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1 Modeling Panel Network Data

Research utilizing the perspective of social networks can shed important light on

political processes, as is illustrated, for example, by the special issue Social Networks

and American Politics of American Politics Research (Heaney and McClurg, 2009). This

perspective offers some complications for statistical analysis, however. A network

approach is so useful because it can represent the interdependence between political

actors (see Huckfeldt, 2009) – but statistical modeling is commonly based on

independence assumptions. The challenge in statistical modeling of social network data

is to represent the dependencies between network ties so that valid inferences can be

obtained and misspecification avoided; and, by doing so, to provide methods that allow

researchers to test hypotheses about these interdependencies.

This article treats statistical methods for network panel data. It is assumed that the

reader has a basic knowledge of networks and the associated terminology; see, e.g.,

Wasserman and Faust (1994) or Knoke and Yang (2008). For the data structure it is

assumed that a fixed set of nodes is being considered – where, however, exceptions are

allowed in the sense that some nodes may enter or leave the network – while the change

represented by the panel consists of tie changes from one panel wave to the next. The
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purpose of the statistical models treated is to find the rules, or mechanisms, that govern

the change in the network ties, in a way that treats the mentioned challenge in an

appropriate way. The fact that a fixed set of nodes is considered means that the problem

of network delineation, or the ‘network boundary problem’ (cf. Marsden, 2005) is

considered to have been solved before embarking upon the analysis that is the topic of

this paper.

This paper has three main parts. First, we present the model for analyzing dynamics

of directed network that was introduced by Snijders (2001), with a brief sketch of the

associated estimation methods, implemented in the software package SIENA

(‘Simulation Investigation for Empirical Network Analysis’). The actor-based framing

used to define this model is helpful in combining the primacy of actors in social science

theories with the dyadic nature of network ties. This method is being used in network

studies in various of the social sciences and is now also starting to be used in the political

sciences; see, e.g., Andrew (2009). Second, this model is extended to non-directed

networks, i.e., networks in which the ties are by their nature non-directional, so that a tie

from i to j cannot be distinguished from a tie from j to i. Many applications of network

analysis to the political sciences are naturally formulated in terms of non-directed

networks. For a tie to exist in a non-directed network, some kind of coordination

between the two involved actors has to be modeled, and we present new models in which

this coordination is added to the actor-based framework of Snijders (2001). The third

part is a brief introduction to models for the co-evolution of networks and nodal

attributes, which build upon the models for network dynamics but extend the dependent

variable: in addition to the network, there is an evolving actor-level variable that can be

influenced by the network and that itself can exert influence upon the network. The paper

finishes with a discussion which also indicates how these models are positioned in the

wider set of statistical network models that have been proposed in the literature.
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2 Stochastic Actor-Based Models for Network Dynamics

This section presents a model for network dynamics where as time goes by, ties can be

added as well as deleted from the network. The probabilities of these tie changes may

depend on variables that are exogenous to the network – where the variables can be

monadic (defined at the level of actors) or dyadic (defined at the level of pairs of actors)

– but may also depend on the existing configuration of ties in the network as a whole.

The latter gives a way of representing dependencies between ties. First the fundamental

description of the model is given, followed by possible ingredients for its detailed

specification. Finally, procedures for estimation are briefly described. Examples are not

given here, but can be found, e.g., in Andrew (2009), Lazega, Mounier, Snijders, and

Tubaro (2010), and van de Bunt, Wittek, and de Klepper (2005).

2.1 Notation

This section treats directed networks on a given node set {1, . . . , n}. Nodes represent

social actors. The existence of a tie from node i to node j is indicated by the tie indicator

variable Xij , having the value 1 or 0 depending on whether there is a tie i→ j. For the

tie i→ j, actor i is called the sender and j the receiver of the tie. Self-ties are not

considered, so that always Xii = 0. The matrix with elements Xij is the adjacency

matrix of a directed graph, or digraph; the adjacency matrix as well as the digraph will

be denoted by X . Outcomes (i.e., particular realizations) of digraphs will be denoted by

lower case x.

Replacing an index by a plus sign denotes summation over that index: thus, the

number of outgoing ties of actor i, also called the out-degree of i, is denoted

Xi+ =
∑

j Xij , and the in-degree, which is the number of incoming ties, is

X+i =
∑

j Xji.

For the data structure, it is assumed that there are two or more repeated observations

of the network. Observation moments are indicated by t1, t2, . . . , tM with M ≥ 2.

Besides the network, there may be other variables which can depend on the actors

(monadic or actor covariates) or on pairs of actors (dyadic covariates).
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2.2 Actor-based Models

One of the difficulties for the use of network analysis in political science is the fact that

network data by their nature are dyadic, i.e., refer to pairs of actors, whereas the natural

theoretical unit for political science is the actor. This issue is discussed more generally

for the social sciences by Emirbayer and Goodwin (1994). For modeling network

dynamics, however, a natural combination of network structure and individual agency is

possible by basing the model on the postulate that creation and termination of ties are

initiated by the actors, as was proposed by Snijders (1996). Here the model is presented

for binary directed networks, where it is postulated that changes of ties are under the

control of the sending actor. This model is explained more fully in Snijders (2001) and

Snijders, van de Bunt and Steglich (2010). In Section 3 a model for non-directed

networks is presented.

Like for other statistical models, a number of simplifying assumptions are made.

1. Between observation moments t1, t2, etc., time runs on, and changes in the

network can and will take place without being directly observed. Thus, while the

observation schedule is in discrete time, an underlying process of network

evolution is assumed to take place with a continuous time parameter t ∈ [t1, tM ].

2. At any given time point t ∈ [t1, tM ] when the network changes, not more than one

tie variable Xij can change.

3. The probability that a particular variable Xij changes depends on the current state

of the network, and not on earlier preceding states.

