The co-evolution of one-mode and two-mode networks

Tom A.B. Snijders

University of Groningen University of Oxford

June 2023

One-mode and two-mode networks

The combined consideration of one-mode and two-mode networks is very fruitful because it allows to consider the mutual dependencies between (one-mode) relational networks and (two-mode) activities and/or memberships and/or cognitions and/or internal structure and/or details of behavioral tendencies and/or

These slides are about the co-evolution of one-mode and two-mode networks according to the Stochastic Actor-oriented Model.

Two-mode networks have less structure, so that there are fewer effects.

Within-dyad dependencies are undefined.

Two-mode networks have less structure, so that there are fewer effects.

Within-dyad dependencies are undefined.

Actor-level dependencies are meaningful.

Two-mode networks have less structure, so that there are fewer effects.

Within-dyad dependencies are undefined.

Actor-level dependencies are meaningful.

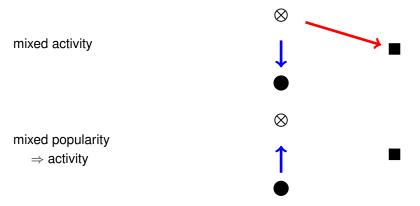
mixed activity

Two-mode networks have less structure, so that there are fewer effects.

Within-dyad dependencies are undefined.

Actor-level dependencies are meaningful.

mixed activity

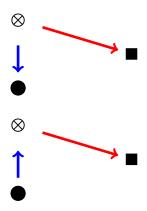


Two-mode networks have less structure, so that there are fewer effects.

Within-dyad dependencies are undefined.

Actor-level dependencies are meaningful.

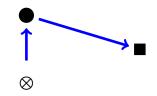
Two-mode networks have less structure, so that there are fewer effects.


Within-dyad dependencies are undefined.

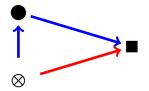
Actor-level dependencies are meaningful.

mixed activity

mixed popularity

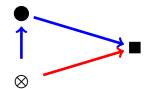

⇒ activity

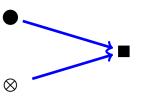
One-with-two-mode triads.


One-mode tie ⇒
two-mode agreement
'I go to places

One-with-two-mode triads.

One-mode tie ⇒
two-mode agreement
'I go to places where my friends are'
association-based affiliation closure.



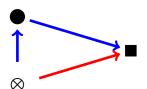

One-with-two-mode triads.

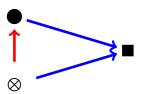
One-mode tie ⇒
two-mode agreement
'I go to places where my friends are'

association-based affiliation closure

Two-mode agreement ⇒ one-mode tie 'Those who go to the same places

One-with-two-mode triads.


One-mode tie \Rightarrow two-mode agreement


'I go to places where my friends are'

association-based affiliation closure

Two-mode agreement ⇒ one-mode tie 'Those who go to the same places become friends'

affiliation-based focal closure

The two different ways in which this mixed triadic closure can occur implies that, analogous to the distinction influence \leftrightarrow selection in network-behavior co-evolution, in the co-evolution of a one-mode and a two-mode network there is the distinction between focal closure and affiliation closure, also called affiliation-based closure and association-based closure.

(One-mode: association; two-mode: affiliation, focus).

E.g., Easley and Kleinberg (2010, Section 4.3); Lomi and Stadtfeld (2014).

5/25

Example 1: Glasgow friends and pastimes

Example:

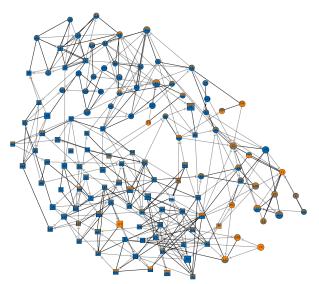
West of Scotland 11-16 Study; West et al. (1996 and later).

One school year group from a Scottish secondary school starting at age 12-13 years, monitored over more than 2 years; total of 160 pupils, sociometric & behavior questionnaires at three moments, at appr. 1 year intervals.

First network: friendship; second network (two-mode): activities.

covariates:

gender, smoking of parents and siblings (binary), money available (range 0-40 pounds/week).



girls: circles boys: squares

node size: pocket money

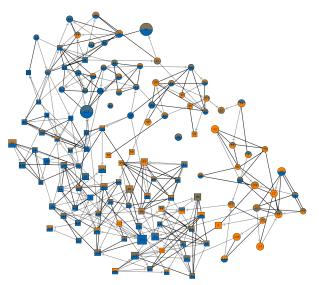
color: top = drinking
bottom = smoking
 (orange = high)

wave 2

girls: circles boys: squares

node size: pocket money

color: top = drinking bottom = smoking (orange = high)



girls: circles boys: squares

node size: pocket money

color: top = drinking bottom = smoking (orange = high)

Descriptives for friendship

Three waves \sim two periods.

Average degrees 3.7; 3.5; 3.6.

