics/score with this
one and calculate another.

I In general, simulation takes much longer than calculation, so
this is faster.

Well, are we sure about that?

I ...simulation takes much longer than calculation....

I Calculation requires all the changes of all the effects at every
event. Various possibilities:

1. Store list of events, recalculate with the new θ using same code
as for simulation. Quick to program. Competitive speed.

2. Also store all the change contributions (a matrix for each
event), return it all to R and use R matrix multiplication. Slower
to program, but appealing as we get to ‘see’ the data. BUT very
very slow to run.

3. Store everything in C, and recalculate using the stored values
in C. Even slower to program (maybe just for me!) but runs fast.
But does not scale well. (Actually do rate calculations in R)

What is the best option?

I Fastest run time is to do it all in C++.
I Speed comparisons depend on size of problem, number and

type of effects and simulation algorithm. (MC or MCMC).
Copying, garbage collection...

I Slower C++ method is very low in memory requirements and
may be only possible option in some problems.

I Using R an appealing idea, but multiple periods, groups,
networks, actor sets... make it less so. Also changes to types
of effects (evaluation, endowment, ...) would need more effort
to incorporate.

I One optimisation (untried, but theoretically appealing), would
be to store a (or a few) 3D array of contributions per chain
rather than a matrix for each step. Only one unpack required.

Specific proposal of Gelman

I Do a few loops of
I a few simulations

I a few update steps

I Do many simulations

I Do updates repeatedly to convergence.

I Monitor the stability of the importance sampling using the
variance of the weights (see Kong (1992))

I Stop updating if the importance sampling is getting bad.

Experiments with this procedure

I Stem plots of the importance sampling weights very
informative

I Use just diagonal of estimated derivative in update step until
final run

I At start, variance of weights was high: few importance
sampling steps taken.

I Once weights stable, take a large sample

I Use full derivative for the final updates.

I Need reasonably sized samples to get usable scale estimates.

I Not worth going very far, within "Monte Carlo" error.

Visual assessment of progress

Figure: Examples of importance sampling stem plots. Left one is not
good, right one is useful.

Maximum Likelihood: EM

I An alternative approach is to use Expectation-Maximisation
I Alternate between sampling from process given parameters

and maximising the expected value of the full log likelihood
over the parameters

I We cannot do the expectation step exactly, so use Monte
Carlo techiques.

I Once the process is in equilibrium(!), take samples of the
chain at intervals (check correlations have subsided (interval
will depend on the length of the chain)).

I Calculate full likelihood of each chain in the sample, and
maximize mean log likelihood as a function of parameters.

I Optimisation by optim(), using BFGS method. Only need to
run for one step, to improve the parameters a little.

Maximum Likelihood: Approximate EM

I Need “good enough” estimates of the log likelihood.

I Likelihood value decreases with increasing length of chain.
(Multiply by terms that are less than 1, or consider there are
more possibilities). So cannot compare between steps.

I In real EM, likelihood of data does not increase, but likelihood
with missings filled in could.

I Straightforward with chains from MCMC

I Multiple chains from crude Monte Carlo vary too much in
outcomes. (see plots on next screen). Maximum is always
very close by.

I Since these simulations don’t match our data we are not
interested in the θ which maximises them anyway.

Likelihood surface

Crude Monte Carlo

 1652.65

 1652.7

 1652.75

 1652.75

 1652.8

 1652.8

 1652.85

 1652.85

 1652.9

 1652.9

 1652.95

4.60 4.65 4.70 4.75 4.80

−
1.

54
−

1.
52

−
1.

50
−

1.
48

−
1.

46

●●

MCMC

 1
41

5

 1415.5

 1416

 1416.5

 1
41

7

 1417.5

 1
41

7.
5

 1418

 1418.5

3.8 4.0 4.2 4.4 4.6

−
1.

60
−

1.
55

−
1.

50
−

1.
45

−
1.

40

●●

Figure: Likelihood surface with two effects, crude Monte Carlo (left) and
MCMC (right), 100 samples

Maximum Likelihood: Approximate EM

I Here use Gelman’s idea to reuse the same set of iterations
more than once

I Weight the log-likelihoods by the ratio of the likelihood at the
current θ̂ to the sampled θ0.

I Watch the simulations as for the method of moments.

I Resample when the variance of the sample weights gets large.

I Saving of time could be significant with MCMC.

Other suggestions from Cappé et al. (2005)

I Alter sampling rate:
SEM Stochastic Expectation-Maximisation: fixed sampling

rate
MCEM Monte Carlo Expectation-Maximisation: altering

(increasing) samplesize).

I Average the results... as in Robbins-Monro

I Re-use the history:

SAEM Stochastic Approximation Expectation-Maximisation:
in maximise step, maximise a weighted sum of this
samples’ average log likelihood and the previous
samples’ optimand.

Geyer-Thompson

I Geyer-Thompson (1992) suggested approximating likelihoods
directly using MonteCarlo integration.