Assumptions 1 and 3 are expressed mathematically by stating that the network model is

a continuous-time Markov process. Assumption 2 simplifies the elements of change to

the smallest possible constituent: the creation or termination of a single tie. These

assumptions rule out coordination or negotiation between actors. They were proposed as

basic simplifying postulates already by Holland and Leinhardt (1977). In future models

it will be interesting to allow coordination between actors, but the postulates used here

can be regarded as a natural first step to modeling network dynamics.
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These three assumptions imply that actors make changes in reaction to each others’

changes in between observations. This has strong intuitive validity for many panel

observations of networks. For repeated measures of networks created in one step for each

new observation, they provide a convenient approximation which has the big advantage

that the model is described totally by defining the probability of single tie changes.

The model is actor-based in the sense that tie changes are modeled as the result of

choices made by the actor sending the tie. This model is split into two components:

timing and choice. The timing component is defined in terms of opportunities for

change, not in terms of actual change. This is to allow the possibility that an actor is

satisfied with the current situation and does not make a tie change, although the

opportunity is there.

4. Consider a given current time point t, tm ≤ t < tm+1, and denote the current state

of the network by x = X(t). Each actor i has a rate of change, denoted

λi(x;α, ρm), where α and ρm are statistical parameters.

5. The waiting time until the next opportunity for change by any actor has the

exponential distribution,

P{Next opportunity for change after t is before t+ ∆t}

= 1− exp(−λ∆t) , (1)

with parameter λ = λ+(x;α, ρm).

6. The probability that the next opportunity for change is for actor i is given by

P{Next opportunity for change is by actor i} =
λi(x;α, ρm)

λ+(x;α, ρm)
. (2)

7. Each actor i has an objective function fi(x; β) defined on the set of all possible

networks x, which may be regarded as the net result of short-term goals and

restrictions, determining the probability of the next tie change by this actor; where

β is a statistical parameter.

8. To define this probability, the following notation is used. For digraphs x and i 6= j,

by x(±ij) we define the graph which is identical to x in all tie variables except
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those for the ordered pair (i, j), and for which the tie variable i→ j is just the

opposite of this tie variable in x, in the sense that x(±ij)
ij = 1− xij . In other words,

the digraph x(±ij) is the same as digraph x except that the tie variable from i to j is

toggled. Further, we define x(ii±) = x (just as a convenient formal definition).

Assume that, at the moment of time t+ ∆t (see point 5) with current network

X(t) = x, actor i has the opportunity for change. Then the probability that the tie

variable changed is Xij , so that the network x changes into x(±ij), is given by

exp
(
fi(x

(±ij); β)
)∑n

h=1 exp
(
fi(x(±ih); β)

) . (3)

Expression (3) is the multinomial logit form which is obtained when it is assumed that i

makes the choice to toggle the variable Xij that maximizes the objective function of the

resulting state plus a random residual,

fi(x
(±ij); β) +Rj ,

where the variables Rj are independent and have a standard Gumbel distribution (for a

proof, see Maddala, 1983). Thus, this model can be regarded as being obtainable as the

result of myopic stochastic optimization. Game-theoretical models of network formation

often use myopic optimization, e.g., Bala and Goyal (2000).

For extensions of this model without antisymmetry between creating a new tie and

terminating an existing tie, see the treatment in Snijders, van de Bunt and Steglich

(2010) of the endowment function.

2.3 Specification of the Actor-based Model

The specification of the actor-based model amounts to the choice of the rate function

λi(x;α, ρm) and the objective function fi(x; β). This choice should be based on

theoretical considerations, knowledge of the subject matter, and the hypotheses to be

investigated. The focus of modeling normally is on the objective function, as this reflects

the choice part of the model.

In many situations, a simple specification of the rate function suffices:

λi(x;α, ρm) = ρm . (4)
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Note that m is defined above as the index of the observation tm such that for the current

time point t, it holds that tm ≤ t < tm+1. Including the parameter ρm allows to fit exactly

the observed number of changes between tm and tm+1. In model (4), the parameter α is

not used and may be omitted from the notation. In some other situations, however, the

actors differ in the frequency with which they make changes, e.g., because of the

differential resources they devote to optimizing their network position. When this is the

case, often this is reflected by the out-degree xi+, and appropriate specifications could be

λi(x;α, ρm) = ρm exp(αxi+) or λi(x;α, ρm) = ρm exp(α/(xi+ + 1)) .

The exponential function ensures that the rate function is positive. The rate function can

also depend on actor covariates. An example where it depends on a covariate vi and on

the out-degree is

λi(x;α, ρm) = ρm exp(α1vi + α2/(xi+ + 1)) .

The more important part of the model specification is the objective function. Like in

generalized linear modeling, a convenient type of function is the linear combination

fi(x; β) =
K∑
k=1

βkski(x) , (5)

where the ski(x) are functions of the network, as seen from the point of view of actor i.

These functions are called effects. When parameter βk is positive, tie changes will have a

higher probability when they lead to higher values of the effects ski(x) – and conversely

for negative βk.

Some possible effects are the following. First we discuss some effects depending on

the network only, which are important for modeling the dependence between network

ties.

1. A basic component is the outdegree, s1i(x) =
∑

j xij . This effect is analogous to a

constant term in regression models, and will practically always be included. It fits

the level and tendency of the average degree.

7



2. Reciprocation of choice is a fundamental aspect of almost all directed social

networks, because network ties almost always entail some kind of exchange with a

tendency toward reciprocity. This is reflected by the the reciprocated degree,

s2i(x) =
∑

j xij xji, the number of reciprocal ties in which actor i is involved.

3. The local structure of networks is determined by triads, i.e., subgraphs on three

nodes (Holland and Leinhardt, 1975). A first type of triadic dependency is

transitivity, in which the pattern i→ j → h tends to imply the direct tie i→ h.