Amount of stability in network ties measured by Jaccard coefficient

$$J = \frac{N_{11}}{N_{01} + N_{10} + N_{11}}$$

where N_{hk} = number of tie variables with value h at one wave and value k at the next.

J = 0.30; 0.35 for the two periods.

Descriptives for leisure activities

Three waves \sim two periods.

Average degrees 4.7; 4.0; 3.9.

Amount of stability in activities also measured by Jaccard coefficient

$$J = \frac{N_{11}}{N_{01} + N_{10} + N_{11}}$$

where N_{hk} = number of tie variables with value h at one wave and value k at the next.

J = 0.51 for both periods.

11 / 25

Second mode: Leisure time activities

	daily	weekly	monthly	less
I listen to tapes or CDs	388	23	5	16
I look around in the shops	65	290	48	30
I read comics, mags or books	186	121	65	60
I go to sport matches	30	113	90	200
I take part in sports	218	117	30	68
I hang round in the streets	216	64	26	125
I play computer games	157	109	45	122
I spend time on hobby (e.g. art, instrument)	114	113	36	170
I go to something like B.B., Guides or Scouts	36	81	1	314
I go to cinema	11	81	269	71
I go to pop concerts, gigs	7	6	92	326
I go to church, mosque or temple	2	52	10	368
I look after a pet animal	197	25	6	203
I go to dance clubs or raves	15	44	104	266
I do nothing much (am bored)	37	39	24	331

Number of students participating in each of a list of activities, summed over three waves, for Glasgow data.

Bold-faced are categories counted as a tie.

Results

Results

The table of results is distributed over 4 pages:

- friendship: the basis
- friendship: effects of leisure activities
- leisure: the basis
- leisure: sex-related specializations.

13 / 25

Friendship: basic

· · · · · · · · · · · · · · · · · · ·			
Effect	par.	(s.e.)	
rate period 1	12.383	(1.217)	
rate period 2	9.870	(1.132)	
Friendship: endogenous effects			
outdegree (density)	-3.633***	(0.258)	
reciprocity	3.337***	(0.311)	
GWESPFF: creation ($\alpha = 0.69$)	3.350***	(0.301)	
GWESPFF: maintenance ($\alpha = 0.69$)	0.273	(0.385)	
indegree - popularity	-0.079***	(0.020)	
outdegree - activity	0.121***	(0.036)	
reciprocated degree - activity	-0.303***	(0.071)	
indegree - activity	0.001	(0.056)	
Covariate effects			
girls alter	-0.124	(0.085)	
girls ego	0.032	(0.086)	
same gender	0.446***	(0.082)	

Results

Friendship: effects of leisure activities

Effect	par.	(s.e.)
Friendship: effects of leisure		
leisure outdegree popularity	-0.046	(0.037)
leisure outdegree activity	-0.087*	(0.037)
affiliation-based closure	0.213**	(0.073)

15 / 25

Leisure: basic

Effect	par.	(s.e.)	
Activities			
rate period 1	4.386	(0.293)	
rate period 2	4.254	(0.313)	
Endogenous effects of activities			
outdegree (density)	-2.149 * * *	(0.333)	
4-cycles	0.0272***	(0.0073)	
indegree - popularity	0.0269**	(0.0084)	
outdegree - activity	0.389***	(0.086)	
out-in degree assortativity	-0.0128***	(0.0027)	
Effects of friendship on activities			
friendship indegree activity	0.001	(0.039)	
friendship outdegree activity	-0.148*	(0.073)	
association-based closure	0.351***	(0.062)	

Results

Leisure: two-mode sex homophily

Homophily in two-mode networks is treated in

https://www.stats.ox.ac.uk/~snijders/siena/Twomode_s.pdf

Effect	par.	(s.e.)		
Effects of sex on activities				
girls ego	-0.870**	(0.313)		
4-cycles among girls	0.0027	(0.0065)		
girls \times outdegree - activity	0.066*	(0.029)		
indegree - popularity within girls	0.0242*	(0.0098)		
indegree - popularity within boys	0.0091	(0.0103)		

Leisure homophily only for girls!

The leisure-only model did show leisure homophily also for boys.

This is 'explained away' here by association-based closure.

Example 2: American high school

Other example, based on Fujimoto, Snijders, & Valente (NWS, 2018).

US high school, X = friendship, Z = sport activities.

Descriptives

Two waves \sim one period.

```
n = 309 students, m = 16 sports,
```

X = friendship, Z = sport participation in past 12 months.

Average friendship degrees 6.6, 6.2;

Jaccard similarity 0.25.

Average sport out-degrees 1.2, 1.1; Jaccard similarity 0.44.

Again, four pages of results.