1. Take large set of samples at θ0.

2. Calculate the ratio of full likelihoods at θ and θ0 for each
sample separately and average.

1
n

n∑
1

pfull(xi |θ)
pfull(xi |θ0)

∼ pobs(x |θ)
pobs(x |θ0)

3. Approximate difference in observed data log likelihoods at the
two θ’s by log of this average, and maximise over θ.

max

(
log

(
1
n

n∑
1

p(xi |θ)
p(xi |θ0)

))
∼ max (log(p(x |θ))− log(p(x |θ0)))

Observed and full data likelihoods

Can consider the likelihood of interest as the normalising constant
of the likelihood of the full data when sampling from the full data
given the observed data:

p(full data|observed,θ) =
p(full data|θ)

p(observed|θ)
≡ L(θ|full data)

L(θ|observed)

The ratios estimate the ratios of the normalizing constants:

Eθ0

pfull(xi |θ)
pfull(xi |θ0)

=

∫
pfull(xi |θ)
pfull(xi |θ0)

pfull|obs(xi |θ0)dx =
pobs(xi |θ)
pobs(xi |θ0)

Take logs and ignore the terms that do not involve θ, and we have
estimate of L(θ|observed)

Compare with MCEM

I Geyer-Thompson (Sometimes referred to as Simulated
Maximum Likelihood

log

(
1
n

n∑
1

pfull(xi |θ)
pfull(xi |θ0)

)
∼ log(pobs(x |θ))− log(pobs(x |θ0)) (2)

I MCEM (
1
n

N∑
1

log (pfull(xi |θ))

)
∼ log(p(fullx |θ))

I We have seen something like the lhs of equation (2) before:
importance sampling.

MCEM or Geyer-Thompson

I Geyer-Thompson suggest their method will only be reasonable
if importance sampling would be OK. i.e. near the answer.

I So iterate a few times.

I EM is notorious for slow convergence.

I Do you need a much bigger sample to get Geyer-Thompson to
work to compensate for the reduced number of iterations?

I My experience is that large samples at the start are not useful:
the parameters don’t move far.

Other possibilities

I Other possibilities which I have coded and tried:

1. Fit a linear response surface to deviations near θ, using
importance sampling, and solve for zero deviations.

2. Fit a quadratic surface to deviations and minimise sum of
squared deviations. Never positive definite in my experience!

3. Collect all the samples used in each subphase of phase2 of
siena07 and use regression to find the best value of θ. This
gives slightly different answers in early subphases, virtually the
same by the last sub phase. May allow fewer iterations to be
used.

4. Importance sampling steps can be used within phase 2. Again
may allow fewer iterations.

Summary

I Can (soon!) treat RSiena as a simulation tool box for
longitudinal analysis of social networks.

I Two basic approaches considered here:
1. Reduce a deviation (statistics versus targets or scores) by a

step in an appropriate direction

2. Maximize a log likelihood (with two competing methods)

I Using scores in the first is essentially equivalent to the second,
but may behave differently in the Monte Carlo framework.

Graphical assessment of progress

1:21

R
at

e
+

 d
en

si
ty

 +
 r

ec
ip

 +
 tr

an
sT

rip
 +

 in
P

op
S

qr
t +

 a
ltX

 +
 R

at
e.

1
+

 l

in
ea

r
+

 q
ua

d

4.
5

5.
0

5.
5

6.
0

6.
5

5 10 15 20

Rate
−

2.
0

−
1.

8
−

1.
6

5 10 15 20

density

0.
0

0.
5

1.
0

1.
5

2.
0

5 10 15 20

recip

0.
0

0.
2

0.
4

0.
6

0.
8

5 10 15 20

transTrip

−
0.

25
−

0.
15

−
0.

05

5 10 15 20

inPopSqrt

−
0.

08
−

0.
04

0.
00

0.
02

5 10 15 20

altX
0.

7
0.

8
0.

9
1.

0
1.

1
1.

2
1.

3

5 10 15 20

Rate.1

0.
30

0.
35

0.
40

5 10 15 20

linear

−
0.

10
−

0.
06

−
0.

02

5 10 15 20

quad

Profile likelihoods

 1952

 1953

 1954

 1955

1.6 1.8 2.0 2.2 2.4

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

1.6 1.8 2.0 2.2 2.4

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

Figure: Profile likelihood, left based on 100 samples, right on 1000 (4hrs!)

Cappé, O., Moulines, E. and Rydén, T. (2005) Inference in Hidden
Markov Models. Springer.

Gelman, A. (1995) Method of moments using Monte Carlo
simulation. Journal of Computational and Graphical Statistics,
4(1), 36–54.

Geyer C. J. and Thompson E. A. (1992) Constrained Monte Carlo
maximum likelihood for dependent data. Journal of the Royal
Statistical Society, Series B, 54, 657–699.

Kong, A. (1992) A note on importance sampling using
standardised weights. Technical Report 348, Department of
Statistics, University of Chicago.

	Outline
	Rapid Tour of Siena
	Model
	Method of Moments
	Maximum likelihood
	Bayesian approach

	Importance Sampling
	 Importance Sampling

	Alternatives
	Reducing discrepancies
	Gelman paper
	Optimization approaches
	Other possibilities

	Summary
	Summary
	Extras

	References