This tendency is captured by s3i(x) =
∑

j,h xij xjh xih, the number of transitive

triplets originating from actor i.

Theoretical arguments were formulated already by Simmel (1917), who discussed

the consequences of triadic embeddedness on bargaining power of the social actors

and on the possibilities of conflicts. Coleman (1988) stressed the importance of

triadic closure for social control, where actor i, who has access to j as well as h,

has the potential to sanction them in case j behaves opportunistically with respect

to h. For networks between individuals, transitivity is found with overwhelming

strength (e.g., Davis, 1970). Empirical confirmation for networks of alliances

between firms was found, e.g., by Gulati (1998) and Gulati and Gargiulo (1999).

4. Another triadic configuration is the three-cycle, defined by the ties

i→ j → h→ i, reflected by the effect s4i(x) =
∑

j,h xij xjh xhi. This can

represent generalized exchange (e.g., Molm, Collett, and Schaefer, 2007), or

redundancy of exchange flows. If the relation under study has an aspect of

deference or hierarchy, then an avoidance of three-cycles is expected. Indeed, a

tendency toward transitivity combined with a tendency away from three-cycles can

be interpreted as a local (i.e., triadic) representation of a hierarchically ordered

structure. Davis (1970) found wide confirmation of the avoidance of three-cycles

in empirically observed networks.

In- and out-degrees are fundamental aspects of individual network centrality

(Freeman, 1979). They reflect access to other actors and often are linked quite directly to

opportunities as well as costs of the network position of the actors. Degrees may be

indicators for influence potential, success (de Solla Price, 1976), prestige (Hafner-Burton
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and Montgomery, 2006), search potential (Scholz, Berardo and Kile, 2008), etc.,

depending on the context. Accordingly, probabilities of tie creation and dissolution may

depend on the degrees of the actors involved. This is expressed by degree-related effects,

such as the following.

5. In-degree popularity, indicating the extent to which those with currently high

in-degrees are more popular as receivers of new ties. This can be expressed by

s5i(x) =
∑

j xij x+j , the sum of the in-degrees of those to whom i has a tie. When

in-degrees are seen as success indicators, this can model Merton’s (1968) Matthew

effect, which was used by de Solla Price (1976) in his network model of

cumulative advantage, rediscovered by Barabási and Albert (1999). This is an

example of an effect with emergent (micro-macro) consequences: if individual

actors have a preference for being linked to popular (high-indegree) actors, the

result is a network with a high dispersion of in-degrees.

Since degrees may often have diminishing returns, as argued by Hicklin, O’Toole

and Meier (2008), an alternative mathematical specification of this effect as

defined by s′5i(x) =
∑

j xij
√
x+j may also be useful.

6. Out-degree popularity, indicating the extent to which those with currently high

out-degrees are more popular as receivers of new ties. This can be expressed by

s6i(x) =
∑

j xij xj+ (where again the square root transformation might be applied

to express diminishing returns of degrees xj+). For this effect the emergent result

is less direct: here, if the parameter β6 is positive, high out-degrees lead to high

in-degrees, so that this will result in a positive correlation between out-degrees and

in-degrees.

7. In-degree activity, indicating the extent to which those with currently high

in-degrees are more active as senders of new ties. This can be expressed by

s7i(x) =
∑

j xij x+i.

8. Out-degree activity, indicating the extent to which those with currently high

out-degrees are more active as senders of new ties. This can be expressed by

s8i(x) =
∑

j xij xi+ =
∑

j x
2
i+. In case of a positive parameter β8, this effect will
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lead to a strong dispersion in the out-degrees.

9. In-in degree assortativity: the tendency of actors with high in-degrees to send ties

to others with high in-degrees. This can be specified by the effect

s9i(x) =
∑

j xij x+i x+j , and a positive parameter will lead to networks where the

in-degrees of tied partners are correlated. Degree-based assortativity was

discussed by Morris (1993) and Newman (2002). Such an effect may obtain, e.g.,

if in-degree reflects social status and actors have the tendency to prefer ties to

others with similar status.

In-in degree assortativity may be regarded as a kind of interaction between

in-degree activity and in-degree popularity, and just like for other interaction

effects it is advisable to include this assortativity in a model only if also in-degree

activity and in-degree popularity are included.

In addition to these effects based on the network structure itself, research questions will

naturally lead to effects depending on attributes of the actors – indicators of goals and

resources, etc., defined externally to the network. Since network ties involve two actors,

a monadic actor variable vi will lead to potentially several effects for the network

dynamics, such as the following. Here the word ‘ego’ is used for the focal actor, or

sender of the tie; while ‘alter’ is used for the potential candidate for receiving the tie.

10. The ego effect s10i(x) =
∑

j xij vi = xi+vi, reflecting the effect of this variable on

the propensity to send ties, and leading to a correlation between vi and out-degrees.

11. The alter effect s11i(x) =
∑

j xij vj , reflecting the effect of this variable on the

popularity of the actor for receiving ties, and leading to a correlation between vi

and in-degrees.

12. The similarity (homophily) effect, which implies that actors who are similar on

salient characteristics have a larger probability to become and stay connected, as

reviewed in general terms by McPherson, Smith-Lovin, and Cook (2001). An

example is the finding by Huckfeldt (2001) that people tend to select political

discussion partners who are perceived to have expertise and who are perceived to
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have similar views: this would be reflected by an ego and a similarity effect with

respect to (perceived) expertise. This can be implemented by the effect

s12i(x) =
∑
j

xij

(
1− |vi − vj|

Range(v)

)
,

where Range(v) = maxi(vi)−mini(vi).

13. The ego-alter interaction effect, represented like a product interaction,

s13i(x) =
∑

j xij vivj , which is a different way to represent how the combination

of the values on the covariate of the sender and the receiver of the potential tie may

influence the probability of the creation and maintenance of a tie.