19 / 25

Results: friendship (1)

Effect	par.	(s.e.)
outdegree	-3.519***	(0.413)
reciprocity	2.775***	(0.171)
transitive triplets	0.398***	(0.032)
transitive reciprocated triplets	-0.293***	(0.071)
3-cycles	0.101	(0.064)
transitive ties	0.425***	(0.073)
indegree - popularity	0.022***	(0.005)
outdegree - popularity	-0.065***	(0.009)
outdegree - activity	0.011	(0.023)
outdegree - activity $(\sqrt{\ })$	0.154	(0.187)
reciprocal degree - activity	-0.079***	(0.015)
outdegree positive	-0.776	(0.763)
gender (F) alter	-0.035	(0.041)
gender (F) ego	0.093*	(0.042)
same gender	0.363***	(0.047)
same gender \times reciprocity	-0.442**	(0.136)

Results: friendship (2)

Effect	par.	(s.e.)
hispanic alter	0.013	(0.065)
hispanic ego	-0.045	(0.063)
same hispanic	0.144*	(0.064)
grade alter	-0.021	(0.022)
grade ego	-0.026	(0.023)
grade similarity	0.317***	(0.088)
same class	0.564***	(0.091)
same class \times reciprocity	-0.210	(0.154)
same class \times same gender	-0.041	(0.107)

Results: sports

Effect	par.	(s.e.)
outdegree	-2.369***	(0.613)
4-cycles	0.041	(0.030)
indegree - popularity	0.020**	(0.007)
outdegree - activity	-0.029	(0.102)
outdegree positive	<i>–</i> 2.116***	(0.592)
gender ego (F)	0.023	(0.184)
two-mode gender similarity	1.750***	(0.416)
4-cycles same gender	-0.085*	(0.039)
hispanic ego	-0.599**	(0.222)
grade ego	0.299**	(0.115)

Strong evidence for homophily!

Results

Results: cross-networks

Effect	par.	(s.e.)
Sports ⇒ Friendship		
outdegree ($\sqrt{\ }$) sports activity	-0.106**	(0.038)
affiliation-based closure	0.159**	(0.057)
Friendship \Rightarrow Sports		
friendship outdegree ($\sqrt{\ }$) activity (eval.)	0.171	(0.468)
friendship outdegree ($\sqrt{\ }$) activity (maint.)	-1.386	(1.063)
association-based closure (evaluation)	0.442*	(0.187)
association-based closure (maintenance)	0.646	(0.452)

Those mentioning more sports mention fewer friends; shared sport activities lead to friendship; friendship leads to shared sport activities (not different for creating or maintaining activities).

- ⇒ See Snijders, Lomi & Torlò in Social Networks, 2013 Fujimoto, Snijders & Valente (Network Science, 2018), Lomi & Stadtfeld (KZfSS, 2014).
- ⇒ It's a multilevel issue (but not nested): ties, dyads, actors, triads, subgroups, ...

- ⇒ See Snijders, Lomi & Torlò in Social Networks, 2013 Fujimoto, Snijders & Valente (Network Science, 2018), Lomi & Stadtfeld (KZfSS, 2014).
- ⇒ It's a multilevel issue (but not nested): ties, dyads, actors, triads, subgroups, ...
- ⇒ Testing cross-network dependencies in dynamics of multiple networks gives interesting new possibilities for hypothesis testing.

- ⇒ See Snijders, Lomi & Torlò in Social Networks, 2013 Fujimoto, Snijders & Valente (Network Science, 2018), Lomi & Stadtfeld (KZfSS, 2014).
- ⇒ It's a multilevel issue (but not nested): ties, dyads, actors, triads, subgroups, ...
- Testing cross-network dependencies in dynamics of multiple networks gives interesting new possibilities for hypothesis testing.
- ⇒ Elaborated along the lines of actor-based modeling.

- ⇒ See Snijders, Lomi & Torlò in Social Networks, 2013 Fujimoto, Snijders & Valente (Network Science, 2018), Lomi & Stadtfeld (KZfSS, 2014).
- ⇒ It's a multilevel issue (but not nested): ties, dyads, actors, triads, subgroups, ...
- ⇒ Testing cross-network dependencies in dynamics of multiple networks gives interesting new possibilities for hypothesis testing.
- ⇒ Elaborated along the lines of actor-based modeling.
- Compared to modeling dynamics of single networks, this approach attenuates the Markov assumption by extending the state space to a multiple network.

⇒ New perspectives possible by combining one-mode and two-mode networks.

- ⇒ New perspectives possible by combining one-mode and two-mode networks.
- ⇒ The method is available in RSiena. This works for a small number (e.g., 2–6) of networks, and a limited number of actors (up to a few hundred).

- ⇒ New perspectives possible by combining one-mode and two-mode networks.
- ⇒ The method is available in RSiena. This works for a small number (e.g., 2–6) of networks, and a limited number of actors (up to a few hundred).
- ⇒ If there are implication relations between the networks, e.g., two networks might be mutually exclusive, or one might be a sub-network of the other, then this constraint is observed, noted in the print01Report, and respected in the simulations.

This gives possibilities for networks with valued ties by using different dichotomies.