Further, it is possible to include attributes of pairs of actors – of which one example is

how they are related in a different network. Such dyadic covariates can express, e.g.,

meeting opportunities (e.g., Huckfeldt, 2009), spatial propinquity (e.g., Baybeck and

Huckfeldt, 2002), institutional relatedness, competing for the same resources or scarce

outcomes, etc.

14. The dyadic covariate effect of a covariate wij is defined as s14i(x) =
∑

j xij wij .

For further possibilities of model specification, see Snijders, van de Bunt, and

Steglich (2010) and the SIENA manual (Ripley and Snijders, 2010).

It may be noted that this formulation seems to entail that the objective functions are

constant over time and constant across actors. This is not to be taken absolutely,

however, as the monadic and dyadic covariates will differentiate between actors and can

be defined as time-changing variables. It is more precise, therefore, to say that

differences of objective functions between actors and over time are assumed to be

captured by available covariates. Since the covariates remain implicit in the notation,

they are hidden in the formulae.

2.4 Parameter Estimation

If a continuous time record is available from the network evolution process as described

above, so that for each tie the exact starting and ending times within the observation
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period are known, and these starting and ending times are all distinct as assumed by the

model even if only by the slightest amounts, then the model can be framed as a

generalized linear model and maximum likelihood estimation is possible, in principle, in

a straightforward way. This paper, however, focuses on panel data, for which this precise

timing available is not available. Estimation in this case is possible by a variety of

simulation-based methods.

A method of moments estimator was proposed by Snijders (2001). The method of

moments operates in principle by selecting a vector of statistics, one for each parameter

coordinate to be estimated, and determining the parameter estimate as the parameter

value for which the expected value of this vector of statistics equals the observed value.

For the case of this Markov process model for a panel data set, this method is

implemented as follows. The observed networks are denoted by x(tm), while the random

networks of which these are realizations are denoted by X(tm).

Corresponding to the parameter ρm, a multiplicative parameter used in (4) and the

subsequently given examples for the rate function, the statistic used for estimating this

parameter is

cm
(
x(tm), x(tm+1)

)
=
∑
i,j

| xij(tm+1)− xij(tm) | . (6a)

Corresponding to the parameter βk occurring in the objective function (5), the statistic

used is

sk
(
x(tm)

)
=
∑
i

ski
(
x(tm)

)
. (6b)

If ρm increases, then cm
(
X(tm), X(tm+1)

)
is expected to increase. If βk increases, then

sk
(
X(tm+1)

)
is expected to increase for m = 1, . . . ,M − 1. Therefore the equations

defining the moment estimator for parameter θ, defined as a shorthand for

θ = (ρ1, . . . , ρM−1, β1, . . . , βK), are

Eθ̂

{
cm
(
x(tm), X(tm+1)

)
| X(tm) = x(tm)

}
= cm

(
x(tm), x(tm+1)

)
(m = 1, . . . ,M−1),

(7a)

M−1∑
m=1

Eθ̂

{
sk
(
X(tm+1)

)
| X(tm) = x(tm)

}
=

M−1∑
m=1

sk
(
x(tm+1)

)
(k = 1, . . . , K). (7b)
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The conditionally expected values in (7) cannot be calculated analytically, but can be

approximated by Monte Carlo simulation, as the assumptions (1.-8.) described above

can be used directly to provide a simulation algorithm for simulating the network

X(tm+1) given the starting value X(tm) = x(tm). An algorithm to approximate the

value of θ̂ defined by (7) is described in Snijders (2001).

The Method of Moments estimator has proven to be quite reliable and efficient.

More recently, algorithms for likelihood-based estimators have been developed: a Bayes

estimator by Koskinen and Snijders (2007) and a Maximum Likelihood estimator by

Snijders, Koskinen and Schweinberger (2010).

3 Models for Dynamics of Non-directed Networks

In this section it is assumed that the network is non-directed, i.e., ties have no

directionality: Xij = Xji holds by necessity, and the tie variables Xij and Xji are treated

as being one and the same variable. This is the case in many types of tie, such as mutual

collaboration or agreement. Ties now are indicated by i↔ j.

3.1 Two-sided Choices

For modeling non-directed networks, it is necessary to make assumptions about the

negotiation or coordination between the two actors involved in the creation or

termination of a tie. In game-theoretic models of networks, it is usually assumed that for

a tie to exist, the consent of both actors is involved. This is the basis of Jackson and

Wolinsky’s (1996) definition of pairwise stability: a network is pairwise stable if no pair

of actors can both gain from creation of a new tie between them, and if no single actor

can gain from termination of one of the ties in which this actor is involved. We present

several models, all based on a two-step process of opportunity and choice, and making

different assumptions concerning the combination of choices between the two actors

involved in a tie.
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For the opportunity, or timing, process, two options are presented.

1. One-sided initiative: One actor i is selected and gets the opportunity to make a

change.

This is according to the assumptions 1-6 mentioned above for the directional case.

2. Two-sided opportunity: An ordered pair of actors (i, j) (with i 6= j) is selected and

gets the opportunity to make a new decision about the existence of a tie between

them.

In this case assumptions (1.-3.) are maintained, but (4.-6.) are replaced (in

abbreviated description) as follows.

4.2. Each ordered pair of actors (i, j) has a rate of change, denoted λij(x;α, ρm),

where α and ρm are statistical parameters.

5.2. The waiting time until the next opportunity for change by any pair of actors

has the exponential distribution with parameter λtot =
∑

i 6=j λij(x;α, ρm).

6.2. The probability that the next opportunity for change is for pair (i, j) is given

by

P{Next opportunity for change is for pair (i, j)} =
λij(x;α, ρm)

λtot(x;α, ρm)
. (8)

The choice process is modeled as one of three options D(ictatorial), M(utual) and

C(ompensatory). We now define, for graphs x and i 6= j, by x(+ij) the graph which is

identical to x in all tie variables except possibly for the tie between i and j, and to which

the tie i↔ j is added if it was not already there: x(+ij)
ij = 1. Thus if xij = 0 then

x(+ij) = x(±ij); if xij = 1 then x(+ij) = x.

In all cases assumption (7.) as defined for the directed case is retained, and

assumption (8.) is replaced as indicated below.

D. Dictatorial: One actor can impose a decision about a tie on the other.

Like in the directed case, actor i selects the (myopically) best toggle of a single tie

variable Xij given the objective function fi(x; β) plus a random disturbance, and
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actor j just has to accept. Combined with the two opportunity options, this yields

the following cases.

8.D.1. The probability that the tie variable changed is Xij , so that the network x

changes into x(±ij), is given by

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑n

h=1 exp
(
fi(x(±ih); β)

) . (9)

8.D.2. The probability that network x changes into x(±ij), is given by

pij(x, β) =
exp

(
fi(x

(±ij); β)
)

exp
(
fi(x; β)

)
+ exp

(
fi(x(±ij); β)

) . (10)

M. Mutual:

Both actors must agree for a tie between them to exist, in line with Jackson and

Wolinsky (1996).

8.M.1. In the case of one-sided initiative, actor i selects the best possible choice,

with probabilities (9). If currently xij = 0 so that this means creation of a

new tie i↔ j, this is proposed to actor j, who then accepts according to a

binary choice based on objective function fj(x; β), with acceptance

probability

P{j accepts tie proposal} =
exp

(
fj(x

(+ij); β)
)

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β)

) .
If the choice by i means termination of an existing tie, the proposal is always

put into effect. Jointly these rules lead to the following probability that the

current network x changes into x(±ij):

pij(x, β) =
exp

(
fi(x

(±ij); β)
)∑n

h=1 exp
(
fi(x(±ih); β)

) ( exp
(
fj(x

(+ij); β)
)

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β)

))1−xij

.

(11)

(Note that the second factor comes into play only if xij = 0, which implies

x(+ij) = x(±ij).)

8.M.2. In the case of two-sided opportunity, actors i and j both reconsider the value

of the tie variable Xij . Actor i proposes a change (toggle) with probability
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(10) and actor j similarly. If currently there is no tie, xij = 0, then the tie is

created if this is proposed by both actors, which has probability

pij(x, β) = (12a)

exp
(
fi(x

(+ij); β)
)(

exp
(
fi(x; β)

)
+ exp

(
fi(x(+ij); β)

)) exp
(
fj(x

(+ij); β)
)(

exp
(
fj(x; β)

)
+ exp

(
fj(x(+ij); β)

)) .
If currently there is a tie, xij = 1, then the tie is terminated if one or both

actors wish to do this, which has probability

pij(x, β) = (12b)

1 −
exp

(
fi(x; β)

)(
exp

(
fi(x; β)

)
+ exp

(
fi(x(±ij); β)

)) exp
(
fj(x; β)

)(
exp

(
fj(x; β)

)
+ exp

(
fj(x(±ij); β)

)) .
C. Compensatory: The two actors decide on the basis of their combined interests.

The combination with one-sided initiative is rather artificial here, and we only

elaborate this option for the two-sided initiative.

8.C.2. The binary decision about the existence of the tie i↔ j is based on the

objective function fi(x; β) + fj(x; β). The probability that network x

changes into x(±ij), now is given by

pij(x, β) =
exp

(
fi(x

(±ij); β) + fj(x
(±ij); β)

)
exp

(
fi(x; β) + fj(x; β)

)
+ exp

(
fi(x(±ij); β) + fj(x(±ij); β)

) .
(13)

The two model components, rate function and objective function, can be put

together by considering the so-called transition rates. These give the basic definitions of

the continuous-time Markov processes that result from the assumptions formulated

above (cf. Taylor and Karlin, 1998, or other textbooks on continuous-time Markov

processes). Given that the only permitted transitions between networks are toggles of a

single tie variable, the transition rates can be defined as

qij(x) = lim
∆t↓0

P{X(t+ ∆t) = x(±ij) | X(t) = x}
∆t

(14)

for i 6= j. Note that this definition implies that the probabilities of toggling a particular

tie variable Xij in a short time interval are approximated by

P{X(t+ ∆t) = x(±ij) | X(t) = x} ≈ qij(x) ∆t .
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The transition rates can be computed from the assumptions using the basic rules of

probability.

In this derivation account must be taken of the fact that toggling variable Xij is the

same as toggling Xji, and the rules described above give different roles for the first and

the second actor in the pair (i, j). For the models with one-sided initiative, the transition

rate is

qij(x) = λi(x;α, ρm) pij(x, β) + λj(x;α, ρm) pji(x, β) , (15)

and for the models with two-sided opportunity

qij(x) = λij(x;α, ρm) pij(x, β) + λji(x;α, ρm) pji(x, β) . (16)

3.2 Comparison in simple cases

It may be illuminating to treat the simplest – and thereby trivial – case obtained from

these models when the objective function is zero, so that all decisions taken by actors are

equiprobable choices in some permitted option set; and the rate function is constant,

λi = ρ or λij = ρ, respectively. Although substantively this is an uninteresting case, it

gives insight in the differences in behavior of the models. This specification yields the

following transition rates:

D.1. qij(x) = 2 ρ
1

n
=

2ρ

n

D.2, C.2. qij(x) = 2 ρ
1

2
= ρ

M.1. qij(x) =


2 ρ

1

2n
=
ρ

n
(xij = 0)

2 ρ
1

n
=

2ρ

n
(xij = 1)

M.2. qij(x) =


2 ρ

1

4
=
ρ

2
(xij = 0)

2 ρ
3

4
=

3ρ

2
(xij = 1) .

From these expressions for the transition rates we can draw three conclusions.

1. The transition rates do not depend on elements of x other than xij itself. This

means that the n(n− 1)/2 dyad processes Xij(t) are independent across dyads.
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2. Elementary properties of continuous-time Markov chains imply that the tie

probabilities P{Xij(t) = 1} have a limiting value which is equal to the ratio of the

transition rate for the value 0 changing to 1, compared to the rate of 1 changing to

0. Thus, models D.1, D.2, and C.2 lead to randomly changing graphs with a

limiting distribution where each tie has probability 1/2; M.1 leads to a randomly

changing graph with a limiting tie probability of 1/3; while M.2 yields a randomly

changing graph with a limiting tie probability of 1/4.

3. The transition rates in the one-sided initiative models have a factor 1/n which does

not occur in the two-sided opportunity models. This reflects the fact that, contrary

to the two-sided opportunity models, the one-sided initiative models contain a step

of choosing between n options. In models with more general objective functions

there will not be a direct proportionality factor of 1/n, but still the parameter

estimates for different models on the same data set will normally be such that the

rate function λi(x;α, ρm) for the one-sided initiative model will be much larger

than the rate function λij(x;α, ρm) for the two-sided opportunity model. Another

way of understanding this is that the former are rates at which a given actor may

change any of her/his ties, whereas the latter are rates at which a given dyadic tie

variable may change, which happens less frequently.

The second conclusion for this trivial example shows that the requirement in the

mutual models that both actors agree with the existence of a tie, leads to lower tie

probabilities compared to the dictatorial and compensatory models, given the same

objective function. This would not necessarily be the case in modifications of the mutual

models where the actors look ahead one step for the behavior of their potential partner,

and stochastically maximize the expected objective function one step ahead. Here again

there are various different possibilities; we leave this as a topic for future research.

Again a convenient and flexible class of objective functions can be represented by

the linear combination (5). The same effects can be used as for directed networks, but

some are redundant. For example, the reciprocity effect s2i is the same as the degree

effect s1i, for monadic covariates the ego effect s10i is the same as the alter effect s11i,

etc.
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It is possible to go beyond the trivial case elaborated above, and derive exact or

approximate identities between the models in still simple, but nontrivial cases. This may

help to obtain some insight into how these different models behave when applied with

the same objective function to the same data set. The perhaps clearest example is the

following. If all effects ski included in a model (5) are such that the contributions of ties

are the same for both actors involved (which is the case, for example, for the degree

effect s1i and the similarity effect s12i), then the compensatory dyadic model C.2 is

identical to the dictatorial dyadic model D.2, except that the parameters βk are twice as

small for C.2 compared to D.2., because of the addition of the two objective functions in

(13). For general models this identity will not hold, but in a first-order approximation it

still may be expected that the βk parameters in model C.2 are about twice as small as

those in D.2, and the ρm parameters are quite similar. For the objective function specified

as fi(x; β) = β1xi+, models D.2 and C.2 yield graphs with randomly changing tie

variables where the limiting tie probability can be an arbitrary number between 0 and 1,

depending on the value of β1.

3.3 Estimation and Examples

Method of moment estimators can be obtained for these models in exactly the same way

as described in the previous section for models for directed networks. This is because the

algorithm for these estimators is based directly on simulation of the network evolution,

and the assumptions in this section can be used straightforwardly for simulating the

evolution of a non-directed network.

An example of model M.1, which seems theoretically the most appealing version, is

given by van de Bunt and Groenewegen (2007) in an interorganizational setting.
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4 Models for Co-evolution of Networks and Nodal Attributes

A major reason for the fruitfulness of a network-oriented research perspective is the

entwinement of networks and individual behavior, performance, attitudes, etc., of

political actors. The effect of peers on individual political behavior is a well-studied

issue, starting from Lazarsfeld, Berelson, and Gaudet (1948); a recent example is

Klofstad (2007). Huckfeldt (2009) argues that, since social interaction leads to influence

with respect to political behaviors, the composition of the social context of individuals

influences their own attitudes and behaviors, and he draws attention to the endogeneity

of the network of interaction partners. Inter-organizational studies have also drawn

attention to the importance of networks for organization-level outcomes. Scholz,

Berardo and Kile (2008) show that the position of organizations in general contact

networks influences their propensity to collaborate and to perceive agreement between

stakeholders. Berardo (2009) shows that cooperation between governmental and

nongovernmental organizations enhances organizational performance.

Studying the entwinement of networks and actor-level outcomes is made difficult

because of the endogeneity of both: the network affects the outcomes while the

outcomes affect the network. One way to get a handle on this is to model these dynamic

dependencies both ways in studies of the co-evolution of networks and nodal attributes.

This is elaborated here. For the nodal attributes in the role of dependent variables we use

the term ‘behavior’ as a catch-word that also can represent other outcomes such as

performance, attitudes, etc.

4.1 Dynamics of Networks and Behavior

The modeling framework used above for an evolving network X(t) now is extended by

considering a simultaneously and interdependently evolving vector of H behavior

variables Z(t) = (Z1(t), . . . , ZH(t)). The value of the h’th variable for the i’th actor is

denoted Zih(t). We assume that all components of the behavior vector Z(t) are ordinal

discrete variables with values coded as an interval of integers.

For modeling the joint dynamics of the network and behavior
(
X(t), Z(t)

)
, we
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follow the same principles as those used to model the development of X(t) alone: time t

is a continuous parameter; changes in network and behavior can take place at arbitrary

moments between observations; at any single time point, only one variable can change,

either a tie variable Xij or a behavior variable Zih; and the process
(
X(t), Z(t)

)
evolves

as a Markov process, i.e., change probabilities depend on the current state of the process,

not on earlier states. The principle of decomposing the dynamics in the smallest possible

steps is carried further by requiring that a change of a behavior variable at one single

moment can only be one step up or down the ladder of ordered values – i.e., by a value

±1, as these variables have integer values.

These principles are elaborated by Snijders, Steglich and Schweinberger (2007) and

Steglich, Snijders and Pearson (2010) in a model that has the following basic

components.

• For the network changes the network rate function λXi (x, z;αX , ρX) indicates the

average frequency with which actor i has the opportunity to make changes in one

outgoing network variable.

• For each behavior variable Zh the behavior rate function λZhi (x, z;αZh, ρZh)

indicates the average frequency with which actor i has the opportunity to make

changes in this behavior variable.

• For the network the network objective function fXi (x, z; βX) reflects the net result

of short-term goals and restrictions, determining the probability of the next tie

change by actor i.

• For each behavior variable Zh the behavior objective function fZhi (x, z; βZh)

reflects the net result of short-term goals and restrictions, determining the

probability of the next behavior change by actor i.

The network dynamics proceeds just as defined above for the network-only case. The

behavior dynamics is analogous. Here the option set for the decision of change is

different, however, in the following way. For notational simplicity, we give the formulae

only for the case of H = 1 dependent behavior variable. In a process driven by the rate
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functions λZi (x, z;αZ , ρZ), actor i now and then gets the opportunity to change the value

of her behavior Zi. When this happens, and the current value is denoted z, the actor has

three options: increase by 1, stay constant, or decrease by 1. If the current value is at the

minimum or maximum of the range, one of these options is excluded. Of the three (or

two) allowed new values z′, the actor chooses by myopic stochastic optimization: the

value z′ is selected that has the highest value of the objective function of the new state

plus a random residual,

fZi (x, z′; βZ) +RZ
j ,

where again the variables RZ
j are independent and have a standard Gumbel distribution.

The resulting choice probabilities again have a multinomial logit form, the probability of

choosing z′ (with permitted values z − 1, z, z + 1) being

exp
(
fZi (x, z′; βZ)

)∑1
d=−1 exp

(
fZi (x, z + d; βZ)

) , (17)

with obvious modifications in case z is at the boundary of its range.

This model for the co-evolution of networks and behavior permits the expression of

both social selection (e.g., homophilous selection), where the values of Zih and Zjh

influence the probability of creating, or of maintaining, a tie from i to j; and of social

influence, or contagion, where for actor i the probability of changes in Zih depends on

the behaviors Zjh of those actors j with whom i is tied.

4.2 Specification of Behavior Dynamics

The main extra component of the model specification regards the objective function for

behavior. Here also we use notation just for one single behavior variable Z. Again, a

linear combination is considered:

fZi (x, z; βZ) =
∑
k

βZk s
Z
ki(x, z) , (18)

where the effects sZki(x, z) depend on the network and the behavior. A baseline is a

quadratic function of the actor’s own behavior as the expression of short-term goals and

restrictions.
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1. This includes the linear term sZ1i(x, z) = zi, and

2. the quadratic term sZ2i(x, z) = z2
i .

Several statistics could be specified to represent social influence (contagion), such as the

following two.

3. The similarity between the behavior of actor i and the actors to whom i is tied,

measured just like the analogous effect s12i for the network dynamics,

sZ3i(x) =
∑
j

xij

(
1− |zi − zj|

Range(z)

)
.

4. The product of the own behavior zi with the average behavior of the other actors to

whom i is tied, sZ4i(x, z) = zi
(∑

j xij zj
)
/
(∑

j xij
)

(defined as 0 if this is 0/0).

Together with the two terms sZ1i and sZ2i, this yields a quadratic function of which

(if the coefficient of sZ2i is negative) the location of the maximum is a linear

function of the average behavior in the ‘personal network’ of i.

The effects sZ3i and sZ4i both express the concept of social influence, albeit in different

mathematical ways. The choice between them can be based on theoretical grounds, if

any theoretical preferences exist – else on empirical grounds.

The behavior dynamics can also depend on network position directly, for example,

on the degrees of the actor.

5. It can depend, e.g., on the ‘popularity’ of actor i as measured by the indegree, i.e.,

the number of incoming ties, sZ5i(x) = zi x+i, and/or

6. on the ‘activity’ of actor i as measured by the outdegree, i.e., the number of

outgoing ties, sZ6i(x) = zi xi+.

In addition, it will often be important to include effects of other actor-level variables on

zi.
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The parameter estimation for this model is treated in Snijders, Steglich, and

Schweinberger (2007).

5 Discussion

Network-related research questions lead to various issues at the interface between theory

and methodology – in political as well as other sciences. One issue is how to make the

combination of, on the one hand, theories in which individual actors have primacy and

which recognize the embeddedness in the social context (cf. DiPrete and Forrestal, 1994;

Udehn, 20002; Huckfeldt, 2009) and, on the other hand, empirical research with data

sets including dyadic as well as monadic variables. Another issue is the fact that

hypotheses about dyadic relations between social actors usually will imply

non-independence between dyadic tie variables, and also between dyadic and monadic

variables, which requires new and perhaps unusual statistical methods. This

non-independence sometimes can be regarded as a consequence of endogeneity, i.e.,

resulting from different but interdependent choices: for example, in studies of how actors

are influenced by those actors to whom they are tied it is important to recognize that the

network may be endogenous, and in studies of homophilous choice of interaction

partners the behavior that is the dimension for homophily may be endogenous. Dropping

the assumption of independence implies that the dependence between variables has to be

specified in a plausible way in order for the statistical analysis to be reliable. However,

our theories mostly give only a very incomplete handle on this specification; few

statistical models representing dependencies between dyadic variables have been

proposed, and the available models are currently in various stages of development; and

as yet we know little about the sensitivity of conclusions for the misspecification of such

statistical models.

The methods discussed and proposed in this article are meant to provide an inroad

to tackling these two issues for panel data on ‘complete networks’. The latter

specification means that the network consists of the pattern of ties between all actors in a

well-delineated group, and ties of these actors with others outside the group may be

ignored: the network boundary problem (Marsden, 2005) is assumed to have been solved
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in an earlier phase of the research. Within these models the wider context outside of this

group, to which every group member is exposed, is therefore kept constant, and its

influence is not considered. This implies, in terms of Huckfeldt’s (2009: 928) statement

that ‘(p)olitical communication networks are created as the complex product of this

intersection between human choices and environmentally imposed options’, that the

methods treated here focus on the ‘human choice’ component but not on effects of the

composition of the network.

The models presented here are for data of dynamics of binary networks, and for the

interdependent dynamics of networks and individual outcome variables (‘behavior’) that

can be represented by ordinal discrete variables. They are implemented in the program

SIENA, ‘Simulation Investigation for Empirical Network Analysis’, which is available as

an R package (Ripley and Snijders, 2010). These models were first proposed,

respectively, in Snijders (2001) and Snijders, Steglich and Schweinberger (2007), and

have been applied across the social sciences. The model for dynamics of non-directed

networks is new, although an application to choice by firms of collaboration partners

already appeared in van de Bunt and Groenewegen (2007). Work is in progress to extend

these models to more general types of data, such as valued networks and multivariate

networks.

The definition of this model in terms of choices by individual actors means that

changing dyadic and monadic variables can be analyzed in a coherent framework

according to theories where the analytical primacy is with structurally embedded

individual actors, in line with Udehn’s (2002) remarks on structural individualism. The

fact that choices are assumed to be myopic does not exclude strategic considerations, but

means that these have to be represented by the short-term goals through which actors

attempt to reach their long-term objectives. Theoretical arguments given in the literature

for the occurrence of structural effects such as reciprocity and transitivity are mostly

based on their importance as intermediate goals serving the purpose of ulterior

objectives; this is the case, e.g., for Coleman’s (1988) argument that transitivity (triadic

closure) gives opportunities for social control and sanctioning, as well as for Burt’s

(2002) theory about the importance of structural holes as a means for obtaining
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positional advantage. Nevertheless it would be interesting to extend the myopic models

presented here to models that incorporate some kind of foresight or explicit strategic

interdependence.

The definition of the model for repeated observations in discrete time as a

probability model for unobserved small changes occurring in continuous time, is a

principle that goes back at least to Coleman (1964), and that was proposed for network

dynamics by Holland and Leinhardt (1977). This idea is generally useful to obtain

relatively simple representations for time series incorporating feedback between multiple

variables and for unequally spaced time series. An overview is given by Singer (2008).

A variety of models have been proposed, and used in the political science literature,

for treating network data. To identify the position occupied by the models treated here in

the wider array of statistical models for network data, four broad categories of methods

may be discerned for dealing with network dependencies. With ‘models for network

data’ we refer to statistical models where the dependent variable is dyadic and can be

represented by Xij , where i and j range in a common set of actors. In discussing these

four approaches we amalgamate models for cross-sectional and for longitudinal network

data.

A first approach is to compute variables representing network structure and use

these among the independent variables in otherwise traditional statistical models,

assuming independent residuals. An example is the paper by Hafner-Burton and

Montgomery (2006) who used pooled time-series analysis for binary dyadic outcomes.

This is flexible because the network variables can be calculated in any way that follows

from the research questions; but this also is risky because the residuals are likely to be

dependent, e.g., residuals for the Xij with the same sender i or the same receiver j may

be dependent, and there may be more complicated types such as reciprocal and triadic

dependencies. This will often lead to misspecification of models postulating independent

residuals, and hence to the possibility of incorrect type-I error rates of hypothesis tests.

This approach can be criticized also on conceptual grounds, because the use of

network-based variables presupposes dependencies between dyads, which however are

ignored in the specification of the distribution for the residuals.
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A second approach is to take account of network dependencies without explicitly

modeling them. The most well-known method here is the quadratic assignment

procedure (Krackhardt, 1988; Dekker, Krackhardt, and Snijders, 2007) which is a

permutation test respecting the network structure. This procedure was applied by

Shrestha and Feiock (2009) in a study of multivariate service networks. In many

situations this approach, when applied properly, leads to tests with approximately the

correct type-I error rate for hypotheses about relations between dyadic variables

observed in a network structure. Since the network structure is not modeled explicitly,

this approach does not allow testing hypotheses about network dependencies such as

reciprocity or transitivity.

The other two approaches represent network dependencies explicitly. One

possibility to do this is by latent variable models. Hoff and Ward (2004) modeled

international relations using models with random effects for countries. Hoff, Raftery and

Handcock (2002) proposed a model for network data where the nodes are represented by

latent positions in Euclidean space, assuming that nearby actors have a larger probability

of being tied, so that the latent positions can represent transitivity and clustering. This

model was adapted to rank data by Gormley and Murphy (2007) and applied to Irish

election data. The fourth possibility, finally, is to model dependencies as such. For

cross-sectional network studies, this can be done by the Exponential Random Graph

Model or p∗ model, see Wasserman and Pattison (1996) and Snijders, Pattison, Robins,

and Handcock (2006). This model was applied by Thurner and Binder (2001) in a study

of transgovernmental networks between the EU member states. For longitudinal network

studies, the actor-based models presented are examples of this approach. These models

can represent network dependencies in many differentiations; for example, they allow to

test hypotheses about triadic closure and three-cycles. Whether the third or fourth model

gives a better representation of network dependencies is an empirical question which has

not yet been investigated, so it seems. The quality of this representation will also depend

strongly on the model specification within either of these model types, and on the data

set. For some research questions the representation with random effects and latent spatial

positions will be more natural, for others the representation by differentiated types of

network dependencies.
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The first of these four approaches may be considered more and more to be

inadequate, given the risks of misspecification and the availability of specific

network-oriented methods. The other three approaches all have their own pros and cons

and domains of applicability, and all may be expected to be fruitful for research in

political science.
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